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Abstract- In this paper presents a new model procedure for the solution of the 

incompressible Navier-Stokes equations in primitive variables, using grid generation 

techniques. The time dependent momentum equations are solved explicitly for the velocity 

field using the explicit marching procedure, the continuity equation is implied at each grid 

point in the solution of pressure equation, while the SOR method is used for the Neumann 

problem for pressure. Results obtained for the model problem of driven flow in a square 

cavity demonstrate that the method yields accurate solutions. The results of the numerical 

computations in a driven cavity, which are presented for the history of the residues at several 

Reynolds numbers Re=100,1000,4000 and 5000 all the computed results are obtained 

without any artificial dissipation. This feature of the present procedure demonstrates its 

excellent convergence and stability characteristics. Numerically results obtained for the 

steady state static pressure in the driven cavity are presented for the first time at Re=4000 

and 5000 using non-staggered grid. 

Key words- successive over-relaxation iteration, Navier-Stokes equations, driven cavity 

flows 

1. INTRODUCTION 

We shall describe a combination of numerical grid generation techniques using stretching 

function by Marcel Vinkur [9] for solving the incompressible Navier-Stokes equations in 

primitive variables. , As an illustration, use them to compute driven cavity flows. Two 

dimensional laminar incompressible flows have been studied extensively by several 

investigators using the Navier-Stokes equations formulated in terms of vorticity ω, and 

stream function ψ, as the dependent variables. Roach [10] has given an excellent survey of 

the techniques of solution of Navier-Stokes equations using the (ω, ψ) formulation. Accurate 

and efficient numerical methods given by: R.Schreiber [7]. A numerical method using the 

primitive variables (u, v, p) to solve the Navier-Stokes equations are given by Ghia [1] and 

S.Abdallah [2]. Burggraf [6] studied the cavity-flow problem with great care and the results 

he provided for Reynolds number, (Re), ranging from zero to 400 are still among the most 

accurate results available for this problem. Several investigators [1,2,5,6,7] have used the 

cavity problem as model problem to test new numerical schemes, because it comprises a 

relatively simple flow configuration. Numerical grid generation technique introduced by 

W.D.Barfield [14], Wen-Hwa Chu [15], A.A.Amsden and C.W.Hirt [18], Joe.Thompson, 

Thames, Mastin [16] and Middlecoff. [8] Discussed the problem of grid generation is that of 

determining the physical domain to the computational domain, i.e., a transformation from 

physical domain. To computational domain is introduced this transformation is 

accomplished by specifying a generalized coordinate system which will map the 

nonrectangular grid system in the physical domain to rectangular uniform grid spacing in the 

computational domain. In the present method in all computations a grid was numerically 
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calculated for the physical domain. The grid lines were clustered in all walls the purpose of 

clustering was to capture the grid strong gradient of the phenomenon, which are concentrated 

at all walls. A method of controlling the spacing of the coordinate lines given by Middlecoff 

[8] has been domain in the square cavity in order to treat higher Reynolds number flow, 

since the coordinate lines must concentrate near the surface to a greater degree as the 

Reynolds number increases. The solution shows excellent at Reynolds numbers Re=100,400 

and 1000 with the results at Refs. [2,4,5,7] And another new results given at 

Re=2000,3000,4000 and 5000. Therefore, in the present study, the model problem of driven 

flow in a square cavity is investigated using the primitive variables (u, v, p) using grid 

generation technique. Results for velocity as well as pressure fields are obtained for 

Reynolds number Re ranging from 100 to 5000 and are compared with those of the (ω,ψ) 

system and (u, v, p) system without grid generation technique. 

2. MATHEMATICAL FORMULATION 

The different equations governing the motion of an incompressible viscous fluid inside a 

square cavity are the two- dimensional Navier-Stokes equations together with the continuity 

equation in the convective form, i.e., nonconservative form, these equations are 

X-Momentum equation 

( ) )1(
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yyxxxyxt uupvuuuu +
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Y-Momentum equation 
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Continuity equation 

                           0=+ yx vu                                                (3) 

Here, the Reynolds number Re is defined as Re =
µ

ρ Ul
, with U being the velocity of the 

moving wall, in the above equations velocities have been made dimensionless with respect to 

u, pressure with respect to 2uρ  and distance with respect to the width of the square cavity 

l . 

