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Abstract- Hyperbolic heat conduction equation with temperature dependent thermal 
properties is considered. The thermal conductivity, specific heat and density are 
assumed to be functions of temperature. The equation is cast into a non-dimensional 
form suitable for perturbation analysis. By employing a newly developed approximate 
symmetry theory, the approximate symmetries of the equation are calculated for the 
case of small variations in thermal properties. Various similarity solutions 
corresponding to the symmetries of first order equations are presented. For second order 
equations, the method of constructing approximate symmetries and similarity solutions 
are discussed. A linear functional variation is assumed for the thermal properties and a 
similarity solution is constructed using one of the first order solutions as an example. 
Keywords- Approximate Symmetries, Hyperbolic Heat Equation, Similarity Solutions, 
Perturbation Methods, Variable Thermal Properties 
 

1. INTRODUCTION 
 The hyperbolic heat conduction equation with temperature dependent thermal 
properties is given as follows [1] 
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where T is the temperature, x and t are the spatial and time variables and 
τ=α0/c0

2=k0/ρ0Cp0c0
2 is the relaxation time. α0 is the reference thermal diffusivity, c0, k0, 

ρ0 and Cp0 are the reference propagation speed, thermal conductivity, density and 
specific heat respectively. This model with relaxation time is better in representing 
situations involving very low temperatures, very high temperature gradients or 
extremely short times where the finite speed of heat propagation becomes significant.  
 Although, there is vast literature on the hyperbolic heat equation with constant 
thermal properties, research incorporating temperature dependent thermal properties are 
rare. To mention a few, Glass et al. [2] used a predictor-corrector scheme to solve the 
problem in a semi infinite slab with variable thermal conductivity. Kar et al. [3] solved 
the problem with constant thermal diffusivity, but thermal conductivity, heat capacity 
and density are temperature dependent. Separation of variables and Laplace transforms 
are used in finding the solutions. Chen and Lin [1] developed a numerical technique 
with the hybrid application of the Laplace transform and control volume methods.  
 A similarity analysis using general Lie Group techniques of the model given in 
equation (1) is lacking in the literature. A group classification is needed for the equation 
since the thermal properties are arbitrary functions of the temperature. This analysis 
might be involved since there are three arbitrary functional dependences on the 
dependent variable. Instead, an approximate analysis can be done by assuming that the 
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temperature variations of the thermal properties are small compared to the constant 
reference values. To gain the utmost from perturbation and Lie Group techniques, an 
approximate symmetry theory which combines both techniques can be used in the 
analysis.   
 Tree different approximate symmetry theories have been developed recently. In 
the first method due to Baikov, Gazizov and Ibragimov[4], the dependent variable is not 
expanded in a perturbation series as should be done in an ordinary perturbation 
problem, rather, the infinitesimal generator is expanded in a perturbation series. In this 
way, an approximate generator is found from which approximate solutions can be 
retrieved. In the second method due to Fushchich and Shtelen [5] and later followed by 
Euler et al. [6, 7], Euler and Euler [8], the dependent variables are expended in a 
perturbation series first as also done in usual perturbation analysis. Terms are then 
separated at each order of approximation and a system of equations to be solved in a 
hierarchy is obtained. The system of equations is assumed to be coupled and the 
approximate symmetry of the original equation is defined to be the exact symmetry of 
the system of equations obtained from perturbations.  
 In most of the problems, the unperturbed equations are linear and perturbed 
equations contain nonlinear terms. When expanded in a perturbation series, one thus 
obtains linear non-homogenous equations to be solved in order. Actually, the system is 
not coupled and can be solved in hierarchy starting from the first equation. The non-
homogenous term is a known function but different at each order of approximation. 
Requiring this term to be an arbitrary function, the approximate symmetry of the 
original equation is defined as the exact symmetry of the non-homogenous linear 
equation [9, 10] in the third method. Since non-homogenous term is considered as an 
arbitrary function, equation(s) dictating the form of this function arise from the 
symmetry calculations. Alternatively, equivalence transformation method recently 
developed by Ibragimov et al.[11] may be employed in finding the form of the arbitrary 
function. For the application of equivalence transformations to the exterior calculus 
approach, see Pakdemirli and Yürüsoy [12]. For a detailed comparison of the three 
approximate symmetry methods, one may refer to [9, 10]. For applications of special 
types of Lie Group transformations, see reference [13] for example.  
 In this work, the third approximate symmetry method is employed in finding 
approximate symmetries. The equations are cast into a non-dimensional form first. The 
thermal property variations are assumed to be small and the approximate symmetries of 
the equation are calculated. From the general symmetries, the first order degenerate 
symmetries are retrieved and various similarity solutions are obtained. For the second 
order equations, the general method to retrieve similarity solutions is discussed and an 
example solution is presented.   

