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Abstract-In this study, an Euler-Bernoulli type beam carrying masses at different 
locations is considered. Natural frequencies for transverse vibrations are investigated for 
different end conditions. Frequency equations are obtained for two and three mass 
cases. Analytical and numerical results are compared with each other. 
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1. INTRODUCTION 

Transverse vibrations of beam-mass systems have been investigated by many 
researchers. Approximate and exact analysis were used to calculate the natural 
frequencies. The effects of mass, rotary inertia and springs were investigated [1-7]. 
Gürgöze and Batan [8] considered the numerical solution of the transcendental 
frequency equation. The characteristic equation was obtained using Rayleigh-Ritz 
method [9] and free vibrations were analyzed using Laplace transform and Rayleigh-
Ritz method [10]. Maurizi and Belles [11] compared two fundamental theories of beam 
vibrations. Chai and Low [12] investigated the natural frequencies of a beam with a 
mass near the beam's ends. Low et al. [13] found that the results of experiments and the 
theory did not match well for beams of large slenderness ratio for centre loaded beams. 
Hamdan and Abdel Latif [14] compared Rayleigh-Ritz, Galerkin, Finite Elements and 
Exact solutions and showed finite elements method was preferable due to numerical 
stability and accuracy and these methods had a reasonably good accuracy and 
convergence rate for small attached inertia values. Özkaya et al. [15] analyzed non-
linear free and forced vibrations of a beam-mass system by considering five different 
sets of boundary conditions by considering the effects of the location and the magnitude 
of the mass on the natural frequencies. Different assumed shape functions to obtain the 
kinetic and potential energies of the three classical beams carrying a concentrated mass 
were presented [16,17]. Low et al. [18] presented both experimental and theoretical 
results using Rayleigh-Ritz procedure and showed that the correlation between theory 
and experiments was much improved when stretching effects were included. Auciello 
and Nole [19] determined the free vibration frequencies of a beam composed of two 
tapered beam sections with different physical characteristics with a mass at its end. 
Özkaya and Pakdemirli [20] obtained the frequencies for the clamped-clamped beam 
with mass and searched approximate solutions for free and forced non-linear vibrations 
using a perturbation method. The solutions were compared with the results of both 
analytical and artificial neural network method [21]. Naguleswaran [22] presented the 
frequency equations for all the combinations of the classical boundary conditions and 
for various magnitudes and positions of a single particle mass. Öz [23] and Özkaya [24] 
calculated the frequencies of a beam carrying mass using FEM and analytical methods, 
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and compared with other solutions. Turhan [25] considered the problem with a single 
mass for various classical end conditions using approximate methods and showed that 
resulting formulae can be put in reasonably simple forms in the special cases where the 
beam is symmetrically supported.  

In this study, an Euler-Bernoulli type beam carrying masses on different 
locations is considered. Natural frequencies for transverse vibrations are investigated for 
different end conditions. Analytical and numerical results are compared with each other. 
 

2. EQUATIONS OF MOTION 

In this section, equations of motion for different cases will be derived. The 
Lagrangian of the system consisting of n masses can be written as follows 

£= ( ) ∑∫∑∑∫
=

+
==

+

++ −+
n

m

x

x m

n

m
mmm

n

m

x

x m

m

m

m

m

dxEIwtxwMdxwA
0

*
2

*

1
1

*2*

0

*2*

1

1 ''1

2

1
,

2

1

2

1
&&ρ , Lxx n == +10   ,0  (1) 

where n denotes number of concentrated masses, ρA is the mass per unit length of the 
beam, wm+1 is the displacement of the different portions of the beam which are separated 
by concentrated masses, Mm is the concentrated mass at location m, EI is the flexural 
rigidity of the beam, ( . ) and ( )′ are derivatives with respect to time and spatial 
variables. The first two terms in equation (1) are the kinetic energies of the beam and 
concentrated masses respectively, the last term is the elastic energy due to bending of 
the beam. 

