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Abstract- In this paper we investigate the solvability of a certain class of nonlinear
singular integro-differential equations with Cauchy kernel in the usual Holder space
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1. INTRODUCTION

Nonlinear singular integro-differential equations (NSIDE) has been studied in
works of Guseinov and Mukhtarov [ 7], Wolfersdorf [16] , Mal'sagov [11] ,
and many others. The method of Newton-Kantorovich , [1,3,4,5,7,11,13], ( the
modified Newton's method ) is frequently used to investigate the solvability for
many classes of nonlinear singular integro-differential equations (NSIDE) .

In this paper we study the sufficient conditions for the applicability and
convergence of the modified Newton's method for the following class of NSIDE
with Cauchy kernel in the usual Holder space

Pu)(x) = u(x - T[G(u()u'())])x) = 0 (1.1)
where u(x) is the unknown function and

b !
T[G(su(s)u'(s))](x) = i I G (su(s).u'(s)) I

S — X

b

which is taken as a Cauchy principle value .
Also , we consider a generalized form of (1.1) which has the form :

P)x) = u() - TIG(uOu'()u™0)]w =0, (1.2)

where

t (n)
T G(s,u (S),u’(s),._.,u(n) (s) ) 1(x) = G(s,u (s),u'(s),...u""(s) ) "

s — X

1
2w

ISER e

2. BASIC NOTIONS AND AUXILIARY RESULTS
We shall introduce some notations , definitions and assumptions, which
will be used in the sequel.
Definition 2.1 [5]
a) We denote by c[ a,b ]to the space of all continuous functions defined on [a,b].

For uec[a,b], the norm of u is given by ||u||c= maxb|u(x)|.
a<x<

b) By H gk)[a,b],(k =0,1,2,...,n), we denote the space of all A-times differentiable
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functions whose k-derivatives satisfy Holder's condition with exponent o,
0<o6 <1 ,on the closed interval [a,b],i.e:

For every u belongs to H [a b], we define the following norms:

[ue [ = max|u' | e ], =(+]u;) exp(fu],)
and |u) |, = Ju|, + Hs(ux)) . 2.1
where
Hy(ux))=  sup ) —ute) | 2.2)

S O I PR
Definition 2.2 ( Frechet's derivative ) [§]
Let X and Y be Banach spaces and P be a nonlinear operator

defined from X into Y. Let 7 be an arbitrary element of X and x be
a fixed element of X.

If P'(x) is a linear continuous operator defined from X into Y such that :

P(x+ h)— P(x)=P'(x)h + O(x; h) (2.3)
where
B IO (2.4)
| 7] y—0 |

Then, the linear operator P’(x) is called Frechet's derivative of the nonlinear
operator P (x) at the point x with step 4.

Assumptions
(1) Let the function G inequation (1.1) be defined and continuous on the
region : D = {(Guu): s € [a,b] , uand u' € (o, ©) }

and possess partial derivatives up to the second order and satisfy the
following condition:

0" Glsy.uy (s)ui (1)) _ 0" Glspuuy (s2)ur (57))| _
al/llal aulaz auzal al/lzaz

< ap{[sy —sal? +] s —ual)+ ] j
where, m = a;, + a, , m=0,1,2 and a, are constants. (2.5)

m

(1)  Let the function G in equation (1.2) be defined and continuous on the

region: D ={(su®,...u):s e[a,b],u?(s)e(-0,0),j=0,1,.,n}

and possess partial derivatives up to the second order and satisfy the

following condition:

8" Gl g (50 (51), oty (s1)) 0" G5z (520 (52), oty (52)
ouy™ ouy ... ou™ Ouy™ Buy ... auz(n)a/‘

} 2.6)

< ap { Iy ol 4] ]+ o]

.+ H ul(") - uz(")




On The Modified Newton's Method 271

where m=a, + a,+..+a, , m=0,1,2 and a, are constants .

Lemma 2.1
Let the function G in the equation (1.1) satisfies the assumption (i).
Then, the following inequality is valid

PO < 4, {1+ uto], +w0)] ) +

8" G(5,0,0)
ou™ ou”?

