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Abstract- The main purpose of this work is to perform symmetry classification of a
system of partial differential equations for energy-transport in semiconductors. In the
case where there are symmetries, they are used to reduce the number of independent
variables which in turn enables one to construct invariant solutions. Invariant solutions
of a given equation satisfy an equation with fewer independent variables. Thus, the
search of invariant solutions can be viewed as a sort of dimensional reduction. From a
computational standpoint, the reduced system is easier to analyse both numerically and
analytically than the original system.

Key Words- Energy-transport, symmetry, invariant solution, dimensional reduction
1. INTRODUTION

The motion of charge carriers (negatively charged particles, electrons and
positively charged particles, holes) in semiconductors under the effect of an electric
field and a carrier concentration gradient is an important phenomenon. This introduces
an important parameter, mobility, which characterizes the motion of the charge carriers
due to drift (charged-particle motion under the influence of the electric field) and also
the efficiency of many devices. The numerical value of the mobility depends on a given
doping (addition of controlled amounts of specific impurity atoms with the aim of
increasing the concentration of the charge carriers) and temperature for the charge
carriers [9,11].

The energy-transport (ET) model is a macroscopic model derived from
Boltzmann equation [1]. This model comprises a system of diffusion equations for the
electron density and temperature, together with the Poisson equation for electric
potential.

In the ET model for semiconductors, there are two groups of unknowns. The
first group is made of the electron density, the electron temperature and the electric
potential. The second group is formed by the energy production, the mobilities and the
doping profile. Traditionally, the latter is obtained experimentally. This work employs
the symmetry principle [2,5,7,8] to get the elements of the second group of the
unknowns, that is, the forms of the energy production, the mobilities and the doping
profile are obtained for which the model is maximally symmetric. Symmetries of a
system of partial differential equations (PDEs) for the ET model will be calculated from
the so-called determining equations (an overdetermined system of linear homogeneous
PDEs).
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When the original system contains arbitrary parameters or functions, the
consistency conditions of the determining equations provides a means to specify their
forms. This is the essence of the group classification method [8]. The importance of
group classification stems from the fact that many models in application contain
parameters or functions which cannot be determined from any known physical law.
However, by analysing the consistency conditions of the determining equations we are
able to identify maximally symmetric submodels.

In some problems of practical interest, generating the determining equations
turns out to be tedious. Fortunately, Lie's method for calculating symmetries is
algorithmical and can be implemented using packages for symbolic computation
(Mathematica, Maple, Reduce, ...). In this work we will use the program, Yalie [4],
written in Mathematica for the generation and manipulation of the determining
equations for symmetries.

The outline of this paper is as follows. In section 2, we present the model to be
investigated. In section 3, we perform the symmetry classification of the model. In
section 4, we employ the symmetries to optimally reduce the number of independent
variables in the model. Finally, we summarize our findings and hints on further work.

2. ENERGY-TRANSPORT MODEL FOR SEMICONDUCTORS

The detailed derivation of the energy-transport (ET) model from the Boltzmann
equation is presented in [1]. On coupling the Poisson equation for the electric potential
to the diffusion equations for the electron density and temperature, we have the
following equations [10]

a—n+V-J = 0,
ot
o(nW)
+V-8§-3.-Vo-nC_,6 = 0,
o ¢ —nC, 1)
AMVie-n+c(x) = 0,

where n is the electron density, J the electron momentum density, W the electron
energy, S the energy flux density, nC,, the energy production, A> the dielectric

constant, ¢ the electric potential, c(x) the doping profile and V = (i,i,ij The
0x 0y 0z
known quantities in (1) are
3
J= —V(M(I)Tn)+ unve, S= —V(M(Z)T2n>+ u?TnVe, C,, = % , W= %T,
TW
where T is the electron temperature, Ty is the lattice temperature (taken as constant), p(i)
are the electron mobilities and tw is the energy relaxation time. In general the mobilities
are temperature-dependent. The system (1) must be solved subject to appropriate initial
and boundary conditions.
Some special cases recently considered in the literature are:
e the Chen ef al [3] model with
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-3(T-T
J=—y,/Vn —EV(p , S= —EMO[V(nT) —nVe] and C, = 20T ,
T 2 T,
where L and 1 are positive constants,
e the Lyumkis et a/ [6] model in which

2 1 4 3 1
3=t [V(nTZ)—ilV(p}, S:—ﬂ[V(nTZ)—nTZV(p] and C, =
T2 T

V V

_ 2 @-1),

Jn rOT%

3. THE SYMMETRY CLASSIFICATION OF THE ET MODEL FOR
SEMICONDUCTORS

Recently Romano and Valenti [10] performed the symmetry analysis of the
one-dimensional ET model for semiconductors. They also calculated invariant
solutions. In this section we will continue their work by examining multidimensional
models, namely, we perform the group classification of the spherically symmetric and
the two-dimensional ET models for semiconductors. In order to generate and
manipulate the determining equations for symmetries, we use the Mathematica software
Yalie developed by Diaz [4].

