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Abstract-In this study, an Euler-Bernoulli type beam carrying masses at different
locations is considered. Natural frequencies for transverse vibrations are investigated for
different end conditions. Frequency equations are obtained for two and three mass
cases. Analytical and numerical results are compared with each other.
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1. INTRODUCTION

Transverse vibrations of beam-mass systems have been investigated by many
researchers. Approximate and exact analysis were used to calculate the natural
frequencies. The effects of mass, rotary inertia and springs were investigated [1-7].
Gilirgoze and Batan [8] considered the numerical solution of the transcendental
frequency equation. The characteristic equation was obtained using Rayleigh-Ritz
method [9] and free vibrations were analyzed using Laplace transform and Rayleigh-
Ritz method [10]. Maurizi and Belles [11] compared two fundamental theories of beam
vibrations. Chai and Low [12] investigated the natural frequencies of a beam with a
mass near the beam's ends. Low et al. [13] found that the results of experiments and the
theory did not match well for beams of large slenderness ratio for centre loaded beams.
Hamdan and Abdel Latif [14] compared Rayleigh-Ritz, Galerkin, Finite Elements and
Exact solutions and showed finite elements method was preferable due to numerical
stability and accuracy and these methods had a reasonably good accuracy and
convergence rate for small attached inertia values. Ozkaya et al. [15] analyzed non-
linear free and forced vibrations of a beam-mass system by considering five different
sets of boundary conditions by considering the effects of the location and the magnitude
of the mass on the natural frequencies. Different assumed shape functions to obtain the
kinetic and potential energies of the three classical beams carrying a concentrated mass
were presented [16,17]. Low et al. [18] presented both experimental and theoretical
results using Rayleigh-Ritz procedure and showed that the correlation between theory
and experiments was much improved when stretching effects were included. Auciello
and Nole [19] determined the free vibration frequencies of a beam composed of two
tapered beam sections with different physical characteristics with a mass at its end.
Ozkaya and Pakdemirli [20] obtained the frequencies for the clamped-clamped beam
with mass and searched approximate solutions for free and forced non-linear vibrations
using a perturbation method. The solutions were compared with the results of both
analytical and artificial neural network method [21]. Naguleswaran [22] presented the
frequency equations for all the combinations of the classical boundary conditions and
for various magnitudes and positions of a single particle mass. Oz [23] and Ozkaya [24]
calculated the frequencies of a beam carrying mass using FEM and analytical methods,
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and compared with other solutions. Turhan [25] considered the problem with a single
mass for various classical end conditions using approximate methods and showed that
resulting formulae can be put in reasonably simple forms in the special cases where the
beam is symmetrically supported.

In this study, an Euler-Bernoulli type beam carrying masses on different
locations is considered. Natural frequencies for transverse vibrations are investigated for
different end conditions. Analytical and numerical results are compared with each other.

2. EQUATIONS OF MOTION
In this section, equations of motion for different cases will be derived. The
Lagrangian of the system consisting of n masses can be written as follows
ZI " AW Cdx” + = ZM W (x, .1 )——ZI " ‘Elwm+1 dx" ,x, =0, x,., =L (1)
m=0 m=1 m=0
where n denotes number of concentrated masses, pA4 is the mass per unit length of the
beam, w,,; 1s the displacement of the different portions of the beam which are separated
by concentrated masses, M, is the concentrated mass at location m, EI is the flexural
rigidity of the beam, ( ") and ( )’ are derivatives with respect to time and spatial
variables. The first two terms in equation (1) are the kinetic energies of the beam and
concentrated masses respectively, the last term is the elastic energy due to bending of
the beam.
Invoking Hamilton’s principle

5 j £d1™=0 )
and substituting the Lagrangian from equation (1), performing the necessary algebra, we
finally obtain the following set of linear differential equations

 + Efw. =0 m=0,1,2...n 3)
In equation (3), the number of equations is n+1. The boundary conditions are as follows
Simple-simple ends: w; (O,t*):O, W (O,I*)z 0, w(L.,:)=0, w (L.:)=0 (4)

