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Abstract- A large number of texture classification approaches have been developed in 

the past but most of these studies target gray-level textures. In this paper, supervised 

classification of color textures is considered. Several different Multispectral Random 

Field models are used to characterize the texture. The classifying features are based on 

the estimated parameters of these model and functions defined on them. The approach is 

tested on a database of sixteen different color textures. A near 100% classification 

accuracy is achieved. The advantage of utilizing color information is demonstrated by 

converting color textures to gray-level ones and classifying them using gray-level 

random field models. It is shown that color based classification is significantly more 

accurate than its gray-level counterpart. 

Keywords- Color Texture, Color Texture Features, Mutispectral Random Field Models, 

Texture Classification 

1. INTRODUCTION 

Texture classification has received a great deal of attention in the past and a large 

body of literature exists on it. However, a large majority of previously published studies 

on this subject consider classification of gray-level textures. Although color is an 

important visual cue, classification of color textures has not received much attention in 

the past since simultaneous consideration of textural activity and color information 

creates a higher degree of complexity. In this work, we focus on color texture 

classification and utilize a number of recently developed multispectral random field 

models for this purpose. This class of models is capable of characterizing color texture 

and as such provides the right tool for classifying such textures. We introduce features 

defined on the estimated parameters of the multispectral random field models and use 

these features in supervised classification schemes. It is shown that a near perfect 

classification would be achieved for a database that contains sixteen different color 

textures. 

The advantage of considering color in texture classification is also demonstrated in 

this work. An equivalent gray-level database is created for the color database used in 

this study. The gray-level textures are then classified using features derived from gray-

level random field models and the performance is compared to that of color textures. 

There is considerable gain in classification accuracy indicating that color information 

does provide substantial advantage to the recognition task. 
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2. MULTISPECTRAL RANDOM FIELD MODELS 

Multispectral Random Field Models are the generalization of the gray-level random 

field models. They were initially developed in [1, 2]. These models are capable of 

characterizing color textures and are able to synthesize a color texture from the 

estimated parameters of the model fitted to it [2, 1]. In this work, we utilize three such 

models for the classification task. 

2.1 Multispectral Simultaneous Autoregressive (MSAR) Model 

The Multispectral Simultaneous Autoregressive (MSAR) model is the first 

considered model. A pixel location within a two-dimensional M x M lattice is denoted 

by s = (i, j), with i, j being integers from the set J = {0, 1, …, M-1}. The set of all lattice 

locations is defined as Ω = {s = (i, j) : i, j ∈ J}. The MSAR model relates each lattice 
position to its neighboring pixels, both within and between image planes, according to 

the following model equation: ∑ ∑
= ∈
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P
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with, 

yi(s) = Pixel value at location s of the i
th
 plane 

s and r = two dimensional lattices 

P = number of image planes (for color images, P = 3, representing: Red, Green, and 

Blue planes) 

Nij = neighbor set relating pixels in plane i to neighbors in plane j (only interplane 

neighbor sets, i.e. Nij, i ≠ j, may include the (0,0) neighbor) 

θij = coefficients which define the dependence of yi(s) on the pixels in its neighbor set 
Nij 

ρi = noise variance of image plane i 
wi(s) = i.i.d. random variables with zero mean and unit variance 

⊕ denotes modulo M addition in each index (a toroidal lattice structure is assumed so a 
complete neighbor set could be defined for pixels on the boundary of the image) 

The image observations are assumed to have zero mean (i.e., the sample mean is 

computed and subtracted from all pixels). 

The parameters associated with the MSAR model are θθθθ and ρρρρ vectors which 
collectively characterize the spatial interaction between neighboring pixels within and 

between color planes. A least-squares (LS) estimate of the MSAR model parameters is 

obtained by equating the observed pixel values of an image to the expected value of the 

model equations. This leads to the following estimates [2, 1]: 
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2.2 Multispectral Markov Random Field (MMRF) Model 

The second kind of model considered is the Multispectral Markov Random Field 

(MMRF) Model. A multispectral image may be considered Markovian with respect to 

its neighbor set if it has the following property: 

p( yi(s) | all other image observations ) = p( yi(s) | neighborhood observations) 

Because the conditional distribution of yi(s) given all other observations and yi(s) 

given the neighborhood observations are the same, the best linear estimator of the 

observed values may be written in terms of the neighborhood observations as: 

∑ ∑
= ∈

=+⊕θ=
P
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srsrs K  where the estimation error 

∑ ∑
= ∈
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rsrs K  is a stationary noise sequence with unit 

variance i.i.d variates, wi(s) for some choice of cij’s. 