3.1 The spherically symmetric ET model for semiconductors

Here we focus on the symmetry analysis of the spherically symmetric ET model
for semiconductors. By spherically symmetric we mean that all spatial dependence of
the dependent variables is through the radial coordinate

r= ) ) Y
where d is the spatial dimension. Using the chain rule, we arrive at the following
spherically symmetric equations

n +1J, +EJ:0,
r
T-T
i(nT)t +8S, +ES—J(pr +§n(—L):O, (2)
2 r 2 1y,(D)

KZ((prr +E(prj—n+c(r) =0,
r
0

where the subscript denotes partial differentiation, k =d-1, J = —(u“)Tn)r + 1 ne,
and S = —(umTzn)r + uan(pr. The cases of interest are d =1,2,3,1.e.k=0,1,2.

From now on we will use t(T) to mean tw(T). According to Lie's algorithm, the
vector field

0 0 0
X = &'(trnT,0)—+&*(rnT,0)—+n (tr,nT,o)—
E( @)atai( (P)ar 8n( cp)an
+n°(t,n,T,0)—+1° (t,r,n, T, 0) —
n( (P)ﬁT n( cp)a(p

1s a symmetry generator of (2) if
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X[Z](nt+Jr+EJ =0,
r

X é(nT)t+Sr+ES—J(pr+§n@ =0, 3)
2 r 2 T

X[zl(k{(pn + E(pr} +c(r)—n [=0,
r
whenever (2) is satisfied and where

0 0 0 0
X=X+ +{! + 02—+
Clan CZ 8n laT

t r t

20 g

oT, 0, o0p
When expanded and separated, the determining equations (3) span many pages. Using
the program Yalie [4] written in Mathematica, we obtain 38 equations. After simplifying
the 38 determining equations we get the following equations (we only consider the case
k # 0, the case k =0 was investigated in [10]).

r
g =b,t+b,, g’ Zg[aqurbl],nl :[al(l_q)_bl]n’ n’ =a,T, 113 =a,0+F(), )
p? =g T p® =pd T, 1 =(T), e =c(n), (%)
a,T(T, = T)t, +[b,(T-T,)+a,T, | t=0,2[b, +a,(q—1)]c+(b, +a,q)rc, =0. ©)

Where a,,b,,ul’,u” are constants and F(t) is a constant function.

0 0
‘H;lzz on ‘H;;z oT. :

T ey

If we assume that },L(l)(T), n@(T), ©(T) and c(r) are arbitrary functions of their
arguments, we end up with the following symmetries

X, :2 and X; = F(t)i,
ot op

where F(t) is a smooth function of t. The symmetries X, and X, span the so-called
principal symmetry Lie algebra of (2).

Now our goal is to find specifications of the arbitrary elements that extend the
principal Lie algebra. Consider equation (6b). If b;+a;q = 0, then b;+a;(qg—1) = 0. Thus,
a; = b; = 0. This implies that c(r) and t(T) are arbitrary. We end up with the principal
Lie algebra. As a result, this case does not lead to an extension. Therefore, we assume
from now on that b;+a;q # 0. Solving equation in (6b), we obtain

—2(by +ajq-aj)

c(ry=c,r "™ , c, constant.
If a, #0, then

c(r)=c,r N , provided p+q # 0,
where b; = a;p. If a; = 0, then equation (6a) implies that b; = 0. i.e. we get the case
a; = b; = 0 which has already been dealt with. The solution to equation (6a) is
1(T) = 1o(T-TL)T", 7, constant.
Thus, the extension of the principal symmetry Lie algebra is given by the operator
0

o 1 0 o 0
X, =pt—+—-(p+qr—+{1-p—-qgn—+T—+0—-
> =Pt 2(pq)ar(pq)5 8T(P8(p
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Remark: Forq=0and q= % we obtain the forms of J and S for Chen ef al [3] model

and Lyumkis et al [6] model respectively.