 
2. PERTURBATION ANALYSIS 

 First, the equation should be cast into a non-dimensional form suitable for 
perturbation analysis. Defining the dimensionless quantities and variations in thermal 
properties  
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and inserting into the original equation yields 
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Assuming now the dimensionless functional variations to be small compared to 
one, one can write   

)(B)(B),(A)(A θε=θθε=θ           (5) 
where ε is the usual small parameter in perturbations. Assuming an expansion 

θ=θ0+ε θ1+… ,           (6) 
inserting equations (5) and (6) into equation (4) and finally separating at each order of 
approximation yields  
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3. APPROXIMATE SYMMETRIES 

 To find the symmetries of equations (7) and (8), approximate symmetry theory 
presented in [9, 10] will be employed. If order 1 solutions are known, then the last three 
terms in order ε equations are in fact known functions of the independent variables. 
Therefore, the approximate symmetries of equation (4) are the exact symmetries of the 
following non-homogenous equation by definition [9, 10] 
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where the non-homogenous terms are defined at each order of approximation as follows    
0),(h =ηξ     at order 1          (10) 
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Defining the infinitesimal generator 
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and performing a standard Lie Group analysis to equation (9), one finally gets the 
infinitesimals 

ξ1= aη+b,     ξ2= aξ+c,     η1= - aηθ+dθ+f(ξ,η)        (13) 
with the auxiliary equation 
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Parameter a represents the rotational symmetry, parameters b and c are the translational 
symmetries for the independent coordinates and the structure of function f is determined 
by equation (14). Note that h=0 corresponds to the symmetries of the first order 
equation. 



 
 

M. Pakdemirli and A. Z. Şahin 
 

142

4. SIMILARITY SOLUTIONS FOR FIRST ORDER EQUATION 
 For first order of approximation, taking h=0 in equation (14) yields the 
symmetries  

ξ1= aη+b,    ξ2= aξ+c ,    η1= - aηθ+dθ+f(ξ,η)      (15) 
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Various solutions can be retrieved from the symmetries. Some examples will be given. 
4.1. Parameter a 

This is the rotational symmetry of the equations. Taking parameter "a" and all 
other parameters zero, the determining equations for similarity transformations are 
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The similarity variable and function are defined by solving the equation system 
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Expressing equation (7) in terms of these new variables yields the ordinary differential 
equation 

0gg2g2 =−′+′′µ            (19) 
The solution of the equation is  

)2(Kc)2(Icg 0201 µ+µ=           (20) 
where I0 and K0 are the zero order modified Bessel functions of the first and second 
kind respectively. Returning back to the original variables, the similarity solution would 
be as follows 
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4.2. Parameters b and c 
Using parameters b and c only and taking all others zero in symmetries (15) and 

(16) yields the similarity variable and function 
µ=η-mξ,       θ0=θ0(µ)          (22) 

where m=c/b is an arbitrary parameter to be selected. Expressing equation (7) in terms 
of the new variables yields 