Since the resulting system of equations that could be employed to obtain a LS 

estimate of the model parameters is nonlinear, an approximate LS estimate approach is 

employed here. This is an iterative method that involves repeatedly solving the pair of 

equations [2, 1]: K,2,1,0n,)()()()(ˆ
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Q(s) is evaluated using nρρ ˆ=  and 0ρ̂  is taken as [ 1 1 1 ]
T
 . The iteration terminates 

when convergence is obtained, i.e. subsequent iterations fail to produce significant 

changes in θθθθ. This approach works well in practice, typically requiring less than 10 
iterations to obtain the LS estimate of MMRF model parameters. 

2.3 Pseudo-Markov Random Field (PMRF) Model 

The third model is the Pseudo-Markov Random Field (PMRF) model which has the 

same model equations as the MMRF: P1i),(e)(y)()(y
P
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 However, by restricting the correlation structure of the stationary noise sequences 

{ei(s)} of the PMRF model, it lends itself to a linear LS estimation scheme of its model 

parameters, instead of the non-linear iterative approach used for the MMRF model. The 

assumed correlation structure for {ei(s)} is: 
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The LS estimate of the PMRF model parameters is given by [2, 1]: 
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3. DEFINED FEATURES 

The features that are used for classification of color textures are derived from the 

estimated parameters of the discussed multispectral random field models. In this work, 

classification of color textures will be compared to classification of gray-level converted 

versions of the same color textures in order to illustrate the advantage of using color 

information. As such, in this section both color and grey-level random field model 

textural features are discussed. 

3.1 Features for Color Textures 

The features for color textures are defined on the estimated θθθθ and ρρρρ parameters of the 
considered multispectral model (i.e., MSAR, MMRF, or PMRF). The estimated θθθθ 
parameters are used directly whereas ratios of the ρρρρ parameters of different color planes 

in the form of 
g

r

ρ

ρ
 and 

b

r

ρ

ρ
 are utilized. The justification for using ratios is to make the 

features robust to illumination changes. To see this, take a linear imaging model. For 

such a model, the observed values at each lattice position are assumed to be a product of 

illumination and spectral reflectance. Under this assumption the θθθθ ‘s and ratios of ρρρρ ‘s 
are invariant to changes in illumination intensity, i.e., the power of the illumination 

source changes uniformly across the spectrum. Such a change in illumination will 

correspond to a linear change in the image observations that is constant across image 

planes, affecting the mean and variance of the observed image. Changes in the mean 

vector do not impact the feature set because Random Field model parameters are 

estimated from mean normalized images. Changes in image variance that are uniform 

across image planes are reflected in the model parameters as a constant scale factor 

applied to each ρi, hence the ratios of ρi ‘s are invariant to such changes. 
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The parameter vectors θθθθij are a function of the selected neighbor sets. For the MSAR 
model a 4-element unilateral neighbor set is chosen, given by 

Nij = { (1, 0), (0, 1), (1, 1), (1, -1) }  ∀i,j . 
This choice of neighbor set is illustrated in Figure 1 for within a single plane, (i.e., 

i=j), and it results in a 38-dimensional feature set, fMSAR, 
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with each θθθθij representing four parameters { }1,11,11,00,1 ,,, −θθθθ . 

The neighbor sets for the MMRF and PMRF models must be symmetric, i.e., r ∈ Nij 
⇔ -r ∈ Nji. The same four-element neighbor set Nij is used for these models. However; 
the θθθθij of symmetric neighbors are taken to be equal in these models. Consequently, only 
half of θθθθij parameters are used resulting in a 26-dimensional feature vector for each 
model: 
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It should be noted that the selected four-element neighbor set is not optiml in the 

sense that it cannot re-generate a visually close image to the original in conjunction with 

the utilized model. However, as shown later, this compact and rather sub-optimal (from 

image regeneration point of view) neighbor set can produce excellent classification 

results. 

3.2 Features for Grey-Level Textures 

The grey-level version of each of the color textures considered in this study is also 

generated using a conversion method discussed later. The features considered for grey-

level texture are also based on random field models. The one plane version (P = 1) of 

MSAR and MMRF are used for modeling these textures. These models are referred to 

as SAR and MRF [3, 4]. The LS estimation method is used to estimate θθθθi and ρρρρ 
parameters for these models [3, 4]. Since there is only one ρ parameter, illumination 
invariance is obtained by dividing this parameter by the image sample variance, 2σ̂  [5]. 

Therefore the feature set is: 







σ
ρ

= θf ,
ˆ 2

SAR  and 







σ
ρ

= θf ,
ˆ 2

MRF  

Various neighbor sets containing from 8 to 80 symmetric neighbors are considered 

for these models and the ones producing the best results are used in this study. It turns 

out that the best neighbor sets are a 36 and a 20 element set as shown in Figure 1. These 

neighbor sets are used for 64×64 and 16×16 textures, respectively. The numbers of 
features associated with these neighbor sets are 19 and 11 for the 36 and 20-element set, 

respectively, for both the SAR and MRF models. 
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4. CLASSIFICATION METHOD 

A supervised non-parametric nearest-neighbor classifier, along with the leave-one-

out error estimation method is used for evaluating the efficacy of the discussed features. 

