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MINIMUM PERMEANCE ESTIMATION OF VARIABLE RELUCTANCE MACHINES
BY USING NEURAL NETWORKS
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Abstract -A new approach was studied in tbis
paper to calculate minimum permeance (Pmin) of
variable reluctance machines (VRM). Finite
element method (FEM) and neural network (NN)
were employed together for estimation. The data
collected by an electromagnetic finite element
software (Flux 2D) were used to train NN.
Trained NN was tested by another data set
which are not in the training data set. Total
estimation error in the test set was observed less
than 2.5%. A similar study was performed with
the data set collected using flux tube analysis
(FTA). In this case, much larger data set was
constructed by IT A since this method allows to
generate larger data set. After training NN by
this data set, it was tested by a test set generated
by IT A. The total estimation error was observed
less than 5%.
Keywords: Variable Reluctance Machine,
Artificial Neural Network, Finite element
method, Minimum Permeance

I.Introduction
The variable-reluctance machine (VRM) is a
doubly salient synchronous machine used as
aerospace motors, generators in wind energy
systems and in other applications, ranging
from fractional horse power up to several
hundred kilowatts. The design of machine is
complicated because of its strong spatial and
magnetic nonlinearities, combined with a
large number of degrees of freedom [I].
One of the minor problems in the design
process is the calculation of minimum
permeance (Pmin). In the literature, there
are two methods commonly used. These are
: finite element method (FEM) and flux tube
analysis (FTA). The main differences
between these methods are accuracy and

calculation time. Although FEM can make
an accurate estimatio~ it takes a long time.
On the other hand, the calculation time can
be made shorter by using FTA, but this
causes loss of accuracy. The study in this
paper aims to estimate Pmin in a significantly
short time period without losing too much
accuracy by using FEM and neural
networks (NN) together.

2.VariableReluctance Machine(VRM)
Fig.l illustrates the rudiments of a VRM and
one of its driving circuits. The diagram
illustrates eight stator poles and six rotor
poles. In the case illustrated there are four
separate circuits or 'phases.' VRM may also
be designed, depending on the application,
with one, two, three, four or even more
phases.
The salient poles on the stator carry
concentrated windings of particularly simple
form, but the salient poles of the rotor carry
no windings of any kind. Both stator and
rotor cores are constructed from laminated
material, to reduce iron losses and for
manufacturing convenience. As seen in
Fig. I, diametrically opposite stator poles are
excited simultaneously, and excitation of one
pair of poles causes a pair of rotor poles to
be attracted magnetically into alignment
producing the basic torque of the device.
The figure implies excitation of poles AA',
and subsequently poles BB', are excited then
the rotor poles bb' would move into
alignment with them (with clockwise



rotation). The switching sequence of the
stator circuits is determined by the rotor
position using some suitable transducer [2].

Fig.l Elements of 4-phase VRM showing
one circuit.

l.Aligned position
When any pair of rotor poles is exactly
aligned with stator poles of any phase, that
phase is said to be in the aligned position.

2.Unaligned position
When the interpolar axis of the rotor(the axis
exactly in the middle of two subsequent
rotor poles) is aligned with the poles of any
phase, this phase is called in the "unaligned
position".

Fig.2. Flux distribution of a VRM which is
in unaligned position.
Minimum permeance is the permeance of a
VRM magnetic circuit where the associated

rotor phase is in the unaligned position. Fig.2
depicts the unaligned position of a VRM
and the distribution of flux lines in this
position. Two vertical stator poles are in the
unaligned position in this figure.

2.2 Dimensions Effecting Pmin
Basic machine dimensions which effect Pmin
has been shown in Fig.3 There is a nonlinear
relation between these dimensions and Pmin.
Two approaches can be used to relate
geometry and Pmin. The first one is to use
dimensions directly

Pmin=fl:0r, 0s, Rr, Rs, Lrph, ro, rsbi)

The second one is to use proper ratios of
dimensions as proposed in reference [5].

Pmin=f (kl,k2)

k1 = «21t INr) - 0r)Rr/(0s Rs)

k2 = «Lrph) / «(2 1tlNr) - 0r)Rr)

In addition to these dimensions, the length of
the machine and the geometric shape of the
poles are other important factors which need
to be taken into consideration in some
manner. In this study, since two dimensional
finite element software has been used, the
effect of length was not considered.