The pressure p, which is nested in this system doesn’t appear as dominant variable in any of 

these equations, the pressure p in the (u, v, p) system may be determined from a Poisson 

equation obtained by appropriately forming the divergence of the vector momentum 

equation . 

2.1 Pressure Poisson Equation 

By differentiating equation (1) with respect to x and equation (2) with respect to y and 

adding the resulting two equations, we get the pressure equation in the form 
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The derivatives of the dilation yx vuD +≅  appearing in the equation (4) and (5) have been 

intentionally not set to zero. 

2.2 The boundary conditions  
The boundary conditions [1] for the cavity-flow problem in the (u, v, p) system are relatively 

straight forward. For the momentum equations, the normal velocities are zero at the 

nonporous walls while the tangential velocities satisfy the condition consist of the normal 

gradient  evaluated from the appropriate momentum equation. Thus the boundary conditions 

on the cavity walls, see Fig (1) is: 
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At wall CD:                                                                                                                                 

                                                                                           .                       Figure1: Cavity 

geometry 
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Solution for the pressure Poisson equation (4) with Neuman boundary conditions (6---9) 

requires the satisfaction of the compatibility condition  

              ds
n

p
dAyxS

A C

p∫ ∫ ∂
∂

=),(                                    (10) 

Where A is the area of the solution region, C is the perimeter of this area and ns&  are the 

local tangent and outward normal to C. 

3. MATHEMATICAL TRANSFORMATION 

Two-dimensional elliptic boundary value problem is considered. The general transformation 

from the physical plane (x, y) to the transformed plane (ξ, η) is 

            ),(,),( yxyx ηηξξ ==                      (11) 

And the inverse transform is 

    ),(,),( ηξηξ yyxx ==                        (12) 

The Jacobian of the transformation is 
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Higher derivative can be obtained by repeated operations. 

3.1 Mapping of the physical domain 
The choice of mapping is largely dependent on its simplicity and the effort required for a 

desired accuracy. The boundary of physical domain is specified at discrete points ),( bb yx . 

These points correspond to the boundary points ),( bb ηξ  in the transform plane ),( ηξ . Since 

we desire to have a prescribed, convenient mesh in the ),( ηξ  plane ),( ηξ  must be used as 

variables; their values are governed by any suitable elliptic partial differential equation. As 

independent a first-boundary value problem. ηξ ,  must satisfy the Poisson equation in the 
physical plane: 

),(,),( 22 ηξηηξξ QP =∇=∇                                  (16) 
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The dependent and independent variables can be interchanged by applying equation (14) and 

(15) one finds that 

                          12 Oxxx =+− ηηξηξξ γβα                         (18) 

                         12 Oyyy =+− ηηξηξξ γβα                         (19) 
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Equations (18) and (19) are clearly coupled quasi-linear elliptic equations, and only in 

special cases )( ξηηξ yxandyx −==  can be reduced to Poisson equations for which 

mapping is conformal. 

Equations (18) and (19) such that when O1=O2=0 when P=Q=0 in the general case can be 

conveniently solved by the finite difference method with successive overrelaxation (SOR) 

[12] of the dependent variable.  

4. THE NUMERICAL SOLUTION USING GRID GENERATION TECHNIQUES 

To obtain the numerical solution using grid generation technique, we transform the 

governing equation (1--- 4) from the physical domain into the computational domain. So 

using the equations (11-15) then equations (1) and (2) will take the forms 
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Where γβα and,  are defined in (19) and 
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Such that 

ηηξηξξηηξηξξ γβαγβα yyyDxxxD yx +−=+−= 2,2  

And the equation (3) takes the form 
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In order to transform the pressure equation from the physical domain to computational 

domain we use the transformation equations (14-15), so we get 
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By substituting from (34) and (35) into (5) and using once again, we get the transformed 

pressure equation in the form 
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Where 
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1
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The values of the stream function Ψ are obtained by solving Poisson equation 
                                                   ω−=Ψ+Ψ yyxx                                             (37) 