In this simple classification scheme, an unknown feature vector f
(t)
 is assigned to the 

class associated with its nearest neighbor, as defined by a distance metric d(x, y), i.e., 

assign the unknown image sample to the class k associated with the training sample for 

which d(f
(t)
, fi
(k)
) is minimized, with fi

(k)
 representing the ith training sample of class k. 

In order to compensate for scale variations and correlations within each feature 

vector, a normalized distance metric is used ( ) ( ) ( ))k(i)t(1

k

T)k(

i

)t()k(

i

)t( ˆ,d ffffff −∑−= −  

where the superscript (t) denotes the test sample, and kΣ̂  is the sample covariance 

matrix of the training feature set (including nk samples) for class k 
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This normalization method prevents features with large magnitude from dominating the 

nearest-neighbor distance and compensates for redundancy in the feature set. 

5. IMAGE DATABASES 

A sixteen-class color natural texture database constructed from images available in 

[6] is used in this study. These are full color Red, Green, and Blue (RGB) images with 

up to 256 intensity levels for each of the red, green, and blue color components. For 

each natural texture, two image resolutions are included in the database, 512×512 and 
128×128. The selected texture images are shown in Figure 2. 
Each original image is partitioned into 64 non-overlapping sub-images, providing a 

total of 1024 images at each selected resolution. These sub-images are 64×64 and 16×16 
derived from the original 512×512 and 128 x 128 images, respectively. 
A second database of gray-level textures is generated from this color database by 

converting all of the 1024 color images into gray-level ones. This process is carried out 

using the linear RGB to CIE luminance conversion [7] 

YCIE = 0.2125 R + 0.7154 G + 0.0721 B . 

No re-quantization of the image data was performed and the resultant gray-level 

images were kept in a floating-point format. Figure 2 also illustrates the gray-level 

converted images. 

6. CLASSIFICATION RESULTS AND CONCLUSIONS 

The leave-one-out classification results are shown in Tables 1 through 4. In the 

leave-one-out scheme used here, one sample out of 1024 available samples is taken out 

and used as the test sample. This left out test sample is then classified using the other 

1023 samples as the training set. This procedure is repeated for each of the 1024 

samples one at a time resulting in independent classification of each sample. 
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Tables 1 and 2 summarize the results for the 64×64 and 16×16 images, respectively. 
The number of correctly classified samples out of the total of 1024 tested samples 

(tested one at a time) is shown for the color and gray-level images for features derived 

from different models. Tables 3 and 4 show the individual classification accuracy rates 

for each of the sixteen classes. 

These results demonstrate that perfect classification can be achieved for 64×64 color 
texture images using features of either MSAR or MMRF model. For the PMRF model, 

there is a single misclassification; one sample from class 12 (Candy Sprinkles) is 

incorrectly assigned to class 10 (Fabric). For the lower image resolution of 16×16, 
classification accuracies remain high at 98.5% for the MSAR model and 95.9% for both 

the MMRF and PMRF models, respectively. The majority of misclassified samples are 

from class 4 (Leaves), which has textural characteristics that are similar to class 7 

(Sand) and class 16 (Grass). Considering the results for both resolutions, it may be 

concluded that the MSAR based features would be the best choice for the classification 

task. 

As for classification results of the gray-level counterparts images, the accuracy rates 

for the 64×64 resolution are high and the SAR and MRF models perform equally well 
resulting in correct classification rate of 97.8% and 97.2%, respectively. However, when 

the resolution is reduced to 16×16, the performance degrades significantly yielding only 
62.1% and 57.4% accuracies for the SAR and MRF models, respectively. In this case 

many of the samples are misclassified and the confusion is spread over almost all 

classes. As noted before, the structure of the utilized neighbor set is also different for the 

two resolutions. The 18-element set of Figure 1(a) is used for the 64×64 case and the 
10-element set of Figure 1(b) is utilized for the 16×16 resolution. These are neighbor 
sets that produce the best results from among many that were examined. 

By comparing the classification results of color images to their gray-level converted 

counterparts, the advantage of using color becomes apparent. At the 64×64 resolution, 
the color results are clearly better even though an optimal neighbor set is used with the 

gray-level images. If the same 4-element neighbor set used for color images is utilized 

for the gray-level images, the accuracy will be much lower. At the 16×16 resolution, the 
difference in performance becomes much more pronounced. While the color textures are 

classified in the high 90% range, the rate for gray-level images is in the 60% range. At 

this resolution, the textural detail within a single plane becomes fuzzy and interaction 

between different image planes becomes more dominant. The inter-pane interactions, 

which are somewhat invariant to image resolution, are captured by the multispectral 

models causing them to perform better than their single plane, gray-level counterparts. 

