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Abstract- The main purpose of this work is to perform symmetry classification of a 
system of partial differential equations for energy-transport in semiconductors. In the 
case where there are symmetries, they are used to reduce the number of independent 
variables which in turn enables one to construct invariant solutions. Invariant solutions 
of a given equation satisfy an equation with fewer independent variables. Thus, the 
search of invariant solutions can be viewed as a sort of dimensional reduction. From a 
computational standpoint, the reduced system is easier to analyse both numerically and 
analytically than the original system. 
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1. INTRODUTION 
 

The motion of charge carriers (negatively charged particles, electrons and 
positively charged particles, holes) in semiconductors under the effect of an electric 
field and a carrier concentration gradient is an important phenomenon. This introduces 
an important parameter, mobility, which characterizes the motion of the charge carriers 
due to drift (charged-particle motion under the influence of the electric field) and also 
the efficiency of many devices. The numerical value of the mobility depends on a given 
doping (addition of controlled amounts of specific impurity atoms with the aim of 
increasing the concentration of the charge carriers) and temperature for the charge 
carriers [9,11].  

The energy-transport (ET) model is a macroscopic model derived from 
Boltzmann equation [1]. This model comprises a system of diffusion equations for the 
electron density and temperature, together with the Poisson equation for electric 
potential.  

In the ET model for semiconductors, there are two groups of unknowns. The 
first group is made of the electron density, the electron temperature and the electric 
potential. The second group is formed by the energy production, the mobilities and the 
doping profile. Traditionally, the latter is obtained experimentally. This work employs 
the symmetry principle [2,5,7,8] to get the elements of the second group of the 
unknowns, that is, the forms of the energy production, the mobilities and the doping 
profile are obtained for which the model is maximally symmetric. Symmetries of a 
system of partial differential equations (PDEs) for the ET model will be calculated from 
the so-called determining equations (an overdetermined system of linear homogeneous 
PDEs). 
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When the original system contains arbitrary parameters or functions, the 
consistency conditions of the determining equations provides a means to specify their 
forms. This is the essence of the group classification method [8]. The importance of 
group classification stems from the fact that many models in application contain 
parameters or functions which cannot be determined from any known physical law. 
However, by analysing the consistency conditions of the determining equations we are 
able to identify maximally symmetric submodels. 

In some problems of practical interest, generating the determining equations 
turns out to be tedious. Fortunately, Lie's method for calculating symmetries is 
algorithmical and can be implemented using packages for symbolic computation 
(Mathematica, Maple, Reduce, ...). In this work we will use the program, Yalie [4], 
written in Mathematica for the generation and manipulation of the determining 
equations for symmetries. 

The outline of this paper is as follows. In section 2, we present the model to be  
investigated. In section 3, we perform the symmetry classification of the model. In 
section 4, we employ the symmetries to optimally reduce the number of independent 
variables in the model. Finally, we summarize our findings and hints on further work. 
 

2. ENERGY-TRANSPORT MODEL FOR SEMICONDUCTORS 
 

The detailed derivation of the energy-transport (ET) model from the Boltzmann 
equation is presented in [1]. On coupling the Poisson equation for the electric potential 
to the diffusion equations for the electron density and temperature, we have the 
following equations [10] 
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where n  is the electron density, J the electron momentum density, W  the electron 
energy, S the energy flux density, WnC  the energy production, 2λ  the dielectric 

constant, φ  the electric potential, c(x)  the doping profile and .
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where T is the electron temperature, TL is the lattice temperature (taken as constant), µ(i) 
are the electron mobilities and τW is the energy relaxation time. In general the mobilities 
are temperature-dependent. The system (1) must be solved subject to appropriate initial 
and boundary conditions.  

Some special cases recently considered in the literature are:  
•  the Chen et al [3] model with 
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where µ0 and τ0 are positive constants,  
•   the Lyumkis et al [6] model in which 
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3. THE SYMMETRY CLASSIFICATION OF THE ET MODEL FOR 

SEMICONDUCTORS 
 

Recently Romano and Valenti [10] performed the symmetry analysis of the  
one-dimensional ET model for semiconductors. They also calculated invariant 
solutions. In this section we will continue their work by examining multidimensional 
models, namely, we perform the group classification of the spherically symmetric and 
the two-dimensional ET models for semiconductors. In order to generate and 
manipulate the determining equations for symmetries, we use the Mathematica software 
Yalie developed by Díaz [4]. 
 
