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Abstract- In this study, based on Pyatov-Salamov method, the properties of the 

Gamow-Teller(GT) 1
+
 states in 

90
 Nb have been investigated and the agreement of our 

results calculated by this method for the energy of Gamow-Teller Resonance (GTR) and 

the corresponding strengths of the 1
+
 excitations in 

90
Nb with the experimental values 

has been tested. As a result of the calculations, it was seen that the calculated values for 

the energy and strength of the GTR are sufficiently in agreement with the experimental 

ones. 
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1. INTRODUCTION 

 

When the historical background of the GTR studies is reviewed, it is necessary to go 

back to 40 years ago. The theoretical predictions toward the existence of these 

resonances in 1963 and 1965 [1,2] played a pioneer role on the initiation of the studies 

on this matter. Although the detailed experimental investigation of the GTR have 

already started in the early of 1970`s [3-5], approximately 10 years later after theoretical 

predictions, the first experimental observation for the GTR was done in 1975 in the 
90
Zr(p,n)

90
Nb reaction at the incident proton energy of 35 MeV [6]. In 1980, the giant 

GTR was actually found to be preferentially excited in the (p,n) reactions at high 

bombarding energies [7]. The (p,n) reaction has become a powerful tool in the study of 

the GTR at intermediate energies and it has been widely used. Therefore, there has also 

been many attempts to measure the strength of the GT excitation in the 
90
Nb isotope via 

the (p.n) reaction at different energies [6-15]. The second alternative to measure this 

strength experimentally is to use the (
3
He,t) reaction. Using this reaction, the GT 

strength in 
90
Nb has been investigated at various energies [16-20]. Although most 

charge exchange studies have used the (p,n) and the (
3
He, t) reaction, the (

6
Li,

6
He) 

reaction was found to be a suitable and alternative probe for the investigation of  spin-

isospin modes and for the determination of the GT strength with high accuracy [21-27]. 

 As a theoretical framework in the present paper, Pyatov-Salamov method is 

used. In this method, the effective interaction strength was determined self consistently 

by relating it to the average field. This method was applied different kind of studies [28-
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37]. As a recent application, the Gamow-Teller 1
+
 States in 

208
Bi has been investigated 

[38]. 

 In this study, the properties of the GT 1
+
 states in 

90
Nb are investigated by using 

Pyatov-Salamov method. For this purpose, the GTR energy, the contribution of the GT 

strength to the Ikeda Sum Rule and the differential cross sections for the 
90
Zr(p,n)

90
Nb 

and  
90
Zr(

3
He,t)

90
Nb reactions at energies of 120 and 450 MeV are calculated. The 

results of the calculations have been compared with the corresponding experimental 

data. 

 

2. FORMALISM 

   

Our formalism is based on Pyatov-Salamov method in which the effective 

interaction strength has been determined self-consistently by relating it to average field. 

Let us now briefly mention about the details of this method. As it is known, the central 

term in the nuclear part of the shell model single particle Hamiltonian operator is not 

commutative with the GT operator. In other words, 

 

[ ] 0),( )( ≠+− ±
µGVVH lscsp ,     (1) 

where Hsp is the single particle Hamiltonian operator and it is defined as: 

 

( )sp j jm jm

jm

H a aε τ +=∑       (2) 

Vc is the Coulomb potential given by the following expression: 

 

1

1 2   for neutrons;1
( )( ),    

-1 2   for protons,2

A
i i

c c i z z

i

V v r t t
=

 
= − =  

 
∑   (3) 

with the radial part of the Coulomb potential: 

 
2 ( )( 1)

( )  
p

c

re Z
v r dr

Z r r

ρ ′− ′=
′−∫

r
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Here ρp(r) is the proton density distribution in the ground state. 
The term Vls is the spin-orbit part of the average field potential and it is defined as: 

 

1

( )1
( . )

A
i

ls ls i i
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r dr
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All the notations  in Eq.(5) have been taken from Ref.[39]: 
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where V0, R0, ζls, η and a are the parameters of the average field potential. 
The GT beta transition operators ±

µG  are defined as: 
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∑
=

+
+ =

A

i

itiG
1

)( )()(µµ σ , ∑
=
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A

i

itiG
1

)( )()()1( µ
µ

µ σ ,       ++− = )( )()(

µµ GG .   (7) 

 

σµ(i) is the Pauli operator in the spherical basis (µ=0,±1).  t-(i) (t+(i)) is the spin 
lowering(raising) operator. 

In Pyatov-Salamov method, the commutativity of the central term in the 

Hamiltonian operator with the GT operators is provided by adding the effective 

interaction (h) to the commutation relation in Eq. (1), i.e. 