Moreover, poles are assumed in plain shape
as shown in Fig.3.
2.3. Minimum Permeance Calculation
Methods.

As it is mentioned earlier, the uncertainty in
the flux path of the magnetic circuit makes
an accurate analytical calculation very
difficult. Flux tube analysis is used to
calculate Pmin analytically, which gives an
approximate result. A comprehensive study
about this method can be found in reference
[4]. On the other hand, an accurate
calculation of Pmin is a very important step
in the accurate calculation of motor torque
and current. In order to enhance the
accuracy in the calculation, finite element
method (FEM) is the most commonly used
numerical analysis technique. The price of
the accuracy is longer calculation time than
that of flux tube analysis. If this calculation
is a routine task performed in a motor
design process many times, the application
of FEM to each different geometry is
obviously not feasible. Using FEM and
interpolation techniques reduce calculation
time, but this reduces the accuracy as well.

3. Artificial Neural Networks
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Fig.4 Topology of a 2-layer feedforward
ANN.

Artificial neural networks (ANNs) are
computing systems whose structures are
inspired by a simplified model of the human
brain. A typical 2-layer feedforward ANN is
given in Fig.4. It consists of an input layer,

output layer and hidden layer. Sets of nodes
are arranged in these layers. Activation
signals of nodes in one layer are transmitted
to the next layer through links which either
attenuate or amplify the signal.

3.1 Feedforward ANN structure

Representation of a H-Iayer ANN can be
descnoed by the following two equations.

Ui(h+ 1) = LWij(h+ 1) Yj(l) + 9i(h + 1)

Yi(h + 1) = f[ui(h + 1)]

where,

wij(h + 1)- weight between ith neuron of
layer h + 1 andt neuron of layer h.

9i(h+ 1)- threshold to the ithneuron in (h+ 1)th
layer.

uj(h+1)- input to the ithneuron in h+ 1thlayer

Y;(h)- activation ofith neuron in hthlayer

f[.]- sigmoid activation function 1/(1+e'X)

Nh- number of neurons in the hthlayer

l~ I~h+l, l~j~h, O~-1

3.2 Back-propagation learning

An ANN is trained to emulate a function by
presenting it with a representative set of
input/output functional patterns. The back
propagation training technique adjusts the
weights in all connecting links and thresholds
in the nodes so that the difference between
the actual output and the target output are
minimized for all given training patterns. For
the pth training pattern (p=1,2 ...p), this is
done by minimizing the energy function,

Ep= (1/2) Li (Ti -Yi( H»2
with respect to all the weights and
thresholds. Yi(H) corresponds to the
activation function of the ith neuron in the
output layer H. Tj denotes the desired
target. The corresponding updates for the
weights are calculated using the iterative
gradient descent tecnique.



where,

Wijnew(h)= Witd(h}+rt 81;)/Bwij(h)+v~Wij(h)

The quantity 8Ep/Bwij(h)is calculated by the
folowing expressions.

8Ep/Bwij(h)=O(h)f'[u;(h)Yj(h-l)]

1~ I ~Nh+1

OJ(h)= Ljoj (h+l)f'[uih+1)]wij(h+l)

where OJ(H)= - (Ti - Yj ( H ) )

The above algorithm is commonly known as
error back propagation. The constant 11 is the
learning step while the constant v is the
momentum gain. ~wij(h) indicates the
weight change in the previous iteration.
Weights are iteratively updated for all P
training patterns. The training process may
require many such sweeps. Suffcient learning
is achieved when the total error function,

Erota1=LA p=1,2,3 ... P

summed over the set of all p training patterns
goes below a preselected value E. [3]

4. The proposed method for calculation of
Pmin.

The main objective in this study is to reduce
the calculation time significantly while
increasing the accuracy as much as possible.
In order to carry out this objective, FEM and
NN will be employed together. Flux-2D (2
Dimensional Electromagnetic FEM package)
has been used as a training data preparing
tool. The accuracy of the proposed method
has been tested by using the same tool.

Since FTA is an analytical way to calculate
Pmin, data set generation using this method
is very easy and allows us to generate much
larger data set than FEM does. In order to
see how this large but inaccurate data set
effects generalization of NN, another data
set was generated by using FTA, and then
NN was trained by using these data.