Invoking Hamilton’s principle 
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and substituting the Lagrangian from equation (1), performing the necessary algebra, we 
finally obtain the following set of linear differential equations 
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In equation (3), the number of equations is n+1. The boundary conditions are as follows 
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General end conditions for masses are as follows 
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where αp is the ratio of concentrated masses to the mass of the beam. R is the radius of 
inertia. Also 1   ,0 10 == +nηη . After inserting non-dimensional parameters, we obtain 

the equations of motion and boundary conditions for masses as follows 

011 =+ ++
iv

mm ww&&    m=0,1,2,…n     (10) 

( ) ( ) ( ) ( ) ( ) ( )twtwtwtwtwtw pppppppppppp ,,   ,,,   ,,, ''
1

'''
1

'
1 ηηηηηη +++ ===   (11) 

( ) ( ) ( ) 0,,, '''
1

''' =−− + twtwtw ppppppp ηαηη &&  

These equations will be solved analytically for different end conditions and masses in 
the next section. 
 

3. ANALYTICAL SOLUTION 
One can assume 

( ) ccexYw ti

mm += ++
ω

11         (12) 

for the solution of equation (10), where cc stands for complex conjugate and ω is the 
natural frequency of the vibrations. Inserting equation (12) into equation (10),  
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is obtained. The end conditions are as follows 
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The boundary conditions for concentrated masses are as follows 
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The solution for equation (13) yields the mode shapes  
( ) ( ) ( ) ( )kxCkxCkxCkxCY mmmmm coshsinhcossin 4,13,12,11,11 +++++ +++=   (19) 

where ω=k . If the assumed solution (19) is arranged using the end conditions in 
equations (13)-(17), then frequency equations are obtained for each end conditions. 
Frequency equations were given for a single mass (n=1) and for some end conditions in 
references [15, 20, 21, 23]. For a simple- simple beam with two concentrated masses, 
the frequency equation is 
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For a simple- fixed beam with two concentrated masses, the frequency equation is 
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(21) 

The symbolic calculations for 3 and more masses are very difficult. That’s why 
numerical methods will be better for calculating frequencies of beams having 3 or more 
concentrated masses. The frequencies calculated with equations (20) and (21) and Finite 
Element Methods (FEM) [23] will be given in the next section. 
 

4. NUMERICAL SOLUTIONS 

Numerical values for the natural frequencies for the first five modes will be 
given in this section. In Tables 1-8, the first five frequencies are presented for simple-
simple, fixed-fixed, simple-fixed and fixed-free boundary conditions. The frequencies 
are calculated for beams having two and three masses from equations (20) and (21) for 
analytical and from equations in reference [23] for FEM solutions. Analytical and FEM 
results are close to each other as shown in the tables. It is difficult to find the frequency 
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equations (determinants) for three and more concentrated mass systems, that’s why the 
numerical solutions will be simpler and faster for these cases.  

Table 1. Natural frequencies of a simple-simple beam with two masses 
α1,α2 η1,η2 ω1 

Exact 
ω1 

FEM 
ω2 

Exact 
ω2 

FEM 
ω3 

Exact 
ω3 

FEM 
ω4 

Exact 
ω4 

FEM 
1,1 0.1,0.3 6.1182 6.1182 26.5060 26.5457 55.4118 55.4118 99.0970 99.0971 
1,1 0.5,0.7 4.7297 4.7314 25.1279 25.1281 60.8832 60.8833 141.289 141.2894 
1,10 0.1,0.3 2.5095 2.5094 26.0754 26.0754 51.0693 51.0693 94.5054 94.5055 
1,10 0.5,0.7 2.3875 2.3867 17.9251 17.9250 59.5695 59.5696 136.993 136.9939 
10,1 0.1,0.3 4.5140 4.5139 18.5627 18.5627 38.5780 38.5779 96.6938 96.6938 
10,1 0.5,0.7 2.0777 2.0771 22.0363 22.0366 54.6468 54.6468 140.866 140.8656 
10,10 0.1,0.3 2.3567 2.3569 16.2569 16.2569 29.9752 29.9753 92.8631 92.8630 
10,10 0.5,0.7 1.6769 1.6739 9.8120 9.8114 53.5165 53.5165 136.5350 136.5348 