PAW

m+ m+1

Fixed-fixed ends: wf(O,t*): 0, wl*y (O, t*) cwo(Le)=0, w (L)=0 (5)
Simple-fixed ends: w, (O,t*)z 0, WI*" (O,t* ) =0, w,, (L,t ) M( )= 0 (6
Fixed-free ends: w, (O,t*): 0, wl*y (O,t* ) =0, w (L:)=0, w (Lt)=0 (7)

General end conditions for masses are as follows

w5t )=yl ) ()= i () wy ()=l ) @®)
Elw, (x,6 )= B (x,6) =M it (x0.67) =0, p=12,...n
Dimensionless parameters are introduced

¥ w x ' |El M,

X=——, W =—, =, t= o =—— 9
p 7713 L2 pA p pAL ()



Natural Frequencies of Beam-Mass Systems in Transverse Motion 371

where o, 1s the ratio of concentrated masses to the mass of the beam. R is the radius of
inertia. Also 7,=0, 7 ., =1. After inserting non-dimensional parameters, we obtain

the equations of motion and boundary conditions for masses as follows

W +wh =0 m=0,1,2,...n (10)
Wp(npa ):Wp+1(77p’t)a Wl,;(ﬂpat)zw;;+1(77pat)a W;(np’t):W;JJrl(np’t) (11)

w;(np,t)— W;H(np,t)—apwp (np,t): 0

These equations will be solved analytically for different end conditions and masses in
the next section.

3. ANALYTICAL SOLUTION
One can assume

=Y, (x)e™ +cc (12)

m+1
for the solution of equation (10), where cc stands for complex conjugate and @ is the
natural frequency of the vibrations. Inserting equation (12) into equation (10),

w

m+1

Y@, =0 (13)
is obtained. The end conditions are as follows

Simple-simple ends:  ¥,(0)=Y,(0)=0, Y, (1))=Y, ,(1)=0 (14)
Fixed-fixedends: %, (0)=Y,(0)=0, Y ()= (1)=0 (15)
Simple-fixed ends: ~ ¥,(0)=Y'(0)=0, v, (1)=Y ,(1)=0 (16)
Fixed-free ends: Y,(0)=Y,(0)=0, Y (1)=Y"(1)=0 (17)

The boundary conditions for concentrated masses are as follows

L)=vu).  v,)=7.0,).  7,)=10,).

Y'(n,)-v"(n,)-a,0,(7,)=0 (18)
The solution for equation (13) yields the mode shapes
Ym+1 = Cm+1,1 Sln(kx)+ Cm+1,2 Cos(kx)+ Cm+1,3 Slnh(kx)+ Cm+1,4 COSh(kX) (19)