 

[ ] 0,)( )( =++− ±
µGhVVH lscsp ,     (8) 

where h is defined as: [37,40] 

  

[ ] [ ]∑
±=
±=

+
+−+−=

ρ
µ

ρ
µ

ρ
µγ 1,0

)()( ),(),(
2

1
GVVHGVVHh lscsplscsp  (9) 

 

Using Eq. (8), the effective interaction parameter γ can be obtained: 
 

[ ][ ]0,),(0 )()( −++−= µµγ GGVVH lscsp .                  (10) 

 

The average is taken over the ground state of the parent nucleus. Then, the total 

Hamiltonian operator can be written in the form of 

 

hHH sp += .              (11) 

 

The basic set of the particle-hole operators for the GT 1
+
 states generated by spin 

dependent charge exchange forces (h)  is given by 

 

( )∑ +

+
=

pn

ppnnpn

mm

mjmjnnpn

n

jj aamjmj
j

A µµ 1
12

3
)( ,           (12) 

 

where )(
ττττ mjmj aa +  is the nucleon creation(annihilation) operators in a state with the 

momentum τj and its projection τm ),( pn=τ . The average value of the commutator of 

these operators is determined by the equation: 

 

.0)](),([,)](),([ =′≈′ ′
+ µµδµµ µµ pnpnpjnjpn jjjjjj AAAA            (13)           

 

The effective interaction h defined in Eq. (8) can be written in terms of the boson 

operators as follows: 
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with 
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where pl  is the orbital angular momentum of the proton; nj
ε  and 

pj
ε are the single 

particle energies of the neutron and proton states; 
nj

n and  
pj

n are the occupation 

numbers of the neutron and proton states.  

A set of Hermitian operators can be constructed in terms of the boson operators: 

 

,)]()([
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where k

jj pn
ψ  and k

jj pn
ϕ  are the real amplitudes. Following the equations of motion in 

RPA, 
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we obtain the system of equations for the eigenenergies kω of the Gamow-Teller 1
+
 

states in the neighborhood odd-odd nucleus and the real amplitudes k

jj pn
ψ  and k

jj pn
ϕ  as 

follows: 

  

,
2
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,
2

1
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2

2
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with 
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Without showing the details for the solution of Eq. (18), the resulting equation for the 

energies kω  is in the form of  

 

,0)()( =kkF ωφω           (19) 

 

where  
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         (20) 

From Eq. (19), we have two different solutions: 

 

 0)( =kF ω           (21a) 

0)( =kωφ           (21b) 

The analytical expressions for the real amplitudes are: 
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where plus and minus signs correspond to the solutions of Eq. (21a) and (21b), 

respectively. The eigenstates of the total Hamiltonian in Eq. (11) with the energies kω  

are the one-phonon excitations of the correlated phonon vacuum 0  of the parent 

nucleus )00( =kQ . Thus, 
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The ±β  transition matrix elements from the 0
+
 initial even-even nuclear state to the one 

phonon 1
+
 states in odd-odd final nucleus are expressed by: 

a) For the −β  transitions (N,Z)⇒(N-1,Z+1), 
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b) For the +β  transitions (N,Z)⇒(N+1,Z-1), 
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For the GT beta strength function, we have 
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These strength functions are related to each other by the Ikeda sum rule: 
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The differential cross section of zero degrees for the excitation of the GT 1
+
 states can 

be written as [8,9,16]: 

 

),()()()0,0()( )(22

2 FkGT

i

f

GTR BJN
k

k
q

d

d
ω

π
µ

θ
σ

στστ
−==≈

Ω h
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where Jστ is the volume integral of the central part of the effective spin dependent 

nucleon nucleon interaction; µ and k denote the reduced mass  and the wave number in 
the center of mass system, respectively. Nστ is the distortion factor which may be 

approximated by the function exp(-xA
1/3
)[9] and the value of x is taken from Ref. [16].  

 

3.RESULTS AND DISCUSSIONS 

 

In this section, we have calculated the GTR energy, the contribution of the GT beta 

transition strength to the Ikeda sum rule, and the differential cross sections for the 
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90
Zr(

3
He,t)

90
Nb and 

90
Zr(p,n)

90
Nb reactions at energies of 450 MeV and 120 MeV, 

respectively. In calculations, the Wood-Saxon potential with Chepurnov 

parametrization [39] was used (V0=53.3 MeV, η=0.63, a=0.63 fm, ξls=0.263 fm
2
).The 

basis used in our calculation contains all neutron-proton transitions which change the 

radial quantum number n by ∆n=0,1,2,3. The single particle Ikeda sum rule is fulfilled 
with the approximately ≈%1 accuracy.  