3.1  The spherically symmetric ET model for semiconductors 

Here we focus on the symmetry analysis of the spherically symmetric ET model 
for semiconductors. By spherically symmetric we mean that all spatial dependence of 
the dependent variables is through the radial coordinate 

  )(x)(x)(xr 2d2221 L++= , 
where d is the spatial dimension. Using the chain rule, we arrive at the following 
spherically symmetric equations 
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where the subscript denotes partial differentiation, 1-dk = , ( ) r
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is a symmetry generator of (2) if 
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whenever (2) is satisfied and where 

⋅
∂

∂
+

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+=
rr

2
22

rr

1
22

r

3
2

t

3
1

r

2
2

t

2
1

r

1
2

t

1
1

]2[

T
ζ

n
ζ

φ
ζ

φ
ζ

T
ζ

T
ζ

n
ζ

n
ζXX  

When expanded and separated, the determining equations (3) span many pages. Using 
the program Yalie [4] written in Mathematica, we obtain 38 equations. After simplifying 
the 38 determining equations we get the following equations (we only consider the case 

0k ≠ , the case 0k =  was investigated in [10]). 
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Where (2)
0

(1)
011 µ,µ,b,a  are constants and F(t)  is a constant function. 

If we assume that µ(1)(T), µ(2)(T), τ(T) and c(r)  are arbitrary functions of their  
arguments, we end up with the following symmetries 
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where F(t)  is a smooth function of t. The symmetries F1 XandX  span the so-called 
principal symmetry Lie algebra of (2). 

Now our goal is to find specifications of the arbitrary elements that extend the 
principal Lie algebra. Consider equation (6b). If b1+a1q = 0, then b1+a1(q−1) = 0. Thus, 
a1 = b1 = 0. This implies that c(r)  and τ(T) are arbitrary. We end up with the principal 
Lie algebra. As a result, this case does not lead to an extension. Therefore, we assume 
from now on that b1+a1q ≠ 0. Solving equation in (6b), we obtain 
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where b1 = a1p. If a1 = 0, then equation (6a) implies that b1 = 0. i.e. we get the case  
a1 = b1 = 0 which has already been dealt with. The solution to equation (6a) is 

τ(T) = τ0(T−TL)Tp ,  0τ  constant. 
Thus, the extension of the principal symmetry Lie algebra is given by the operator 
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Remark: For q = 0 and 
2
1q =  we obtain the forms of J and S for Chen et al [3] model 

and Lyumkis et al [6] model respectively. 
 
3.2 The two-dimensional ET model for semiconductors 

Using the definition of the divergence and the Laplacian operators, the ET  
model system in two-dimensions becomes 
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Employing the Yalie program [4] to generate the determining equations, we obtain 91 
determining equations. After simplifications we get the following equations 
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If we assume that µ(i)(T), τ(T) and c(x,y) are arbitrary functions of their  
arguments, it can be shown that the principal symmetry Lie algebra of (7) is spanned by 
the operators 
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We now seek specifications of the arbitrary elements that extend the principal  
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If 0aand0a 02 == and we have no extension of the principal symmetry Lie algebra. 
However, if 0aand0a 02 ≠=  we have c(x,y) = g(y), for an arbitrary function yofg . 
This gives an extension 
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where H is an arbitrary function of its argument. Therefore, the extension of the 
principal Lie algebra is given by 

.
φm

4φ
Tm

4T
n

m)n(2
m
2

y
q)(y

x
p)(x

t
2tX2 ∂

∂
+

∂
∂

+
∂
∂

−+
∂
∂

++
∂
∂

++
∂
∂

−=
 

Note that the case 0m =  does not yield an extension of the principal Lie algebra. 
 

4. SIMILARITY REDUCTIONS OF THE ET MODEL FOR 
SEMICONDUCTORS 

 
In many applications it is desirable to reduce partial differential equations 

(PDEs) to ordinary differential equations (ODEs), or at least reduce the number of 
independent variables. One of the procedures commonly used is dimensional analysis. 
Dimensional analysis is reminiscent of scaling symmetries and dimensionless variables 
are simply invariants of the scaling symmetry group [8]. By using symmetries more 
general than scaling symmetries it is possible to reduce the number of independent 
variables by introducing the invariants of these symmetries as new independent 
variables. Thus, the existence of symmetries for PDEs allows a sort of dimensional 
reduction. In this section we shall use symmetry methods to simplify our submodels 
whenever possible. 

From section 3, we note that the symmetry structure of the submodels is a  
combination of a two-dimensional Lie algebra and an infinite-dimensional Lie algebra.  
In the following subsections we shall exploit mainly the finite-dimensional part of the 
symmetry Lie algebra. Precisely, using the notations of section 3, we shall look for 
solutions invariant under the operator 2211 XcXc + , where 21 candc  are constants. 
This search can be splitted into two subcases 0cand0c 22 ≠= . These subcases 
amount to looking for solutions invariant under 211 XaXandX + , where a  is a 
constant. The first case (invariance under time translation) is trivial and will not be 
considered; as a result, for all the submodels, we shall concentrate on invariance under 
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The operator 
t
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The first equation of (12) prompts the consideration of the following subcases. 
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arbitrary differentiable functions of γ. Substituting these invariant solutions into system 
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+a2ωγ(mωγ−χγ) ]− (1)