where k =+/o . If the assumed solution (19) is arranged using the end conditions in
equations (13)-(17), then frequency equations are obtained for each end conditions.
Frequency equations were given for a single mass (n=1) and for some end conditions in
references [15, 20, 21, 23]. For a simple- simple beam with two concentrated masses,
the frequency equation is
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—2a,a,k*{cos(1+n, —n,)k —cos(-1+n, +1,)k} cosh(l+n, —n,)k
+cosh(—1+n, +1,)k {2a,a,k’ cos(1+n, —n,)k —2a,a,k* cos(-1+n, +n,)k}
+cosh(k —2n,k){— a,a,k’ cosk + a,a,k’ cos(k —2n,k) }
+cosh(k —2n,k) {-a,a,k’ cosk + a,a,k* cos(k —2n,k) }
+kcoshk {2a,a,kcosk —a,a,kcos(k —2nk) —a,a,kcos(k —2n,k) + 4a, sink
+4a, sink} + sinh k {4a k cosk +4a,k cosk—4a,k cos(k —2nk) — 4o,k cos(k —2n,k)
+16sink +a,a,k” sin(1+ 2n, —2n,)k + a,a,k’ sin(k —2n,k)
—a,a,k’ sin(k —2n,k)} +sink{-a,a,k* sinh(1+ 27, —2n,)k — a,a,k’ sinh(k — 21,k)
+a,a,k” sinh(k —2n,k)—4a,k cosh(k —2n,k) —4a,k cosh(k —2n,k)}
(20)
For a simple- fixed beam with two concentrated masses, the frequency equation is
—4a,kcosk cosh(k —2n,k) + a,a,k’ cosh(1+ 2n, —2n,)k sink
+ sin(l+ 7, —=n,)k{2a,a,k’ cosh(1+n, —n,)k — 2a,a,k* cosh(=1+n, +n,)k}
+ sinn,k{-4a,a,k* cosh(2n, —n,)k + 4a,a,k’ coshn,k}
+ sin(—=1+n, + 7,k {2a,a,k* cosh(1+ 1, —n,)k = 2a,a,k* cosh(-1+n, +n,)k }
—a,a,k’ cosh(k — 2n,k) sin(k — 2n,k) + cosh k{da k cos(k — 2n,k) + 4a, k cos(k — 2n,k)
—16sink —2a,0,k” sink — a, a0,k sin(1+ 21, — 21,k + 2a,a, k* sin(k — 2n,k) }
— a,k cosh(k — 2n,k) {4 cosk + a,k[-2sin k + sin(k — 2n,k)]} + {16 — 2a,at,k* } cosk sinh k
+ sinh k{a,a,k’ cos(1+ 21, — 21,k + 2a, 0, k* cos(k — 2m,k) + 4o, k sin(k — 21,k)
+4a,ksin(k —2n,k)} —8ksinksinh k(n, +n,) +16a ksinkn, sinhkn,
—a,a,k’ cosk sinh(1+ 27, —2n,)k + sinh(1+ 71, —n,)k{2a,a,k’ cos(l+n, —n,)k
—2a,a,k” cos(-1+n, +n,)k } + sinhn,k{-4a,a,k* cos(2n, —n,)k + 4a,a,k’ cosn,k
+16a,ksinn,k} +sinh(=1+ 7, + 1,)k {2a,a,k* cos(1+ 1, —n,)k
—2a,a,k’ cos(—1+n, + a,)k} +sinh(k — 2n k) {—a,a,k* cos(k — 2n,k) + 4a,ksink}
+sinh(k — 2n,k){~a,a,k* cos(k — 2n,k) + 2,0, k* cosk +4a,ksink }
21)

The symbolic calculations for 3 and more masses are very difficult. That’s why
numerical methods will be better for calculating frequencies of beams having 3 or more
concentrated masses. The frequencies calculated with equations (20) and (21) and Finite
Element Methods (FEM) [23] will be given in the next section.

4. NUMERICAL SOLUTIONS
Numerical values for the natural frequencies for the first five modes will be
given in this section. In Tables 1-8, the first five frequencies are presented for simple-
simple, fixed-fixed, simple-fixed and fixed-free boundary conditions. The frequencies
are calculated for beams having two and three masses from equations (20) and (21) for
analytical and from equations in reference [23] for FEM solutions. Analytical and FEM
results are close to each other as shown in the tables. It is difficult to find the frequency
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equations (determinants) for three and more concentrated mass systems, that’s why the
numerical solutions will be simpler and faster for these cases.
Table 1. Natural frequencies of a simple-simple beam with two masses

