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Abstract- In this study, the free energies and specific heats of the nematic liquid 

crystals are studied within Tsallis thermostatistics. In equilibrium, free energy of PAA 

(para-azoxyanisole) vs the order parameter is plotted, as well as its the specific heat vs 

temperature. The effect of the nonextensivity is illustrated for some values of the 

entropic index q. 
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1. INTRODUCTION 

 

The characteristic property of the mesophase of a nematic liquid crystal is its 

long-range orientational order. The definition of this orientational order is given by 

 

2

2

3cos 1

2
P

θ −
=  
 

         (1) 

 

which was proposed by Zwetkoff [1], where θ  is the angle between the long axis of the 

molecule and the director of the mesophase, 2P  is the second Legendre polynomials. 

The orientational order decreases with the temperature and vanishes suddenly at the 

nematic-isotropic phase transition temperature at which a first-order phase transition 

occurs. Some phenomenological theories have been propsed to investigate nematic-

isotropic transition and Maier-Saupe theory (MST) [2] is one of the most commonly 

used theories. MST has been firstly generalized within Tsallis thermostatistics (TT) in 

[3] recently. In this study, we aims to investigate the free energy vs the order parameter 

and specific heat vs temperature by using generalized MST. 

According to the MST, the orientational energy of a single molecule in a field 

generated by its neighbours is 
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where A depends on molexular property and V is the molar volume. One can use this 

potential function to calculate the orientational contribution to all thermodynamic 

quantities. The Helmholtz free energy can be calculated by 

 

F U TS= −           (3) 

 

where S is the entropy of the system and U is the internal energy of the system. It should 

be noted that according to MST, the free energy function is found to vanish when the 

temperature is T=A/4.541, kV
2
 and the first-order phase transition takes place. 

Additionally, the order parameter is predicted to be a universal value at the transition 

point, namely ( )2 c
P =0.429, where c index denotes the critical value at the critical 

temperature. However this prediction is not qualitative aggrement with experiment [4]. 

Similar discrepancies between the theory and experiment have also been demonstrated 

by electron resonance studies of a variety of nematogens[5]. The use of molecular field 

theory might have caused the discrepancy between MST and experiment. Considering 

this prediction, some authors tried to improve MST by adding higher rank interactions 

to potential function (2) [6,7] and they improved MST to a higher accuracy of degree. 

Since it is well known that TT is useful to study the systems having long-range 

interactions, we use it to see if the above discrepancy removes. 

It is well-known that (TT) is successful in the systems i) have long-range 

interactions, ii) have long-range memory effects, iii) evolve in multi-fractal space-time. 

The orientational distribution function for cylindrically symmetric molecules can 

be expanded formally in a basis of Legendre polynomials, 
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where LP  is the order parameter and defined as 

 

( ) ( )cos sinL LP P f dβ β β β= ∫        (5) 

 

On the other hand, TT [8,9] has been succesfully applied to various areas 

[10,11]. TT formalism is based on the definition of generalized entropy [8]: 
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where q is called "entropic index" and is a measure of the nonextensivity of the system, 

ip 's are probabilities satisfying 1ii
p =∑  and k is a positive constant. Eq.(6) reduces to 

well known Boltzmann-Gibbs entropy when 1q→ . TT has three different alternatives 

for the internal energy constraint. For simplicity, we use the second choice. If needed, it 

is possible to pass through the third choice by substituting 

 



 

 

Free Energies and Specific Heats of the Nematics 309

( )
1

1 q

q jj
q U p

β
β

β
Ω

=

′ =
− +∑

        (7) 

 

The second choice for the internal energy constraint is given by 
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where i is a given state with energy iε , Ω  denotes possible states. If maximizing the 

generalized entropy given by Eq.(6) according to the constraint (8), one obtains the 

following probabilities: 
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with 
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The q-expectation value of any observable O is then defined as 
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It is here important to solve Eq.(11) which is a self-consistent equation and can 

be solved numerically. 

If we use the equations above, then the second rank order parameter can be 

calculated using 
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where 2 2 2a u P β= , 2 4.541/ NIu β=  denotes the nematic-isotropic transition 

temperature and 
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The corresponding free energy and specific heat of the nematic phase are 

calculated from 

 

q q qF U TS= −          (14) 
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and 
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respectively. The condition for equilibrium is as follows: 
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This equaiton is called consistency relation or equilibrium condition. The 

minimization of the free energy occurs at that value of LP  which satisfies the 

consistencey relation. 

2. RESULTS AND DISCUSSION 
  

Figure 1 shows the variation of the free energy vs the order parameter in 

PAA(para-azoxyanisole) at the nematic-isotropic transition temperature. The q=1 case 

denotes the standard MST curve. It is well known from the literature that MST gives a 

universal value for ( )2 0.429
NI

P =  [4]. However experimentally, ( )2 NI
P  varies in the 

range of 0.25-0.5 for different compounds [12]. Figure 1 shows that generalized MST 

within TT predicts different values about the order parameter at the transition 

temperature and this conclusion could imply that generalized MST within TT could be a 

suitable tool to investigate the nematic-isotropic transition. The minima for the free 

energy with respect to the order parameter occur at ( )2 NI
P ≅ 0.39,0.41,0.43,0.45 and 

0.47 for q=0.98,0.99,1,1.01 and 1.02 respectively. It seems that with a small departure 

from the standard MST, one could be able to explain some of the experimental data in 

the nematic-isotropic transition. 
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Figure 1. The free energy vs 2P  for PAA at NIT  for various values of the entropic index 

q. 

 

 

 

  

The variation of the specific heat vs temperature for PAA is illustrated in Figure 

2, where / NIT T  is the reduced temperature ( NIT  is the nematic-isotropic temperature). 

As q decreases, the behaviour at the critical temperature becomes more clear. The effect 

of the nonextensivity is shown in both of figures. If 1q→ , then the results obtained 

above are reduced to MST ones. 
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Figure 2. The specific heat vs temperature for PAA for some q values 
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