In this work three different multispectral random field models are used for supervised 

color texture classification. These models capture both inter-plane and intra-plane 

interactions of image pixels resulting in richer characterization of the image compared 

to its gray-level counterpart. The performance is tested on 1024 images from a sixteen-

class database at two resolutions, 64×64 and 16×16. It is shown that a small and 
compact neighbor set is all that is needed for the classification task. In a leave-one-out 

performance evaluation scheme and utilizing a normalized nearest-neighbor classifier, 

perfect classification is obtained for 64×64 images whereas16×16 images produce 
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accuracy rates in the 98% range. It is also concluded that the MSAR model works the 

best for both image resolutions. 

Table 1. Summary of Leave-One-Out Classification Results for 64×64 Images 

 

Model Type 

No. of Correctly Classified 

Out of 1024 

Accuracy 

Rate 

Color Image Database 

MSAR 

MMRF 

PMRF 

1024 

1024 

1023 

100% 

100% 

99.9% 

Gray-Level Image Database 

SAR (18-element neighbor set) 

MRF (18-element neighbor set) 

1001 

995 

97.8% 

97.2% 

Table 2. Summary of Leave-One-Out Classification Results for 16×16 Images 

 

Model Type 

No. of Correctly Classified 

Out of 1024 

Accuracy 

Rate 

Color Image Database 

MSAR 

MMRF 

PMRF 

1009 

982 

982 

98.5% 

95.9% 

95.9% 

Gray-Level Image Database 

SAR (10-element neighbor set) 

MRF (10-element neighbor set) 

636 

588 

62.1% 

57.4% 

Table 3. Individual Class Accuracy Rates for 64×64 Images 

Accuracy Rate (%) 

Color Image Database Grey-Level Image Database 

 

 

Class MSAR MMRF PMRF SAR 

(18-neighbor) 

MRF 

(18-neighbor) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

98.4 

100 

100 

100 

100 

100 

100 

98.4 

95.3 

100 

100 

100 

100 

98.4 

93.8 

100 

100 

100 

100 

85.9 

92.2 

100 

100 

100 

87.5 

100 

100 

100 

100 

96.9 

98.4 

100 

98.4 

100 

100 

78.1 

95.3 

 

 

 



 

 

A Classification Methodology for Color Textures 
 

 

119 

Table 4. Individual Class Accuracy Rates for 16×16 Images 

Accuracy Rate (%) 

Color Models Grey-Level Models 

 

 

Class MSAR MMRF PMRF SAR 

(10-neighbor) 

MRF 

(10-neighbor) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

100 

96.9 

100 

84.4 

100 

100 

96.9 

100 

100 

98.4 

100 

100 

100 

100 

100 

100 

100 

96.9 

98.4 

75.0 

100 

92.2 

100 

100 

89.1 

90.6 

100 

95.3 

100 

100 

98.4 

98.4 

100 

100 

95.3 

79.7 

93.8 

95.3 

100 

100 

87.5 

93.8 

100 

96.9 

100 

100 

96.9 

95.3 

84.4 

96.9 

51.6 

26.6 

57.8 

85.9 

43.8 

39.1 

53.1 

50.0 

93.8 

84.4 

39.1 

100 

56.3 

31.3 

90.6 

98.4 

39.1 

26.6 

42.2 

78.1 

43.8 

34.4 

50.0 

37.5 

93.8 

59.4 

48.4 

96.9 

40.6 

39.1 

 

 
Figure 1. Neighbor sets used in the image classification experiments. The (0,0) position 

is represented by the white circles, and the black circles denote the relative neighbor 

locations. 

Figure 2. Image databases. 

(b) (c) (a) 4 

Class 1 (Fur) Class 2 (Carpet) Class 3 (Beans) Class 4 (Leaves) 

Class 5 (Water) Class 6 (Metal) Class 7 (Sand) Class 8 (Dark Water) 

Class 9 (Mulch) Class 10 (Fabric) Class 11 (Coffee) Class 12 (Candy) 

Class 13 (Algae) Class 14 (Wood) Class 15 (Flowers) Class 16 (Grass) 

Class 1 (Fur) Class 2 (Carpet) Class 3 (Beans) Class 4 (Leaves) 

Class 5 (Water) Class 6 (Metal) Class 7 (Sand) Class 8 (Dark Water) 

Class 9 (Mulch) Class 10 (Fabric) Class 11 (Coffee) Class 12 (Candy) 

Class 13 (Algae) Class 14 (Wood) Class 15 (Flowers) Class 16 (Grass) 
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