‘ .27
0 c
Proof

It is easy to get the proof from definition 2.1 and condition (2.5).
Lemma 2.2

Let the function G  in equation (1.2) satisfies the assumption (i1).
Then , the following inequality is valid

8mG(s,u(s),u'(s),...,u(")(s) )

ou™ ou.. ou™

<a, {1 + || u(s) "5 + ” u'(s) "5 Tt H u (s) “(5 }+

0" G(s,0,0,...,0,)

2.8)

ou™ ou®.. ou™™
Proof

It is easy to get the proof from definition 2.1 and condition (2.6).
Lemma 2.3 [14]

If the real or complex - valued coefficients A4,(r) and b(r) ,(g=1l,n),

are continuous in an interval J and if s belongs to J , then the
initial value problem

Lu= Zn:Aq(t)u(q)(t)zb(t) ,u(s)=x, ,(v=0,n-1)
q=0

has exactly one solution. The solution exists inallof J and depends continuously
on x, and on A4, (¢) and b(r) in each compact subinterval of J.

3. APPLICABILITY OF THE MODIFIED NEWTON'S METHOD
TO A CERTAIN CLASS OF NSIDE
In this section we shall consider the applicability of the modified

Newton's method to the class given by equation (1.1). The following two
lemmas are
fundamental in our study.
Lemma 3.1

Let the function G in the equation (1.1) satisfies the assumption (i) .
Then, the operator P defined in the equation (1.1) is Frechet differentiable

at every fixed point of the space H [a,b] with derivative given by :

b ! !’ !
P/) ) = hx) - i [ 1) Gy (su(s)u'(s) )+ 1'(5) Gy (su(s).0'(s) )

ds. (3.1
u S—X

Moreover, P’ satisfies Lipschitz's condition:
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| P)-Pus) [, < & u—us | (3.2)
in the sphere

S(uo,r):{ueHcg[ , u—1u ||5Sr} (3.3)

where ¢ is aconstant .
Proof

Let up(x) be a fixed point in the space H [a,b] and h(x) be an
arbitrary element in H s[a,b].
Then,
1 2G(s,ug +hup +h') = G(s,ug,up)

Plug +h)—Pug)=h(x) - — ds. (3.4)
2n §—x
By applying Lagrange's formula ,[10], we get :
P(ug +h)=P(ug)= P (ug) h(x) + O (x)+ O (x) + ©;(x) (3.5)
where
&) xim] .
— =0 , j=123.

|#]->0

Hence , P(u) is differentiable in the sense of Frechet and its derivative is given by:

P’ (u) h(x) = h(x) -

1 ]’-h(s) G, (su(s),u'(s) )+ h'(s) G, (su(s)u'(s)) I
2r . §S—X
From equation (3.1) and Lagrange's formula ,[10],we get :

P (ul h P u2 J.Zl ul _uz ( ) (ﬁjds +

; £z2<s) =) 0) [ Jase

+[2406) ) () ) . 36)

where:



On The Modified Newton's Method 273

Q

<
N

(s,uy +1(uy —uy),uly +1th')dt,

G,y sy +1(uy —uy)uly +th')dt

N
S}
—
©»
~
Il
|
[E——
St = C— — O

2r
Zs(s)= ;—1 G (s,uy +thuly +1 (u] —uby) )dt (3.7)
T
and
1
Z4(s)= -1 J.Guruv(s,uz +thub + 1t (u] —ub) )dt.
2 0
Hence
| P ()= P ()], < (pi Z0 |5 + 2] Zo | ) Jeen ez | +
AV YA EA RN PE (3:8)
where

” Zl(s)||§ < H+ ” Guu (S’O’O) c?
| Z5(s)| 5 <+ G (50,0,
| Z5(5)]5 < 1 +] G (500},

b

and
|| Z4(s)||5 < u+|| G,y (5,0,0) ||C with u=n+a.
For all u;, u, € Hgl[a,b], there exists aconstant v such that:
v = max| uj(s) —uy(s)| . (3.9)
a<s<b
Therefore, from the assumption (i) , Lipschitz's condition (3.8) has the form :
| P)=P' () [, < &) e —us |,
where:

& =max{d,,d,} (3.10)
and :

dl = /J( P1 +p2 )+p1 ” Guu (S,0,0) ”c +,02 ” Guur(S,0,0) ¢’

dZ = U( H (p3 + p4) + P3 ” Gu’u (5,0,0) ”c T P4 || Gu’u’(saoao) ”c )
Thus the Lemma is true.
Lemma 3.2
Let the conditions of lemma (3.1) be satisfied . Then, the linear operator

b , , ,
P () Ho) =) — 2_171 jh@ G,(5,us)ul(5))+H(s) G(s.us)u(s)) "

S—X

a
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-1
has a bounded inverse, I, = [P’(uo)] ,on the space Hg[a,b] for any fixed point
u,(x,) and arbitrary element /(x) belong to H s[a,b], such that:

h(a)=h(b) (3.11)
Proof
-1
To find the operator I, =[P’(u0)] ,we investigate the solvability of the
equation
P' () h(x) = f(x) (3.12)
that can be rewritten , by using (3.1) , as follows:
b b
h(x)—ij h(s) ds—ﬁjh ) g5 = £(2) (3.13)
2re s —x 2y s—x
where  f(x) is an arbitrary continuous function in Hgla,b],

A=G,(sg,ug,uy) and B=G,(sq,uy,ujy) are non-zero constants.
Now , consider the holomorphic function

1 % ih(s) .
O(z)=— ds i=A-1 (3.14)
27y s—z
and by using the condition (3.11) we can show that:
b .11
o'(z)= L [P 4 i =1 (3.15)
27 s—z
hence , the Sokhotski formulae , [6], are :
D*(s)= i%ih(s) +®(s) (3.16)
and
d)'i(s)zi%ih'(s)+(l)'(s). (3.17)

Substituting from equations (3.14), (3. 15) into (3.13) we obtain :
[@' )+ ()} [cb’ 0+l ()} =AU (3.18)

which can be rewritten in the following Boundary value problem (B.V.P):

Fi(s)=c(s)F (s)+g(s), (3.19)
where:
g(s)z% , c(s)=-1 (3.20)
and
F*(s) = (Di’(S)-l- Ati . 5). (3.21)

which are first order linear ordinary differential equations.
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From the theory of linear singular integral equations [6], the index of equation
(3.19) equals zero and the coefficient function c¢(s) equals —1 .

X7 (s)

X (s)

Putting c(s) = in the equation (3.19) , we obtain :

F'(s) _F~ (5) . &) (3.22)
XT(s) X~ (s) X*(s)

where :

b
Xt (2)= Je exp(E(z)), X (2)= % exp(E(z)) and E (z) = %J ln[c(r)] dr. (3.23)

7t T—Z
a

By using relations (3.23), we obtain :
b-z . |b—z

X (2)=i and X (z2)=-i (3.24)
z—a z—a
Therefore ,
b

F*(z)—F_(Z):%J‘[ (7) ))Ez:z;](rizde:TA’ (3.25)

where a )

B b-—z)\lt—a

A=28(0) (z—a)(b—r) .

The equation (3.21) is afirst order linear ordinary differential equation has the

following solution:
ot (x)= @i(a) exp(g(a _ x)jCOS(a;xj + i@i(a) exp(%(a 3 x)jsin(a;xj s
xj ds. (3.26)

+ IFi(s) exp(g (s— x)j cos(s l;xj ds + iIFi(s) exp(g (s— x)j sin(S;

Therefore ,

h(x) =i (D (x) — D (x)) =i ((p+(a)_q§‘(a)) exp(%(a—x)jcos(al—gx]+
a—xj_

B
S_x]ds+

B

4 j(F+ (s)+ F~ (s)) exp( (s — x)] sm( ;x] ds . (3.27)