ane | 1,12 ] w; @ @ s W3 Wy Wy
Exact | FEM Exact FEM Exact FEM Exact FEM
1,1 0.1,0.3 [6.1182 |6.1182 |26.5060 |26.5457 |55.4118 |55.4118 |99.0970 |99.0971
1,1 0.5,0.7 [4.7297 |4.7314 |25.1279 |25.1281 |60.8832 |60.8833 |141.289 |141.2894
1,10 |0.1,0.3 [2.5095 |2.5094 |26.0754 |26.0754 |51.0693 |51.0693 |94.5054 |94.5055
1,10 |0.5,0.7 [2.3875 |2.3867 | 17.9251 |17.9250 |59.5695 |59.5696 |136.993 |136.9939
10,1 |0.1,0.3 [4.5140 |4.5139 | 18.5627 |18.5627 |38.5780 |38.5779 |96.6938 |96.6938
10,1 |0.5,0.7 [2.0777 |2.0771 |22.0363 |22.0366 |54.6468 |54.6468 |140.866 |140.8656
10,10 |0.1,0.3 [2.3567 |2.3569 |16.2569 |16.2569 |29.9752 [29.9753 |92.8631 |92.8630
10,10 |0.5,0.7 [ 1.6769 | 1.6739 [9.8120 [9.8114 |53.5165 |53.5165 |136.5350|136.5348
Table 2. Natural frequencies of a simple-simple beam with three masses
a1,00,03 | 11,102,173 (2} [ (2] (2] w3 w3 Wy wy
Exact | FEM Exact FEM Exact FEM Exact FEM
1,1,1 0.1,0.4,0.8 [ 5.1305 | 5.1303 | 18.9150 | 18.9150 |40.6683 |40.6683 | 101.949 | 101.9495
1,1,10 0.1,0.4,0.8|3.0114 {3.0114 | 11.7311 [11.7311 |39.4456 |39.4456 |98.7132 |98.7132
1,10,1 0.1,0.4,0.8 [2.1818 [2.1819 | 17.1861 | 17.1866 |37.3559 |37.3559 |99.3226 |99.3224
10,1,1 0.1,0.4,0.8 [4.1416 | 4.1416 | 13.0206 | 13.0203 |25.9585 |[25.9585 |99.4389 |99.4389
10,10,10 | 0.1,0.4,0.8 | 1.8639 | 1.8640 | 6.67504 |6.6752 |14.1606 |14.1606 |93.7742 |93.7744
1,1,1 0.2,0.5,0.7 |4.4113 | 4.4106 | 18.2005 | 18.2003 |39.1895 |[39.1894 | 137.980 | 137.9803
1,1,10 0.2,0.5,0.7 [ 2.3503 [ 2.3519 | 13.4689 | 13.4689 |35.0008 |35.0009 |134.77 |134.7699
1,10,1 0.2,0.5,0.7 [ 2.0482 [ 2.0485 | 18.1854 | 18.1855 |29.3781 [29.3781 | 137.958 | 137.9582
10,1,1 0.2,0.5,0.7 | 2.8578 [ 2.8574 | 10.7711 | 10.7708 |35.3795 |35.3794 | 137.274 | 137.2738
10,10,10 | 0.2,0.5,0.7 | 1.5399 | 1.5449 | 6.3834 |6.3845 |13.5785 |13.5790 | 134.252 | 134.2524
Table 3. Natural frequencies of a fixed-fixed beam with two masses
ane | 1, 12 w; w; @ @, ;3 3 Wy Wy
Exact FEM Exact FEM Exact FEM Exact FEM
1,1 0.1,0.4 [12.3268 |12.3268 |51.0975 | 51.0974 |74.7559 |74.7559 | 148.3840 | 148.3835
1,1 0.5,0.8 [ 11.2458 | 11.2456 |35.0097 |35.0094 |78.6324 |78.6324 |170.7570 | 170.7589
1,10 [0.1,0.4 |4.5635 |4.5636 |49.9799 [49.9800 |71.6430 |71.6430 |147.5960 | 147.5945
1,10 [0.5,0.87.4207 |7.4212 |18.7562 |18.7561 |76.8184 |76.8184 |166.6700 | 166.6706
10,1 |0.1,0.4 |11.5266 |11.5265 |25.8796 |25.8800 |57.3110 |57.3095 |143.2110 |143.2112
10,1 [0.5,0.8 {4.2764 |4.2760 |33.2652 |33.2653 |75.4796 |75.4797 |169.0700 | 169.0685
10,10 | 0.1,0.4 |4.5279 |4.5280 |24.4679 |24.4680 |53.6742 |53.6742 |143.0190 |143.0191
10,10 | 0.5,0.8 |4.0362 |4.0361 |12.4227 |12.4216 |74.1371 |74.1370 | 164.5810 |164.5808
Table 4. Natural frequencies of a fixed-fixed beam with three masses