3.2 The two-dimensional ET model for semiconductors
Using the definition of the divergence and the Laplacian operators, the ET
model system in two-dimensions becomes
n +J +J =0,

3 3 (T-T
E(nT)t +S, +S, - (o, +(py)+5ng =0,

2 (0, +9,)—n+c(x,y)=0.
Employing the Yalie program [4] to generate the determining equations, we obtain 91
determining equations. After simplifications we get the following equations

2 4
E'=b,—2a,t, & =a,x+a,, & =a,y+a,, n :ﬁ(Z—m)n, n’ “ M (8)
m m
4
=G, p = p T W = p T T= (D), e=clx.y), ©)
m
12T, + m(T, = T)]+2T(T, - T)t, =0, (10)
m[ (a,y+a,)c, +(a,x+a,)c, ]+2a,(m-2)c=0. (11)

(M

2
Where ay, aj, az, b, m, @)

and p,’ are constants and G(t) is a constant function.

If we assume that p(i)(T), 1(T) and c(x,y) are arbitrary functions of their
arguments, it can be shown that the principal symmetry Lie algebra of (7) is spanned by
the operators

X, = % and X, = G(t)ai, where G(t) is a smooth function of t.
¢

We now seek specifications of the arbitrary elements that extend the principal
symmetry Lie algebra. The solution to equation (10) is

(T)=1,(T-T)T J%m, T, constant
Next we consider equation (11) which is a first-order quasilinear PDE. Ifa, =0, then
we have
a,c, +a,c, =0, this implies that c(x,y) = f(a,x—a,y),
where f'is an arbitrary function of its argument. Suppose that a, # 0, then
cx,y)=f(x-ay), a,=oca,.

The extension of the symmetry Lie algebra is provided by
o 0O

X, =0—+—.
0x
If a, =0anda, = 0and we have no extension of the principal symmetry Lie algebra.
However, if a, =0 and a, #0 we have c(x,y) = g(y), for an arbitrary function gof'y.
This gives an extension
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0
X, =2,
> ox

Suppose that a, # 0. Equation (11) can then be expressed as
(y+qe, +(x+pk, = 3(2 —-m)c, m=0,
m

where a, =a,q and a, =a,p. The solution of the above equation is

2(2-m) X +
cy)=(y+q " H( pj,
y+q

where H is an arbitrary function of its argument. Therefore, the extension of the
principal Lie algebra is given by
X, —2tg+(x+p)—+(y+q)—+—(2 m)ni 4—Ti 400
ot oy on mdl m 8(p

Note that the case m =0 does not yield an extension of the principal Lie algebra.

4. SIMILARITY REDUCTIONS OF THE ET MODEL FOR
SEMICONDUCTORS

In many applications it is desirable to reduce partial differential equations
(PDEs) to ordinary differential equations (ODEs), or at least reduce the number of
independent variables. One of the procedures commonly used is dimensional analysis.
Dimensional analysis is reminiscent of scaling symmetries and dimensionless variables
are simply invariants of the scaling symmetry group [8]. By using symmetries more
general than scaling symmetries it is possible to reduce the number of independent
variables by introducing the invariants of these symmetries as new independent
variables. Thus, the existence of symmetries for PDEs allows a sort of dimensional
reduction. In this section we shall use symmetry methods to simplify our submodels
whenever possible.

From section 3, we note that the symmetry structure of the submodels is a
combination of a two-dimensional Lie algebra and an infinite-dimensional Lie algebra.
In the following subsections we shall exploit mainly the finite-dimensional part of the
symmetry Lie algebra. Precisely, using the notations of section 3, we shall look for
solutions invariant under the operator c¢,X, +c¢,X,, where c, and c, are constants.

This search can be splitted into two subcases ¢, =0 and c, #0. These subcases
amount to looking for solutions invariant under X, and aX, +X,, where a is a
constant. The first case (invariance under time translation) is trivial and will not be

considered; as a result, for all the submodels, we shall concentrate on invariance under
aX, +X,.

