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Abstract-In this paper, we present an application of 0-1 linear programming problem in 
the indentification of the nondominated paths on a network. To find efficient paths, an 
adaptationof the Additive model, which called Additive model without output, is used. 
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1. INTRODUCTION 

        Data Envelopment Analysis (DEA) originating from Farell’s [9] seminal work and 
popularized by Charnes et al. [6], provides a flexible nonparametric doctrine for 
empirical production analysis. In recent decades, DEA has rapidly expanded towards 
new application areas (see e.g. Seiford [11] for survey). The technique aroused great 
interest as the development of several variant of the CCR model [6] and their 
applications demonstrate. There are many alternative DEA models with different 
characteristics such as the BCC model [2], the Multiplicative models [7], the Additive 
model [4] and the FDH model [14,8]. Since the choice of a particular DEA model 
determines consequences on the study, careful considerations shoulde precede the 
selection of the model to solve any evaluation problem. Overviews on the subject are 
presented in Refs. [13,3,1] and some applications are cited in Ref. [12]. Other important 
references on DEA include some books such as [5,10]. 
        This paper deals with a technique based on 0-1 Linear Programming problem that 
identifies nondominated paths on a network. Then, these paths are evaluated by an 
adaptation of the Additive model. The rest of the paper unfolds as follows. Section 2, 
presents a method for determining of nondominated paths. In section 3, we specify the 
efficient paths among nondominated paths. Finally, section 4 draws our conclusive 
remarks.    
 

2. APPOINTMENT OF NONDOMINATED PATHS 
        Suppose we have n paths in a network characterized by m costs on each arc, the 
costs are independent and noncommensurate. Each of them represents a factor that 
characterizes paths quality. We denote the costs vectors related to path j as 

njxxX mjjj ,...,1),,...,( 1 == . Let },...,1|{ njXS j ==  be a set of m-dimensional 
vectors related to all paths. 
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Definition 2.1. We say that ),...,1( mkxkxkX = is nondominated in S if and only if there 
is not SX l ∈  such that, lk XX ≥  with at least one strict inequality. Otherwise, we say 
that lX  dominates kX  in S. 
 Definition 2.2. The vector ( )mxxX ,...,1=  where 

)1(...,,1},{min
1

mixx ijnji ==
≤≤

 

is called the ideal of paths. 
Theorem 2.1.  If there are i and  k such that k is unique and iik xx =   then  kth  path is 
nondominated. 
 Proof: Since }{min

1 ijnjiki xxx
≤≤

==  and  ikx  unique,so  

.,,...,1, kjnjxxx ijiki ≠=<=  
Therefore, there is not )( kjSX j ≠∈  so that kj XX ≤  and  .kj XX ≠  Consequently, 
based on definition 2.1, kth path is nondominated.□  
        Suppose that },...,{

1 kiio XXS =  is the set of vectors corresponding to the paths 
which have been distinguished nondominated by using Theorem 2.1. The distance of 

each vector oo SSSX −=∈ '   from X  by using l1 – norm is as ∑
=

−=
m

i
ii xxXXL
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= = =

−=−=
m

i

m

i

m

i
iiii xxxxXXL

1 1 1

.)(),(  

        To find other nondominated paths, we specify a path from '
oS  that is dominated by 

none members of oS and it has the shortest distance from ideal. To do so, consider the 

following problem in which ∑
=
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where M is a positive large number and constraints )(,1
1

o

m

i
ip Spmw ∈−≤∑

=

imply that 

for each oSp∈ , at least one of constraints be active and other constraints are 
redundant. Since }1,0{∈jt and ∑

∈

=
'

1
oSj

jt , the vectore ∑
∈ '

oSj
jj Xt  is one of the members 

'
oS . Therefore, the model (2) is converted in the following model: 
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Theorem 2.2. If  in optimal solution of problem (3) 1* =ht , then '
oh SX ∈  is 

nondominated. 
Proof: We show that Xh  is dominated by none of members So and '

oS .  Assume that  
),( ** WT  is an optimal solution of the problem (3) with components )( '*

oj sjt ∈  and  

).,...,1,(* mispw oip =∈  Since ,1
1

* −≤∑
=

mw
m

i
ip  there is at least one index i which 0* =ipw . 

Hence, for each oSp∈  we have ihip xx > . Consequently, pth path does not dominate hth 

path. By contradiction, suppose that '
oh SX ∈ dominates Xh that is hk XX ≤  and 

hk XX ≠  .Therefore  
)4(,...,1, mixx ihik =≤

and at least one of inequalities (4) strictly hold. By summing the inequalities (4), we 

will have, .
11
∑∑
==

<
m

i
ih

m

i
ik xx This shows ).,(),( XXLXXL hk <  Since Xh is dominated by 

none of members So, any member of  So will not dominate Xk. Therefore ),( ** WT   will 
not be optimal solution of the problem (3), which is a contradiction. □ 
        In order to develop the algorithm for finding nondominated paths, the sets Sk and 

'
kS  are defined as follows: 

 Sk : Sk  is a subset of  S that denotes the set of paths which has been specified 
nondominated until kth  iteration. 

'
kS : '

kS  = S-Sk . 