Table 2. Natural frequencies of a simple-simple beam with three masses 
α1,α2,α3 η1,η2,η3 ω1 

Exact 
ω1 

FEM 
ω2 

Exact 
ω2 

FEM 
ω3 

Exact 
ω3 

FEM 
ω4 

Exact 
ω4 

FEM 

1,1,1 0.1,0.4,0.8 5.1305 5.1303 18.9150 18.9150 40.6683 40.6683 101.949 101.9495 

1,1,10 0.1,0.4,0.8 3.0114 3.0114 11.7311 11.7311 39.4456 39.4456 98.7132 98.7132 

1,10,1 0.1,0.4,0.8 2.1818 2.1819 17.1861 17.1866 37.3559 37.3559 99.3226 99.3224 

10,1,1 0.1,0.4,0.8 4.1416 4.1416 13.0206 13.0203 25.9585 25.9585 99.4389 99.4389 

10,10,10 0.1,0.4,0.8 1.8639 1.8640 6.67504 6.6752 14.1606 14.1606 93.7742 93.7744 

1,1,1 0.2,0.5,0.7 4.4113 4.4106 18.2005 18.2003 39.1895 39.1894 137.980 137.9803 

1,1,10 0.2,0.5,0.7 2.3503 2.3519 13.4689 13.4689 35.0008 35.0009 134.77 134.7699 

1,10,1 0.2,0.5,0.7 2.0482 2.0485 18.1854 18.1855 29.3781 29.3781 137.958 137.9582 

10,1,1 0.2,0.5,0.7 2.8578 2.8574 10.7711 10.7708 35.3795 35.3794 137.274 137.2738 

10,10,10 0.2,0.5,0.7 1.5399 1.5449 6.3834 6.3845 13.5785 13.5790 134.252 134.2524 

Table 3. Natural frequencies of a fixed-fixed beam with two masses 
α1,α2 η1, η2 ω1 

Exact 
ω1 

FEM 
ω2 

Exact 
ω2 

FEM 
ω3 

Exact 
ω3 

FEM 
ω4 

Exact 
ω4 

FEM 
1,1 0.1,0.4 12.3268 12.3268 51.0975 51.0974 74.7559 74.7559 148.3840 148.3835 
1,1 0.5,0.8 11.2458 11.2456 35.0097 35.0094 78.6324 78.6324 170.7570 170.7589 
1,10 0.1,0.4 4.5635 4.5636 49.9799 49.9800 71.6430 71.6430 147.5960 147.5945 
1,10 0.5,0.8 7.4207 7.4212 18.7562 18.7561 76.8184 76.8184 166.6700 166.6706 
10,1 0.1,0.4 11.5266 11.5265 25.8796 25.8800 57.3110 57.3095 143.2110 143.2112 
10,1 0.5,0.8 4.2764 4.2760 33.2652 33.2653 75.4796 75.4797 169.0700 169.0685 
10,10 0.1,0.4 4.5279 4.5280 24.4679 24.4680 53.6742 53.6742 143.0190 143.0191 
10,10 0.5,0.8 4.0362 4.0361 12.4227 12.4216 74.1371 74.1370 164.5810 164.5808 

Table 4. Natural frequencies of a fixed-fixed beam with three masses 
α1,α2,α3 η1,η2,η3 ω1 