0m2)1m( 00
2 =θ′−θ ′′−           (23) 

m=1 case is trivial and discarded. The solution in terms of the original variables is 
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4.3. Parameters b, c and f 
 If the arbitrary function f is chosen as constant including with the parameters b 
and c, the similarity variable will be the same with a final solution of the below form 
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where n=f/c. This solution is not much different from the previous one.  
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4.4. Parameters b, c and d 
 Taking the parameters b, c and d as nonzero and all others zero yields finally a 
similarity solution 
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where n=d/c and  

1m
nmmn2mnm

2

222

2,1 −
++±+

=λ          (27) 

The above solution as well as the solutions presented in sections 4.2 and 4.3 may 
represent oscillatory type of solutions depending on the specific values of the arbitrary 
parameters m and n which may be complex as well.    

 
5. SIMILARITY SOLUTIONS FOR SECOND ORDER EQUATION 

 At this level of approximation the non-homogenous term is 
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Corresponding to different first order solutions, various h functions can be calculated 
which leads to different symmetries and hence, different solutions corresponding to the 
symmetries. Only one of the solutions will be considered to outline the algorithm.  
 First, for the variation of thermal properties, an assumption is needed. For 
simplicity, a linear variation which is used extensively in the literature is taken 
   020010 l)(B,l)(A θ=θθ=θ          (29) 
Solution (24) is taken as our base solution. New coefficients are defined as follows 
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With these definitions, the direct relation between α and β is 
α2-2α=β2             (31) 

The order one solution in terms of these coefficients is  
[ ]αξ−βη−=θ expc10              (32) 

Substituting (29) and (32) into equation (28) yields 
[ ]αξ−βη−γ= 22expch 1

2
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where  
γ1= 2[l1 (α-α2)+ l2 β2]           (34) 

Having calculated the specific form of h function, one can determine the symmetries at 
this level of approximation now. To generate a similarity solution, inspired by the order 
one solution, one again selects a=d=f=0. This yields for equation (14) 
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Substituting equation (33) into (35) yields 2αb+2βc=0 or c/b=-α/β=m. Therefore m 
parameter should be selected the same as in the first order solution. The determining 
equations for similarity transformations are 
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Solving the system, the similarity variable and function are 
µ=η-mξ,       θ1=θ1(µ)         (37) 

Inserting (33) and (37) into equation (9) and solving yields 
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Finally, combining the first and second order solutions together, the approximate 
solution is 
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 In generating the above solution, no specific boundary condition is considered. It 
is well known that boundary conditions restrict much the available similarity solutions. 
For nonlinear problems, the generator should be applied to the boundaries and boundary 
conditions also which reduces the number of available Lie Group transformations. For 
linear problems, the restrictions arising from the boundary conditions are not as strict as 
those of nonlinear ones. Since the approximate symmetry theory used here makes 
advantage of the linearity property, it is estimated that the available approximate 
similarity solutions might be more compared to other approximate symmetry theories.  

 
6. CONCLUDING REMARKS 

 Hyperbolic heat conduction equation with variable thermal properties is 
considered. The equations are cast into a non-dimensional form suitable for 
perturbations. Assuming the variations in thermal properties to be small, the equations 
are separated at each level of approximation. An approximate symmetry theory newly 
developed is applied to the resulting equations. The approximate symmetries valid for 
each level are calculated once. A detailed similarity analysis and possible solutions are 
discussed at the first level of approximation. At the second level of approximation, only 
one example first order solution is used to outline the algorithm for retrieving 
symmetries and corresponding solution.  
 The emphasis in this work is on the approximate symmetries and how similarity 
solutions can be constructed using these symmetries. Solution of a specific boundary 
value problem is beyond the scope of this treatment.  
Acknowledgement- The authors acknowledge the support of King Fahd University of 
Petroleum & Minerals, Dhahran, Saudi Arabia for this work. 
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