Q0,03 | 11,112,713 @, ] @ @ w3 ] Wy Wy
Exact FEM Exact FEM Exact FEM Exact FEM
1,1,1 0.1,0.4,0.8|11.7922 [11.7922 |30.7215 |30.7211 | 67.7822 |67.7822 |110.967 | 110.9672
1,1,10 0.1,0.4,0.8 | 7.63826 |7.6387 |17.1981 |17.1982 |66.3658 |66.3658 | 105.849 | 105.8486
1,10,1 0.1,04,0.8|4.5411 |4.5410 |28.6699 |28.6697 | 66.8277 |66.8276 |107.863 | 107.8624
10,1,1 0.1,0.4,0.8 | 11.1358 | 11.1357 |24.0862 |24.0862 |34.1821 |34.1820 |105.604 | 105.6039
10,10,100.1,0.4,0.8 | 4.29001 [4.2895 |10.8779 |10.8765 |25.0046 |25.0046 |97.4892 |97.4891
1,1,1 0.2,0.5,0.719.8651 |9.8652 |28.388 |28.3881 |47.2248 |47.2249 |170.693 |170.6932
1,1,10 0.2,0.5,0.7|5.2111 |5.2099 |20.5397 |20.5397 |42.5816 |42.5815 |170.676 |170.6761
1,10,1 0.2,0.5,0.74.1922 [4.1927 |27.9181 |27.9180 |39.0948 |39.0947 |168.932 | 168.9323
10,1,1 0.2,0.5,0.7|7.1547 |7.1546 |15.5748 | 15.5747 |41.0639 |41.0638 |166.417 | 166.4168
10,10,100.2,0.5,0.7 | 3.4315 |3.4318 [9.9660 |9.9659 |15.9884 |15.9884 |164.119 |164.1189
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Table 5. Natural frequencies of a simple-fixed beam with two masses
ane; | 1,12 ] ] @ @, ;3 w3 Wy wy
Exact FEM Exact FEM Exact FEM Exact FEM
1,1 0.1,0.4 |8.0935 [8.0936 [35.2747 |35.2747 |60.4191 [60.4190 |145.022 |145.0226
1,1 0.5,0.8 |8.4048 |8.4048 |32.2827 |32.2825 |58.0458 |58.0457 |153.725 |153.7242
1,10 |0.1,04 |[3.1113 |3.1115 |34.4019 |34.4019 |56.0053 |56.0054 |144.673 |144.6738
1,10 |0.5,0.8 [6.2389 |6.2387 |15.8460 |15.8459 |55.2028 |55.2027 |150.501 |[150.5008
10,1 0.1,04 |5.7707 [5.7707 | 18.4104 |18.4104 |56.7723 [56.7874 |141.896 |141.8950
10,1 0.5,0.8 |3.2258 [3.2256 |31.7872 |31.7869 |53.3825 |53.3825 |[153.661 |153.6618
10,10 | 0.1,0.4 |2.9428 |2.9427 |13.3775 |13.3775 |53.3560 |53.3560 |141.793 |[141.7945
10,10 |0.5,0.8 [3.0904 |3.0906 |11.9999 |12.0000 |51.2347 |51.2347 |150.3000 | 150.2992
Table 6. Natural frequencies of a simple-fixed beam with three masses
a1, 00,03 1,102,173 (2} (2} (2] (2] w3 w3 Wy wy
Exact FEM Exact FEM Exact FEM Exact FEM
1,1,1 0.1,0.4,0.8 | 7.8991 |[7.8991 |27.3065 |27.3064 |42.5047 |42.5046 |107.4010|107.4006
1,1,10 0.1,0.4,0.8 |6.1687 [6.1683 |13.3744 |13.3742 |39.7342 |39.7343 | 101.7990 | 101.7989
1,10,1 0.1,0.4,0.8 [ 3.1008 [3.1011 |27.0739 |27.07410 | 38.5989 |38.5990 | 105.0960 | 105.0958
10,1,1 0.1,0.4,0.8 [5.7193 [5.7191 |17.2349 |17.2349 |32.9085 |32.9085 |104.8830 | 104.8825
10,10,10 | 0.1,0.4,0.8 | 2.8545 |2.8544 [9.9384 |9.9385 14.5616 | 14.5616 | 96.9660 |96.9660
1,1,1 0.2,0.5,0.7 [ 6.9686 [6.9689 |21.2964 |21.2960 |43.3097 |43.3098 |161.7880|161.7883
1,1,10 0.2,0.5,0.7 | 4.2861 [4.2876 |14.3862 | 14.3864 |35.9369 |35.9370 |161.6720|161.6722
1,10,1 0.2,0.5,0.7 [ 3.1284 [3.1280 |20.6621 |20.6621 |34.4942 |34.4943 |159.3900 | 159.3905