An Algorithm for Appointment of Nondominated Paths 
Stage 0: Initialization 
   Step 0: Identify the members So  by using (1), 
Stage 1: Identification 
   Step 1-1: Solve the problem (3), 
   Step 1-2: If there is not  h  where 1=ht  , stop. Otherwise, put }{1 hkk XSS U=+ and                      
go to step 1-1, 
Stage 2: End. 
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3. DETERMINIG EFFCIENT PATHS 
        Suppose that we have n DMUs with input vectors ),...,1( njX j = and output 
vectors ).,...,1( njYj =  To identify the efficient DMUs, we can apply the Additive 
model [5] which is as follows: 
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1

)5(,...,1,

,...,1,..

1

1

1

11

*

srminjss

mixsx

srysyts

ssMaxP

rij

n

j
j

ioi

n

j
ijj

ror

n

j
rjj

s

r
r

m

i
io

===≥≥≥

=

==+

==−

+=

+−

=

−

=

+

=

=

+

=

−

∑

∑

∑

∑∑

λ

λ

λ

λ

 

        It has been proved that a DMU is efficient if and only if 0* =oP  in the model (5). 
An interesting property of Additive model is the translation invariance proved by Ali 
and Seiford [1]. Feasibility And boundedness are the other properties of this model. 
        Using DEA terminology, we observe that the paths in the network are units to 
compare, each of then is described the set of the costs (inputs). In DEA, this units are 
considered as DMUs without output. 
 Definition 3.1. A unit k is efficient if and only if there is not a convex combination of 
the units such that every component of the convex combination is less than or equal Xk  
and at least one component is not equal. 
         Since the units corresponding to the paths in the network have not the output 
vectors, we can evaluate these units by the following model which is called the Additive 
model without outputs (envelopment form). 
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It is evident that if  0'* =oP  then, unit  o is surely efficient, otherwise it is inefficient.  
Theorem 3.1. The Additive model without output is feasible and bounded. 
Proof: ),...,1(,0),(,0,1 misoj ijo ==≠== −λλ  is a feasible solution of  problem (6). 
Consider the dual form (multiplier form) of the model (6) which is as follows:        
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        Since ),1,...,1(),,...,( 1 oomoo uuvv = is feasible solution for (7), where 

},{max
11 ∑ =≤≤

=
m

i ijnjo xu therefore the model (6) is bounded.□  

 Theorem 3.2. The Additive model without output is translation invariance. 
The proof is straightforward. 
        We know that each efficient unit(path) is a nondominated path. Hence, if 

},...,{
1 lii XXK =  be the set of vectors corresponding to the paths which have been 

distinguished nondominated by means of algorithm of the section 2, then the efficient 
paths are determined by evaluating the members of  K by model (5). 
     Note that the efficient paths can be determined by evaluating units corresponding to 
all the paths by model (6). 

4. EXAMPLE 
Suppose there exist eight paths which each path has two attributes (the costs). The costs 
of these paths have been reported in Table 1. 
 

Table 1: the costs of the paths 
No. 1 2 3 4 5 6 7 8 
Attribute1  124 263 82 338 434 140 130 438 
Attribute2 25 26 26 35 53 14 34 50 
 
We first identify the nondominated paths by using the presented algorithm. 
Step 0: We have 82}{min 1811 ==

≤≤ jj
xx  and 14}{min 2812 ==

≤≤ jj
xx . Hence, 

)}.14,140(),26,82{(},{ 63 == XXSo  
Iteration 1 - Stage 1: 
 Step 1-1: In this step, we solve the following problem: 

}.1,0{,,,,,,,,,
1
1

1
141000503453352625

1401000434130434338263124
261000503453352625

821000434130434338263124.
484164487373289149

26162313875421

2616

2313
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26875421

16875421

23875421

13875421

875421

∈
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≤+
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<−+++++
<−+++++
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+++++

wwwwtttttt
ww
ww

tttttt
wtttttt

wtttttt
wtttttt

wtttttttS
ttttttMin
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The optimal solution of the above problem is as follows: 
)1,0,0,1,0,0,0,0,0,1(),,,,,,,,,( *

26
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16
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8

*
7
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5
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4
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2

*
1 =wwwwtttttt  

Step 1-2: Since ,1*
1 =t so )}.14,140(),33,106(),25,124{(},,{ 6311 == XXXS    

Iteration 2 - Stage 1: 
    Step 1-1: In this step, we solve the following problem: 

}.1,0{,,,,,,,,,,
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        The above problem is infeasible. Therefore, the set of nondominated paths  is as 
follows: 

)}.14,140(),33,106(),25,124{(},,{ 6311 == XXXS  
         In order to determine the efficient paths among nondominated paths, we evaluate 
the corresponding units of the members S1 by model (6). The results of evaluation has 
been reported in Table 2. 
 

Table 2: the results of evaluation 
 '*

oP  *
1λ  *

3λ  *
6λ  *

1
−s  *

2
−s  

1X  3.6842 0 0.5789 0.4211 3.6842 0 

3X  0 0 1 0 0 0 

6X  0 0 0 1 0 0 
 
Table 2 shows that the paths X3 and X6 are efficient but the path X1 is not efficient. 
 

5. CONCLUSION 
This paper presents a method for determining nondominated paths by using 0-1 linear 
programing problem. To construct 0-1 linear programing problem has been used from l1 
norm and concept of nondominance. The efficient paths are specified by evaluating 
nondominated paths or all paths by means of the Additive model without output. 
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