Exact 
ω1 

FEM 
ω2 

Exact 
ω2 

FEM 
ω3 

Exact 
ω3 

FEM 
ω4 

Exact 
ω4 

FEM 
1,1,1 0.1,0.4,0.8 11.7922 11.7922 30.7215 30.7211 67.7822 67.7822 110.967 110.9672 
1,1,10 0.1,0.4,0.8 7.63826 7.6387 17.1981 17.1982 66.3658 66.3658 105.849 105.8486 
1,10,1 0.1,0.4,0.8 4.5411 4.5410 28.6699 28.6697 66.8277 66.8276 107.863 107.8624 
10,1,1 0.1,0.4,0.8 11.1358 11.1357 24.0862 24.0862 34.1821 34.1820 105.604 105.6039 
10,10,10 0.1,0.4,0.8 4.29001 4.2895 10.8779 10.8765 25.0046 25.0046 97.4892 97.4891 
1,1,1 0.2,0.5,0.7 9.8651 9.8652 28.388 28.3881 47.2248 47.2249 170.693 170.6932 
1,1,10 0.2,0.5,0.7 5.2111 5.2099 20.5397 20.5397 42.5816 42.5815 170.676 170.6761 
1,10,1 0.2,0.5,0.7 4.1922 4.1927 27.9181 27.9180 39.0948 39.0947 168.932 168.9323 
10,1,1 0.2,0.5,0.7 7.1547 7.1546 15.5748 15.5747 41.0639 41.0638 166.417 166.4168 
10,10,10 0.2,0.5,0.7 3.4315 3.4318 9.9660 9.9659 15.9884 15.9884 164.119 164.1189 
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Table 5. Natural frequencies of a simple-fixed beam with two masses 
α1,α2 η1,η2 ω1 

Exact 
ω1 

FEM 
ω2 

Exact 
ω2 

FEM 
ω3 

Exact 
ω3 

FEM 
ω4 

Exact 
ω4 

FEM 

1,1 0.1,0.4 8.0935 8.0936 35.2747 35.2747 60.4191 60.4190 145.022 145.0226 
1,1 0.5,0.8 8.4048 8.4048 32.2827 32.2825 58.0458 58.0457 153.725 153.7242 
1,10 0.1,0.4 3.1113 3.1115 34.4019 34.4019 56.0053 56.0054 144.673 144.6738 
1,10 0.5,0.8 6.2389 6.2387 15.8460 15.8459 55.2028 55.2027 150.501 150.5008 
10,1 0.1,0.4 5.7707 5.7707 18.4104 18.4104 56.7723 56.7874 141.896 141.8950 
10,1 0.5,0.8 3.2258 3.2256 31.7872 31.7869 53.3825 53.3825 153.661 153.6618 
10,10 0.1,0.4 2.9428 2.9427 13.3775 13.3775 53.3560 53.3560 141.793 141.7945 
10,10 0.5,0.8 3.0904 3.0906 11.9999 12.0000 51.2347 51.2347 150.3000 150.2992 

Table 6. Natural frequencies of a simple-fixed beam with three masses 
α1,α2,α3 η1,η2,η3 ω1 

Exact 
ω1 

FEM 
ω2 

Exact 
ω2 

FEM 
ω3 

Exact 
ω3 

FEM 
ω4 

Exact 
ω4 

FEM 
1,1,1 0.1,0.4,0.8 7.8991 7.8991 27.3065 27.3064 42.5047 42.5046 107.4010 107.4006 
1,1,10 0.1,0.4,0.8 6.1687 6.1683 13.3744 13.3742 39.7342 39.7343 101.7990 101.7989 
1,10,1 0.1,0.4,0.8 3.1008 3.1011 27.0739 27.07410 38.5989 38.5990 105.0960 105.0958 

10,1,1 0.1,0.4,0.8 5.7193 5.7191 17.2349 17.2349 32.9085 32.9085 104.8830 104.8825 
10,10,10 0.1,0.4,0.8 2.8545 2.8544 9.9384 9.9385 14.5616 14.5616 96.9660 96.9660 
1,1,1 0.2,0.5,0.7 6.9686 6.9689 21.2964 21.2960 43.3097 43.3098 161.7880 161.7883 
1,1,10 0.2,0.5,0.7 4.2861 4.2876 14.3862 14.3864 35.9369 35.9370 161.6720 161.6722 
1,10,1 0.2,0.5,0.7 3.1284 3.1280 20.6621 20.6621 34.4942 34.4943 159.3900 159.3905 
10,1,1 0.2,0.5,0.7 3.8659 3.8660 14.1970 14.1974 40.5099 40.5101 159.7870 159.7866 
10,10,10 0.2,0.5,0.7 2.4381 2.4377 7.3628 7.3629 14.8312 14.8312 156.9830 156.9858 