10,1,1 0.2,0.5,0.7 | 3.8659 [3.8660 |14.1970 |14.1974 [40.5099 |40.5101 |159.7870 | 159.7866
10,10,10 |0.2,0.5,0.7 | 2.4381 |2.4377 |7.3628 |7.3629 14.8312 | 14.8312 | 156.9830 | 156.9858
Table 7. Natural frequencies of a fixed-free beam with two masses
a,e; | 11,12 ] @, @, @, w3 w3 wy wy
Exact | FEM Exact FEM Exact FEM Exact FEM
1,1 0.1,0.4 | 3.1802 | 3.1810 | 13.5261 |13.5262 |50.8105 |50.8105 |74.6163 |74.6163
1,1 0.5,0.8 | 1.8602 | 1.8589 [ 12.7765 | 12.7763 | 54.0891 |54.0890 |82.0620 |82.0620
1,10 [0.1,0.4 | 1.8816|1.8824 |8.4921 8.4928 149.5416 [49.5417 | 71.4882 |71.4882
1,10 ]0.5,0.8 10.7404 10.7223 [ 12.1158 | 12.1157 | 50.9673 |50.9674 | 79.7553 |79.7552
10,1 [0.1,0.4 |3.1645|3.1640 | 12.6406 | 12.6406 |26.0392 |26.0391 |56.8499 |56.8499
10,1 [0.5,0.8 |1.1085|1.2397 |7.0279 |7.0276 |53.6151 |53.6151 |78.1078 |78.1078
10,10 {0.1,0.4 | 1.8773 | 1.8777 | 8.4071 8.4076 |24.6129 [24.6129 |53.0191 |53.0191
10,10 [ 0.5,0.8 | 0.6799 | 0.6778 | 4.8469 |4.8464 |50.3070 |50.3070 |76.2814 |76.2815
Table 8. Natural frequencies of a fixed-free beam with three masses
a, 0,03 112,73 (2} ] 2] 2] w3 w3 Wy Wy
Exact | FEM Exact FEM Exact FEM Exact FEM
1,1,1 0.1,0.4,0.8 [ 1.9294 [ 1.9219 | 12.6448 | 12.6447 |46.7473 |46.7478 |70.4596 | 70.4597
1,1,10 0.1,0.4,0.8 [ 0.7445 | 0.7540 | 12.2807 | 12.2807 |45.0895 |45.0845 [69.2074 | 69.2089
1,10,1 0.1,0.4,0.8 [ 1.5090 | 1.5079 | 6.0015 | 6.0008 |45.3993 |45.3983 |68.6999 | 68.6900
10,1,1 0.1,0.4,0.8 [ 1.9263 [ 1.9192 | 11.8006 | 11.8006 |26.0284 |26.0284 |50.1420 |50.1420
10,10,10 |0.1,0.4,0.80.7144 |1 0.6986 [4.7084 |4.7081 24.5768 |24.5767 |45.1396 |45.1396
1,1,1 0.2,0.5,0.7 [ 2.0627 [ 2.0612 | 13.3815 | 13.3814 |32.9549 |32.9550 |50.7696 |50.7695
1,1,10 0.2,0.5,0.7 [ 0.8896 [ 0.9167 | 13.2647 | 13.2646 |30.0958 |30.0958 |44.8998 |44.8999
1,10,1 0.2,0.5,0.7 | 1.2885 | 1.2882 | 8.7245 | 8.7241 32.7169 | 32.7169 |43.4452 |43.4450
10,1,1 0.2,0.5,0.7 [ 2.0042 | 2.0035 | 8.4292 |8.4293 [20.1125 |20.1126 [47.0179 |47.0177
10,10,10 |0.2,0.5,0.7 | 0.7825 | 0.7632 | 5.7935 |5.7928 13.4773 | 13.4772 [ 31.3119 |31.3122
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5. CONCLUDING REMARKS
The transverse vibrations of an Euler-Bernoulli type beam carrying concentrated
masses are investigated using analytical and numerical methods. The natural
frequencies are calculated for several boundary conditions and the comparison of
frequencies is presented. FEM and analytical solution are close to each other. Since it is
tedious and difficult to obtain the frequency equations, FEM will be appropriate to
calculate the natural frequencies of beams having three and more concentrated masses.
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