4.1 The spherically symmetric case
p+q#0, p(D)=p'T*", p?(T)=pdT", «(T)=1,(T-T )T,
2Apd o 1 0 0 0 0
cr)=cyr ™, X, =pt—+—(p+qQr—+(1- n—+T— —.
(r)=c, =Pt (prQro+(I-p-gn_—+T— 0%
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o . . .
The operator X, = a is the same throughout. The characteristic equation for the
t

invariants of aX, + X, is
. _ 2 dr__ 1 dn_dT_do

a+pt (p+qr (-p-¢gn T o (12)
The first equation of (12) prompts the consideration of the following subcases.
(1) p = 0: Equation (12) becomes
dt  2dr 1 dn dt d¢

a qr (I-9n T o
Thus, the invariant solutions assume the forms
2(1-q)

n=v(yr * , T= (D(Y)ri and ¢ = X(y)rﬁ; where y=t- Za(ln r)

q
arbitrary differentiable functions of y. Substituting these invariant solutions into system
(2E we get the reduced system

4ap oV [a(x-2q0") - 1]+ of [¢* +8au0? +2a(k - Hgu e
—4a’u oV }]+2u(”w v[(q-kq-2)0? +3{ 2+ (k-1)qlo - 2a(q - D'}
—2a’0'(q—-1)(qo' - 1) +ao[(q - kq -4y +q[4+ (k-1)glo+2a(;'~q0")] =0, (13)
T 0){8a0)qv[ (pgl)+u(0”)x+a[(ug)+u(02) 2(q+ Do '”
+03[(3q +32ap ¢ +4aq(k DpPo? )—8a2u32)03 Vv ]}

+v {0’ (3¢> —320P1,0° —8qk - DuP1,0?) +v {0’ ( 3q” -32uP1,0
—8q(k - Dut,0° )—ST wq(ué”xzwLax[ (1" + 1@ o207 ]

ral 'y —qlu +p® Ko+a@+ DuPe?| ) +1,0 [42ul +[4+

(k—l)q ] @ )xoaq+4a(2p0”+[6+(k l)qp(z)))g(o +3q°0'+32ap w

and v, o, x are

+28aqui’wo +4akqui’o'ow'-4aq’ nP e +4akq pY oo’ +8a2u(02)03 "
—-8a’u 00" —8a’qui’ 0’ } =0, (14)

42’07y +2ah [q(1- k) —4fy+202 2+ (k=Dqlx—q*v+q’c, = 0. (15)
In the above system and the subsequent systems a prime denotes differentiation with
respect to the similarity variable y.

(i)  p# 0: The invariant solutions read
I-p—q

n=v@+p) . T=o@)a+p)’ and ¢=ym)a+p)’; (16)

_b+q

where y=r(a+pt) *, v, ®and y are differentiable functions of their arguments. The
substitution of equations (16) into system (2) gives the following reduced system

of 2ypy’ 0 2qe—x)~o-ol( prra+2kp’ e’ W +2yp’ otV )}
+2v[ (pra-Tye*+ypy ol (@-1)(go—x )~ o™ ( ky-kqo+yy —qyo ) =0, (17)
wo[ 4y0™ [ 2q+D) pPo-( n+u h1-{[ 3pre3artakuf ot v

+akyp? v’ }]+v{6w [ 1-(g-2)100°—pto ]-4yr00™ [ ni’x>
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—( n+ng Wo'+a@rDpg o? J+ro™! [ 4kn oy -( 3py*+3qr’
+4k(@rDu 0! Jo'+Hyud o' ( ' ~(@rDo )]} =0,(18)
VAR Hky Ty =y Vet PP =0, (19)

4.2 The two-dimensional case
() u®(M=p T, p@(T) =P T, o(T) =1,(T-T)HT *, c(x.y)=g).
and X, = 9. The characteristic equation for the invariants of aX, + X, is

1)
dt dx dy dn dT do
a 1 0 0 0 0
This gives the similarity variables
y=t—-ax, B=y
and the similarity solutions

n=v(y,B), T=0o(.B), ¢ =x1.B), (20)

where v, ® and y are arbitrary functions of y and . The equations (20) are substituted
into system (7) to give the following reduced system

o’vHm=1) pvo™ [ ypos-mo’pra’e,(r-mo,) |-u
+u(1) m+ 1{

(1) m+2(vﬁl3+a2vw)

vp(xp—2mop)+a VV(VY+2m(0v)+V[ xpp—moppta (Xw_m(’)vv) ]} =0, (21)

trool 3ovi20"(vpxta v ( ne" 1% )]+ 303000,

0
+2mroc)m(x5mﬁ+a2xywy)( “) M(z) )+2M(2)0Towm+l(XBﬁ+32Xw) ]}
—u %™ [ (m-Tvypoptovpxstvie) |+
+0)(m+l)(2VBO)B+V0)BB) ]+a4 u(ol)z o 4[ (m—1)vy, 0t O(Vyxy Vi) ]2
+a’ g’ o [ m(m+1)ve’ rolvtem Q2vetve,) | =0,(22)
M ( upptatny )-vhe(B) =0.(23)
Here and thereafter the subscripts on v, @ and y denote partial differentiation.