Table 7. Natural frequencies of a fixed-free beam with two masses 
α1,α2 η1,η2 ω1 

Exact 
ω1 

FEM 
ω2 

Exact 
ω2 

FEM 
ω3 

Exact 
ω3 

FEM 
ω4 

Exact 
ω4 

FEM 
1,1 0.1,0.4 3.1802 3.1810 13.5261 13.5262 50.8105 50.8105 74.6163 74.6163 
1,1 0.5,0.8 1.8602 1.8589 12.7765 12.7763 54.0891 54.0890 82.0620 82.0620 
1,10 0.1,0.4 1.8816 1.8824 8.4921 8.4928 49.5416 49.5417 71.4882 71.4882 
1,10 0.5,0.8 0.7404 0.7223 12.1158 12.1157 50.9673 50.9674 79.7553 79.7552 
10,1 0.1,0.4 3.1645 3.1640 12.6406 12.6406 26.0392 26.0391 56.8499 56.8499 
10,1 0.5,0.8 1.1085 1.2397 7.0279 7.0276 53.6151 53.6151 78.1078 78.1078 
10,10 0.1,0.4 1.8773 1.8777 8.4071 8.4076 24.6129 24.6129 53.0191 53.0191 
10,10 0.5,0.8 0.6799 0.6778 4.8469 4.8464 50.3070 50.3070 76.2814 76.2815 

Table 8. Natural frequencies of a fixed-free beam with three masses 
α1,α2,α3 η1,η2,η3 ω1 

Exact 
ω1 

FEM 
ω2 

Exact 
ω2 

FEM 
ω3 

Exact 
ω3 

FEM 
ω4 

Exact 
ω4 

FEM 
1,1,1 0.1,0.4,0.8 1.9294 1.9219 12.6448 12.6447 46.7473 46.7478 70.4596 70.4597 
1,1,10 0.1,0.4,0.8 0.7445 0.7540 12.2807 12.2807 45.0895 45.0845 69.2074 69.2089 
1,10,1 0.1,0.4,0.8 1.5090 1.5079 6.0015 6.0008 45.3993 45.3983 68.6999 68.6900 
10,1,1 0.1,0.4,0.8 1.9263 1.9192 11.8006 11.8006 26.0284 26.0284 50.1420 50.1420 
10,10,10 0.1,0.4,0.8 0.7144 0.6986 4.7084 4.7081 24.5768 24.5767 45.1396 45.1396 
1,1,1 0.2,0.5,0.7 2.0627 2.0612 13.3815 13.3814 32.9549 32.9550 50.7696 50.7695 
1,1,10 0.2,0.5,0.7 0.8896 0.9167 13.2647 13.2646 30.0958 30.0958 44.8998 44.8999 
1,10,1 0.2,0.5,0.7 1.2885 1.2882 8.7245 8.7241 32.7169 32.7169 43.4452 43.4450 
10,1,1 0.2,0.5,0.7 2.0042 2.0035 8.4292 8.4293 20.1125 20.1126 47.0179 47.0177 
10,10,10 0.2,0.5,0.7 0.7825 0.7632 5.7935 5.7928 13.4773 13.4772 31.3119 31.3122 
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5. CONCLUDING REMARKS 

The transverse vibrations of an Euler-Bernoulli type beam carrying concentrated 
masses are investigated using analytical and numerical methods. The natural 
frequencies are calculated for several boundary conditions and the comparison of 
frequencies is presented. FEM and analytical solution are close to each other. Since it is 
tedious and difficult to obtain the frequency equations, FEM will be appropriate to 
calculate the natural frequencies of beams having three and more concentrated masses. 
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