The calculation results have been given in Table I.  In the first column of Table I, 

the excitation energies of the GT 1
+
 states in 

90
Nb have been presented. The second 

column gives the GT strengths corresponding to the excitation energies. In the last two 

columns, the calculated values of the differential cross sections for the 
90
Zr(

3
He,t)

90
Nb 

and 
90
Zr(p,n)

90
Nb reactions at energies of 450 MeV and 120 MeV  has been shown, 

respectively. 

 

 

Table I: Calculation results for the GT strengths of the 1
+
 states in 

90
 Nb and the 

differential cross sections for the 
90
Zr(

3
He,t)

90
Nb and 

90
Zr(p,n)

90
Nb reactions at energies 

of 450 MeV and 120 MeV, respectively. 

 

ωGT MeV BGT/3(N-Z) % 

MeVHeEd

d

 450)(3 =Ω
σ

 
MeVpEd

d

 120)( =Ω
σ

 

2.02 16.59 33.27 3.67 

7.61 82.26 163.96 17.78 

14.36 0.16 0.33 0.04 

15.91 0.07 0.14 0.02 

16.10 0.14 0.28 0.03 

16.80 0.18 0.35 0.04 

19.32 0.17 0.33 0.03 

20.52 0.13 0.26 0.03 

21.00 0.10 0.20 0.02 

21.69 0.07 0.13 0.01 

21.82 0.15 0.30 0.03 

25.86 0.52 1.01 0.10 

 

 

The excitation energies of the GT 1
+
 states in 

90
Nb can be categorized into three 

energy regions: low energy region (0<ωGT<5 MeV), the GTR region (5<ωGT<12 MeV), 
high energy region ((12<ωGT<26 MeV). In the low energy region, there exists only one 
state at ωGT=2.02 MeV that exhausts 16.59% of the Ikeda sum rule. However, A. 
Krasznahorkay et al. [20] have found eight levels in the low energy region in 

90
Nb. The 

reason for this difference can be attributed to the fact that the pairing correlations 

between nucleons has not been taken into account in our study.  

In Table II, the experimental values for the GTR energy and the GT strengths have 

been presented. As seen from this table, the experimental values  of the GTR energy 

range from 8.5 MeV to 8.9 MeV [7,20-24,27]. On the other hand, our calculation for 

this quantity  gives a value of 7.61 MeV (See Table I).  Then, it can be said that our 
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calculated value for the GTR energy is not so far from the experimental value, i.e ~ 0.9-

1.3 MeV lower than the experimental one. Moreover, the GTR state amounts to 82.26% 

of the the Ikeda sum rule(See Table I). As compared to the values obtained for the GT 

strengths in different experimental studies [3,23,24,27] given in Table II, our value is 

within the range of the upper limits given in Ref. 23,24. We hope that all these 

differences between the calculated and experimental value for the GTR energy and the 

GT strengths will be partly removed by the consideration of the pairing correlations 

between nucleons. Finally, we have calculated the differential cross sections for the 
90
Zr(

3
He,t)

90
Nb and 

90
Zr(p,n)

90
Nb reactions at the excitation energies of 450 MeV and 

120 MeV. They have the values of  163.96 mb/sr and 17.78 mb/sr, respectively. 

 

 

Table II:  The experimental values for the GTR energy and the GT strengths   

 

ωωωωGT  in MeV(Experimental) B(GT)/3(N-Z) % (Experimental) 

8.7±0.3 [7] 61±10[3] 
8.7 [21] 75±10[23] 
8.5 [22] 66±2010[24] 
8.7 [23] 39±4[27] 
8.9±1 [24]  

8.8±0.2 [20]  

8.84±0.1 [27]  

 

 

 

4. CONCLUSION 

  

We have applied Pyatov-Salamov method to the investigation of the GT 1
+
 states in 

90
Nb and tested the agreement of the calculated quantities in the present study by this 

method  with the experimental values. For this purpose, the excitation energies, the GT 

strengths of the 1
+
 states in 

90
Nb and the differential cross sections for the 

90
Zr(

3
He,t)

90
Nb and 

90
Zr(p,n)

90
Nb reactions at energies of 450 MeV and 120 MeV have 

been calculated. As a result  of our calculations, it has been seen that our calculated 

value for the GTR energy is sufficiently close to the experimental value, i.e ~ 0.9-1.3 

MeV lower than the experimental one, and our value for the contribution of the GTR to 

the Ikeda sum rule is within the range of the upper limits given in Ref. 23,24. We hope 

that all these differences between the calculated and experimental value for the GTR 

energy and the GT strengths will be partly removed by the consideration of the pairing 

correlations between nucleons. In the next step, the pairing correlations between 

nucleons will be included in the investigation of the GT 1
+
 states in 

90
Nb and this will 

be done in our next study. 
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