) (qu[ m(m+1)vc023+032v[33

(i) p Ty =p T, nO(T) = @ T, «(T) = 1o(T-T)T ™2, ¢(x,y) = fix - ay),

o 0 . L . L
and X, = a—+——- The linear combination aX, + X, gives the characteristic system

ox

dt dx dy dn dT de
a o 1 0 0 0
The similarity solutions are

n=v(y,p), T = o(v,p), ¢ = x(v.p) 24)

where y=oat—ax, B=x—ayand v, ® and y are differentiable functions of their
arguments The substitution of (24) into system (7) gives
ao’v—(m-1) p’ vo™ [ (1+o’)(mog—yg)optan, staog(x-2mo,)

talomoyy) |-ul o™ (1+od)vgpta(avy-2vig) J-pi’ o™ v (1+a)
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x(rp-2mop)-a(-2me,) Jtav,[ 2mopypta(n-2moy,) [+v[ (1+a?)

x (xpp—mopp)ta( 2moys—2xptax,—amo, )]} - o, @s)
|
2,0
+a?( p+nd Vg DHv( 30 3 atee2mue” [ apf vy ao~op)
+xptl nd e’ ( pd ) oy-and o, }]+2u82)fowm”[ (1+a?)gpp

+a(ayy,—2xp) 1) -o ni o™t (m-1)vypostovexstvis) |

m-1

{Tom( 3a°°VY+2°3m[ apg vy(ay,—yp) + Vg {[ Ths ( l—apg 1y )

apg (m+h)[ mve’sro@voptvos)+o’ve |}

—o™ {1l ()| o(av~vpyrmv(ao~op) 1j-p 0™ [ v(m-1)

x (X p—ay,)(op—aw,) + co[ (VB_aVY)(XB_aXY)+V(XBB_zaXYB+aZXYY) ] ]2

—ug{ 20" (mt1)(vp-avy)(op-aw,)to™ ! [ vggta(avy—2v.g) |+v(m+l)

[ o"ogrtmo™ (og-aw,)’ + a0™ (a0, ~20p) ]} = 0, (26)

W[ (rod)ypstaar,—2xp) |-vHB) = 0.(27)

+m

(ii) m#=0,2, p?(M)=p"T"",  p@(T)=pdT"",
2+m 2(2-m)
(D =1,(T-T)T *, cxy)=(+ q)"‘H(X i pj,
y+q
X, = —2tﬁ+(x+p)i+(y+q)i+£(2—m)ni+£i+4—(pi.

ot Ox oy m on mJdT m o
The characteristic equation corresponding to aX, + X, is

dt dx dy m dn_mdT _mde

a-2t x4p y+q 22-m)n 4T 4 ¢

Thus we obtain the invariant solutions
2(2-m)

n=vB)x+p) " , T=o@p)(x+p)" and ¢=x¥.B)x+p)",  (28)

where y=(a-2t)(x+p)’, B= xrp and v, ® and yx are arbitrary functions of their
y+p

arguments. When equations (28) are substituted into system (7) we obtain a system of
PDEs that spans many pages. The interested reader can use Mathematica or any package
for symbolic computation to obtain the reduced system.

S. CONCLUSION

In this paper, we have performed a complete Lie symmetry classification of the
spherically symmetric and two-dimensional ET models for semiconductor. i.e we
obtained all the forms of the arbitrary elements (energy relaxation time, carrier mobility
and the doping profile) that maximize the symmetry Lie algebra.
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Following the usual modus operandi in symmetry analysis [2,5,7,8], we
exploited the symmetries of the submodels to perform similarity reductions. The
reduced submodels are still highly nonlinear and hence, difficult to solve analytically.
The next logical step of this work will be a numerical investigation of the reduced
submodels. This investigation might be of great importance in the simulation and design
of semiconductors.

Finally it might be important to investigate the full 1+3 model without a priori
symmetry assumptions (spherical symmetry for instance). It might not be a simple task
as the classifying relations can be very difficult to analyse. If this happens, the so-called
method of preliminary group classification may be used.
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