5. Minimum Permeance Estimation with
NN.

5.1. Data set generation.

In order to link real machine dimensions
with their corresponding Pmin, reasonable
machine dimensions have to be determined
as a first step. After having determined
reasonable machine dimensions by using
criteria given in reference [4],corresponding
Pmins were calculated and normalized
between 0 and 1. Basically, three kinds of
data set were generated. These can be
summarized as follows;

1.Data Set Type. I.

Relationship of Pmin=f (kl,k2) has been
used. 35 Pmin data were generated by using
Flux-2D for different kl and k2 values
ranging between (1.05-2.05) and (0.125-
1.0), respectively.

2.Data set Type II.

Based on the relationship ofPmin= f{kl,k2),
the data were generated by using Flux tube
Analysis as proposed in reference [4). By
randomly changing k 1 and k2 values within
the same range as above, the corresponding
Pmins were calculated analytically.

3.Data set Type ill

The Pmin=f{er, 0s, RI, Rs, Lrph, ro, rsbi)
relation was used to produce this data set. It
was generated at the same time with the data
set Type II. Pmin was calculated by using
FTA for each random dimension.

5.2.Training and Testing of Neural Network.

Multilayer feedforward type ofNN was used
as a neural network. By using the
backpropagation algorithm for different type
of configurations and data set, the following
trainings were performed. MetaNeurallM

software was used for training.



5.2.1. Training and Testing for data set
Type I

Data set type I consists of 35 data to use
training. In order to make the most use the
data available, following training method
was used. 4 patterns of 35 were held out as
a test file each time. Remaining 31 patterns
were used to train the NN by considering
overtraining pOSSloilitycarefully. Whenever
overtraining point was reached in terms of
test file error, the training was stopped.
Then 4 patterns were included to the training
set, but other 4 patterns were held out as a
test file. Then it was contiuned to train the
NN until over training point. This process
was repeated until all the patterns were used
as a test pattern.

Table.! Test Results of Trained NN by
T ID,ype. ata

pattern target result error

0 0.3721 0.3595 0.0126

1 0.3282 0.2981 0.0301

2 0.2835 0.2714 0.0121

3 0.2570 0.2503 0.0067

4 0.3205 0.2924 0.0281

5 0.2666 0.2557 0.0109

6 0.3549 0.3168 0.0381

7 0.3598 0.3332 0.0266

Total Test Error % 2.32

The NN configuration during above process
was 2-5-1. That is, 2 nodes in input layer, 5
neurons in hidden layer and 1 neuron in
output layer. After training was completed,
another data set was prepared for testing.
This data set includes 8 patterns. The results
regarding with the test file were given in
Table. I

5.2.2. Training and Testing for data set
Type II

Different NN configurations were
experimented by using data set Type II. The
results for training and testing are given in
Table.2. Fig.5 illustrates how NN can
generalize a 150-pattern test :file.

Table.2 Test results performed by different
TypeD data set

# of # of Trainin Test Config
Trainin Test g Error uration.
g patterns Error %
patterns %

100 19 3.3 3.38 2-5-1

100 ISO 3.3 2.54 2-5-1

200 150 3.5 2.64 2-5-1

5.2.3. Training and Testing for data set
TypeID

Table.3 Test results performed by different
Type ID data set

# of # of Trainin Test Config
Trainin Test g Error uration.
g Error %
patterns patterns %

200 150 2.9 3.63 7-7-1

250 30 4.13 2.23 7-7-1

200 30 4.12 2.5 7-10-1

Different NN configurations were
experimented by using data set Type ID. The
results for training and testing are given in
Table 3. Fig.6 illustrates how NN can
generalize a I50-pattern test file.



Fig.5 EITor profile ofNN estimation for
Type IItest set.
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Fig.6 EITor profile ofNN estimation for
Type IIItest set.

6.Conclusions

• In spite of limited amount of tl'aining
data set the generalization capability of
NN is fairly acceptable. The test error
was less than 2.5%.

• In order to improve the estimation ability
further with limited amount of data,
other type of NNs and leaming
algorithms should be considered such as

Radial Basis Function Networks,
Probabilistic Neural Networks.

• Larger data set was generated by using
flux tube analysis. Some experiments
was performed on this data set for
different NN. These experiments showed
that the type of data set ( Type II or
Typelll) does not effect NN
generalization capability significantly.

• Estimation deficiency for large
pelmeance values can be compansated
by collecting more data around large
values of permeance.
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