And the transformation of this equation will take the form 

         ωγβα ξηηηξηξξ
22 Jed −=Ψ+Ψ+Ψ+Ψ−Ψ                             (38) 

In order to solve this system of equations we solve it in sequential procedure, and the 

solution is considered to have converged when all u, v, p have satisfied suitable convergence 

criteria. We note that the boundary conditions in the transformed plane will take the form 
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To solve numerically equations (1), (2) and (3) with boundary conditions (on unit square) 

given by the equations (6), (7), (8) and (9) in computational domain we will solve the 

transformed equations (31), (32), (33) and (36) we use the second order central finite 

difference formula. The time derivative terms are approximated using forward difference. 

5. RESULTS AND DISCUSSION 

The driven cavity problem, which has been widely used for validating solution techniques 

for the incompressible Navier-Stokes equations, is selected to validate the present method. 

The results for the computed stream function, Vorticity, velocity and pressure in the driven 

cavity are presented in Figures. (2) Through (5) for Reynolds numbers 100, 1000, 4000 and 

5000 the computed results can compare with the available results of other investigators, Ref. 

[5], [6] and [7] in order to validate the accuracy of the numerical procedure. The Vorticity 

contours and the velocity profiles are presented in Figures (3) and (4). Both studies obtained 

their results using the stream function Vorticity formulation. Burggraf and Mansour [5] used 

4141×  grid and Schreiber [7] used 180180×  grid and a fourth-order accurate technique 

one can observe the agreement between the computed Vorticity contours and Burggraf’s [6], 

Mansour [5] results at Re=100 and Schreiber’s [7], Mansour [5] at Re=1000. The velocity 

profiles for u and v at Re=1000 can compare with the results by Schreiber [7] and Mansour 

[5] in Figures (4). 
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Figure 2: (a-d) Stream function contours and physical domain 

Clustering grid )5151( ×  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Vorticity contours 
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Figure 4: (a) U-Velocity profiles at the centerline of the cavity 

(b) V-Velocity profiles at the centerline of the cavity 

 

The comparison shows excellent agreement with clustering grid from all sides, using grid 

system generated by elliptic PDEs in the present computations. Figures (5) present the 

computed static pressure coefficient and the results of Ref. [5], at Re=100 and 1000. The 

numerical solution for the pressure in Ref. [5] was obtained on a ( )4141×  clustering grid. 

The static pressure coefficient is defined as 
2

0 /)Re(2 UppC p −=  

Where 0p is the reference pressure at the center of the cavity’s lower boundary. One can see 

that the results of the present method (G.G. Method) are in excellent agreement with the 

results obtained by Burggraf [6] and Mansour [5] at 100 and 400 Reynolds number. The 

computed static pressure coefficient at Re=100 and 1000 are shown in Figure (5). The new 

results are given by present method for the computed Vorticity, stream function, pressure at 

Re=4000 and Re=5000 are shown in Figures (2), (3) and (5). 

 

 

 

 

 

 

 

 

 

 

Figure 5: (a-d) Pressure coefficient contours 
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6. CONCLUSIONS 

Numerical grid generation is one of the most effective methods for solving partial differential 

equations in irregular domains. 

In this paper we use the elliptic grid generation for solving incompressible Navier-Stokes 

equations in primitive variables (u, v, p) using different Reynolds numbers for clustering 

grid )5151( × using explicit difference schemes. We must note that the momentum equations 

are solved for the velocity field by marching in time using Gauss-Siedel method while the 

pressure, system function equations were solved using successive over relaxation method 

with parameter 1.7, and these methods are considered to be explicit methods. 

In comparing the results obtained by solving the partial differential equations using grid 

generation technique and those obtained by using finite difference methods we get that the 

grid generation method is an effective method for dealing with partial differential equations 

with irregular boundary conditions since we can transform the physical domain into the 

computational domain in such a way that any change in the physical domain with time,  

causes the same change in the computational domain and hence we can get more accurate 

solution by using grid generation method. 
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