0µ ωm+2 [ (1+α2)νββ+a(aνγγ−2νγβ) ]− (1)
0µ ωm+1 [{ βν (1+α2) 
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× (χβ−2mωβ)−a(χγ−2mωγ) ]+aνγ [ 2mωβ−χβ+a(χγ−2mωγ) ] [ν+ (1+α2) 
                                                   × (χββ−mωββ)+a ( 2mωγβ−2χγβ+aχγγ−amωγγ ) ]} =  0,  (25) 

({ ωτ
ω2τ

1
0

0

3αωνγ+2ωm [ a (2)
0µ νγ(aχγ−χβ) [{βν+ (2)

0µ ( 1−a (2)
0µ χγ )  

(2α+ (1)
0µ + (2)

0µ ) ] } ] ) (νχ β + 3ω[(m+4)/2]+3ατ0ωωγ+2mτ0ωm [ a (2)
0µ χγ(aωγ−ωβ) 

[{βχ+ (2)
0µ (2α+ (1)

0µ + (2)
0µ ) ] βω −a (2)

0µ ωγ }]+2 (2)
0µ τ0ωm+1 [ (1+α2)χββ 

+a(aχγγ−2χγβ) ] )}−α2 (1)
0µ 2ω2m−4 [ (m−1)νχβωβ+ω(νβχβ+νχββ) ]2  

+ωm−1{ α (2)
0µ (m+1) [ mνω2

β+ω(2νβωβ+νωββ)+ω2νββ ]} 

−ωm−1{ (1)
0µ (χβ−aχγ) [ ω(aνγ−νβ)+mν(aωγ−ωβ) ]}− (1)

0µ 2ω2m−4 [ ν(m−1) 

× (χβ−aχγ)(ωβ−aωγ) [ω+ (νβ−aνγ)(χβ−aχγ)+ν(χββ−2aχγβ+a2χγγ) ] ]2  
− (2)

0µ { 2ωm(m+1)(νβ−aνγ)(ωβ−aωγ)+ωm+1 [ νββ+a(aνγγ−2νγβ) ]+ν(m+1) 
                                         × [  ωmωββ+mωm−1(ωβ−aωγ)2 + aωm(aωγγ−2ωγβ) ]}  =  0, (26) 
                                                             [2λ (1+α2)χββ+a(aχγγ−2χγβ) ]−ν+f(β)  =  0. (27) 
 
(iii)                      ,Tµ(T)µ,Tµ(T)µ2,0,m 1m(2)

0
(2)1m(1)

0
(1) −− ==≠  

,
qy
pxHq)(yy)c(x,,)TT(Tττ(T) m

m)2(2
2
m2

L0 







+
+

+=−=
−+−  

.
φm

4φ
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4T
n

m)n(2
m
2

y
q)(y

x
p)(x

t
2tX2 ∂

∂
+

∂
∂

+
∂
∂

−+
∂
∂

++
∂
∂

++
∂
∂

−=  

The characteristic equation corresponding to 21 XaX +  is 

.
φ
dφ

4
m

T
dT

4
m

n
dn

m)2(2
m

qy
dy

px
dx

2ta
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==
−

=
+

=
+

=
−

 

Thus we obtain the invariant solutions 

       m
m)2(2

p)β)(xν(γ,n
−

+= ,  m
4

p)β)(xω(γ,T +=   and  m
4

p)β)(xχ(γ,φ += ,          (28) 

where 2p)2t)(x(aγ +−= , 
py
pxβ

+
+

=  and ν, ω and χ are arbitrary functions of their 

arguments. When equations (28) are substituted into system (7) we obtain a system of 
PDEs that spans many pages. The interested reader can use Mathematica or any package 
for symbolic computation to obtain the reduced system. 

 
 

5.  CONCLUSION 
 

In this paper, we have performed a complete Lie symmetry classification of the  
spherically symmetric and two-dimensional ET models for semiconductor. i.e we 
obtained all the forms of the arbitrary elements (energy relaxation time, carrier mobility 
and the doping profile) that maximize the symmetry Lie algebra. 
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Following the usual modus operandi in symmetry analysis [2,5,7,8], we  
exploited the symmetries of the submodels to perform similarity reductions. The 
reduced submodels are still highly nonlinear and hence, difficult to solve analytically. 
The next logical step of this work will be a numerical investigation of the reduced 
submodels. This investigation might be of great importance in the simulation and design 
of semiconductors. 

Finally it might be important to investigate the full 1+3 model without a priori 
 symmetry assumptions (spherical symmetry for instance). It might not be a simple task 
as the classifying relations can be very difficult to analyse. If this happens, the so-called 
method of preliminary group classification may be used. 
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