+ (¢+ (a)+ D"~ (a)) exp(% (a— x)} sin(

- if (F+ (s)—F~ (s)) exp(% (s — x)j cos(

By using the condition (3.11), we get:
O (a)-®P (a)=0 and O (b)-D (b)=0 . (3.28)
From (3.26) and (3.28), equation (3.27) can be written as:
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b
h(x) = exp[% (a- x)j Sin(a Z; xj Cosec(a];bj {_jg(s) exp(g (s— a)j Sin(s ;}bj ds
b X
+i_[exp(%(s —Cl)j COS(S];bjTA ds}rfg(S) exp(%(s —x)j Sin(sl—gXst

_ i?exp(g(s—x)j cos[sl;ijAds=F0(f(x)) . (3.29)

a

-1
Finally, To prove the boundedness of the operator I’y =[P'(u,)] ,we have to evaluate

the norm of each termin (3.29).

Hence,
A
exp(E (a- x)j <(1+p) exp(B) (3.30)
s
where
Ab—al |4 _
= Ab-d + 5 (2]p))™" = constant.
B B
and
sin(a_xj <1+24 , cos(a_xj <1424
B s B B
where
-1
A= sup | xX—y | = constant. (3.31)
x,y€la,b]

) = f(s) ) ) . .
Since , g(s)= 5 and  f(s) is an arbitrary continuous function
defined on aclosed interval.
hence , || g(s) ||§ < R = constant. (3.32)
From (3.32) and (3.25) ,we obtain :

| TA ||, < psR, (3.33)
where R is a constant depends on R .
Moreover , let cosec(a 1_3 bj = 0 = constant. (3.34)
)
Now , from (3.30)—(3.34) and (3.29) , we have:
|| h ”5 < (Q W +1 )( b-a)Ww )(p5 R+ R): N = constant , (3.35)

where

W =(1+24)(1+ B)exp(B).

Thus, the linear operator (3.1) has a bounded inverse and the lemma is true .
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Now , we consider ||F0 P(uo)”(s where [ =[P'(uo)]_1 ,we get:

IoP(ug) | 5 < N( (1+ pgag) | uo| 5 = ps (00(1 +| uo) 5) +] G(5,0,0) ||c) )
= M = constant. (3.36)

Thus, all the conditions of applicability and convergence of the modified
Newton's method are satisfied .Hence, the following theorem is valid.
Theorem 3.1
Let the conditions of lemma (3.2) be satisfied and  let
uy(s) e Hgla,b]be the initial approximation for the solution of the NSIDE (1.1) so, if :
<M B

[P'g)] Plug) [P'(ug)]
o o

Then , the equation (1.1) has a wunique solution v in the sphere
||u—v||5£r0 , r>r, =M1 -41-2p)/p
to which the successive approximations
-1
i =t =[P (ug)] P u,)

of the modified Newton's method converges and the rate of convergence is given
by the inequality

<N and (go:MN§<% .

n
fopovl, < U]

J 1-2p

4. ON A GENERALIZATION FORM OF NSIDE
In this section, we can generalize the class of NSIDE represented by (1.1)
to a more general class of NSIDE written in the form (1.2). By the same
technique have used in section § 2, we shall study the NSIDE (1.2).
Lemma 4.1
Let the function G in the equation (1.2) satisfies the assumption (ii).
Then, the operator P defined in the equation (1.2) is Frechet differentiable

at every fixed point of the space H [a,b] with derivative given by :

! G . (s,u® . u™)YhD(s)ds. 4.1
S— X u
i=0

1 b

P'(u) h(x)=h(x)——
) 7 (x) ()2n£
Moreover, P'satisfies Lipschitz's condition:

| P)-Pw2) |, < & [ w-uy |, (4.2)
in the sphere :

S(uo*,r*)z {u eHgla,b],

u—uo*H(s Sr*} (4.3)

where ¢ is a constant .
Proof

Let ug*(x) be afixed point in the space H g [a,b] and h(x) be an arbitrary
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element in Hz[a,b]. Then
Plug +n) =P (u)=P (g ) )+ 0 (5:07), B =@, 0™y (a4)
where

oy |

UG e

Hence, P (u) is differentiable in the sense of Frechet and its derivative is given
by:

b n )
P'(u)h(x)=h(x)—i ILZG o (su @ u™y hW (s) ds.
2r o s—xim v
The Frechetderivative P'(u) satisfies the following Lipschitz's condition:

” P'(ul)—P'(uz) ”,5 < ¢

where & =max(D,,D,) = constant, such that :

n
Dy =2 po, (:“O,j +H G 0,0 (500...00,))
=0

*

Uy —up ”5 ,

)

n n
Dy =32 Zpi,j(ﬂi,j + H G i, (50.0....04, )chﬁi :
=0

and

i=1
Thus , the lemma is true .
Lemma 4.2
Let the conditions of lemma (4.1) be satisfied, then the linear operator

n b 1 ()
P (u)(x) = h (x) - i >4,| W) s = ) (4.5)
w=0

S—X
a

-1

has a bounded inverse, /| = [P'(uo*)] ,on the space Hg[a,b] forany

fixed point uo* and arbitrary element /(x) belong to H ;[a,b] ,such that:
WP (a)=h"(b) ,(g=1,n-1) (4.6)

where f(x) 1s an arbitrary continuous function in Hg[a,b] and

A4, :Gu<w) (so,uo(o) ..... uo(”)) are nonzero constants.
Proof
Consider the holomorphic function
1 2in(s) .
O (t)=— ds Li=~-1 . (4.7)
277 s —t

Then, by using condition (4.6) ,we can show that:
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q>(‘1>(r)=ij"h(q)(s) ds , i=+-1 and g=0n. (4.8)

2miY s —t

Hence , the Sokho‘?ski formulae , [6], are given by :
¢(Q)i(z)=i%ih(Q)(z)+Q(q)(z) . q=0n (4.9)

Therefore ,

D" (2)+ 0@ (2)=209(z)
and (4.10)
0@ (2)- 0D (2)=ih(z) ,i=v=1, q=0n
From (4.8) - (4.10) and equation (4.5) ,we have :

1 n
@) =hE)+ Z:‘)Aq Lz 0@ (2))

=i{0* (2)- 0 (2)+ iﬁ(w’%z) + d)(‘”‘(z))

A
=0 (2)-i D" (z)+70(D (2)+ 2°q> (z)+z 24 @ (Z)+Z Zq @ (2)

g=1 q=1

Ay +2i Ay —2i A A _ n—1 4

= ot (D+(Z)+ 0 ! q)_(z)+_"q)(n)+(z)+_"q)(n) (Z)+Z—qq)(q)+(z)+
2 2 2 st 2

n=1 4
+Z q q)(q) (Z)

g=1 2
hence,

2Af(z) (qﬁ(n)( " ”Zl( J(D+(q)( )+(A0A+ 2ij®+(z)}

n q=1 n

+{q>—()(z) Zl( Jcp—(‘”() ( A_zijcp—(z)) 4.11)

Equation (4.11) can be rewritten in the form:

—2/(2)
A

F'(2)+F (2)=

where

Fra=o*" o)+ Zl[ ] o= () 1 (AOAiZijd)i(z). .12)

n
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According to Lemma 2.3 ,[14], equation (4.12) has exactly one solution hence,

-1
equation (4.5) is solvable and has a unique solution [, =[P'(u0*)] .
Moreover,

|| Iyl < N =constant ,

ls

and the lemma is proved .

Thus, all the conditions of applicability and convergence of the
modified Newton's method are satisfied .Therefore , the following theorem is valid.
Theorem 4.1

Let the conditions of lemma 4.2) be satisfied and let

uo*(s)eH sla,b] be the initial approximation for the solution of the NSIDE (1.2)
so, if :

‘FOP(MO*) H(s <M =constant

-1
[P'(uo*)] P(ug )| <M™, <N"and p =M N"&" <L
2
5 5
Then, equation (1.2) has a unique solution v. in the sphere
Hu—v* §Sr0* ,r*>r0*:M*(1—\/1—250*)/50*
to which the successive approximations

-1
e =, =[P (1] P (@)
of the modified Newton's method converges and the rate of convergence

[Pweh)]

is given by the inequality

n

) [ 1-y 1-2p" }
< M
V 1=2p"

|, -
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