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ABSTR.\CT. In this paper some interesting invariants of twist knots are calculated

Especially the first homotopy and the first homology groups of all three sheeted

branched covering spaces of the three dimensional sphere branched over twist

knots are gIven

J.lXfRonn:TIO:\. In this paper the invertibility, non-amphicheirality (expect two

of them), the Alexander matrix, the Alexander polynominal, the genus, the knot

groups and all three sheeted branched covering spaces of twist knots are presented.

Twist knots are in a certain sense generalizations of the trefoil knot (5), the

figure-eight knot (6, 10) and the Stevedore's knot (10) These knots are listed as

3 l' 4] and 61 knots in the table given at the end of Knothentheorle by Reidemeiser

(12) In that table, the knots listed as 52, 72, 81 and 92 are also twist knots.

A twist knot with n half-twists is denoted by Tn See figure la. Twist knots

are alternating knots and the number of half-twists determine them Namely, Tn

and Tm are equivalent if and only if n = m

Twist knots are also known as Whitehead doubles of the trival knot, the

circle (15) Whitehead, usmg SeIfert's method (14) and his original method of

calculation gives the following results for the Alexander polynomial of doubled

knots.
±i.\(t)=pt' -(2p+I)t+p

i.\(t)=l
if p cF- 0

if p = 0

where the integer p denotes the complete twists in the doubled knots Comparing

these WIth the Alexander polynomials obtained below one can see that the

Whitehead doubles of the trlval knot with p>O and p<O complete tWists
corresponds to T2p and T-2p-1 respectively This can be seen by Reidemeister's

moves (12) on the normal diagrams ofT n also

Bing and \1artin (4), studied twist knots and showed by an algebraic

method that twist knots satisfY "the Poincare property"
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We published some im'ariants of an eqUivalent class of knots under the

name "Shepherd's knots" in Turkish (2, 3) This name is given to these knots

because of their normal diagrams resembling a shepherd who wears acape See

Figure Ib In (2) it was sho\;\,/n that the three sphere S3, has a three sheeted cyclic

branched covering space branched over every

tW1st knots. As it is expected, the first homology groups of these covering spaces

are direct doubles of a cyclic group ( I I).

In (7), it was shown that S3 has athree sheeted [rregular covering spaces

branched over Tn only for n = 6m -r I and n = 6m + 4 (m = 0,1,2,.) since twist

knots are with 2-bndges all these covering spaces of S3 which are also called three

sheeted dihedral covering spaces, are again Just three dimensional spheres (13, 8)

Here some detailed proofs are given

v
n half t\\ists

B

I n h,I" 'M" I

2. SOME BASrC DEFINrTrONS IN KNOT THEORY

Definition 1. A homeomorphic image (an embedding) K of the unit circle

{(x, y) : x2+y2 = I} into S3 is called a knot (10) Namely a knot is a simple closed

curve in S3.

Definition 2. Two oriented knots K and L are called equivalent if there

exists an orientation preserving homeomorphism of S3 onto itself which maps K

onto L (10)

Definition 3. A knot K is called invertible if there exists an orientation

preserving homeomorphism f: S3 -+ S3 , such that the restriction f I K is an

orientation reversing homeomorphism of K onto itself (1 0)

All twist knots are invertible. One has only to turn them over



Definition 5. The fundamental group (the first homotopy group) of S3 -

K is called the knot group of the knot K (10)

Definition 6. Let (x 1, x::;, . xn r I, 1'2,1' m) be a presentation of a
knot group G=71:1 (S3-K) The matrIX (aij) defined by

all = aQ[_~r, j, 1=1..,m; .1=1, .,n
(X,

IS called the Alexander matrix of G (or of K), where a IS Abelianizer of G and
?/ ('x are Fox's free derivatives (10)

Definition 7. For any integer k::::O the k th knot polynomial of a finite

presentattOn G~(xI, x2,xnq, r2, ... rm) of a knot group is the greatest

common divlsor of the determinants of all (n-k)x(n-k) submatrices of the

Alexander matrix of G The first knot polynomial L'.(t) is called the Alexander

polynomial of the knot group (or the knot) (10)

Definition 8. A surface with only one boundary which takes a given knot

as its boundary is called a spanning surface of the knot ( I J, 14)

Definition 9. The mll111TIUmof genera of oriented surfaces which span a

knot is called the genus of the knot (11, 14)

3. SOME INTERESTI~G PROPERTIES OF TWIST KNOTS

Theorem 1. All tW1St knots are invertible.
Theorem 2. All twist knots expect Tli and Te are not amphicheriaL

Proof. Every twist knot is a knot with two bridges Namely T2k and T2k+1
are equivalent to (4k 7 1, 2k + 1) and (4k -l- 3, 2k -+- ]) - two bndge knots

respecttively. According to Schubert ( 13), (a, 0 )-two bridge knot is amphichelral if

02= (-1) (mod 2a)

This congruence for Te, becomes

(2k + 1)2 =: (-I) (mod (8k + 2))
and it holds only when k = 0 or 1. Namely only 7~,and 7: are amphicheiraL For

T 2k+ 1 the above congruence becomes
(2k -r- 1)2 == (-1) (mod (8k + 6))

and thiS can not be satisfied for any natural number k. Thus except I,', and I: all

tWlst knots are not amphicheiraL

Theorem 3. The Alexander matrices of T 2n and T 2n+ 1 are different.

Proof. The Alexander matrix of Tn is denoted Mn. M2n and M2n+ 1 are

calculated by Alexander's original method in (2)and are given below.



1--] x 0 1 -x 0 0 0 0 0 0

I-x x I 0 -1 0 0 0 0 0 0

iO 0 I x -x -1 0 0 0 0 0

10 0 x 0 -1 -x 0 0 0 0,
I

-'Men -I
I

,
:0 0 X 0 0 0 -x -1 0 0I

:0 0 x 0 0 0 0 -1 -x 0

10 0 x 0 0 0 0 0 -x -1
I
I-x 0 x 0 0 0 0 0 0 -1
I

i 0 -] 0 0 0 0 0 0I-X X
;

I-x x 1 0 -1 0 0 0 0 0 0

1
0 0 x 1 -1 -x 0 0 0 0 0

10 0 x 0 -x -1 0 0 0 0
I
I
I

I
Men.] =:

0 0 X 0 0 0 -x -] 0 01

0 0 x 0 0 0 0 -1 -x 0

0 0 X 0 0 0 0 0 -x -11
-x 0 x 0 0 0 0 0 0 -1

Alexander's original method is given in (I)
Theorem 4. The Alexander polynominals of T2n and T2n+ 1 are different

and are as foJlows respectively:
~(/) = nl2 - (2n + 1)1 + 1/

~(/) = (1/-'-1)/= - (2n + 1)1 + (11-+-1).

Proof. These results follow as in (2) and (3), from the definition 7 and the

theorem 3.



Theorem 5. The genus of any twist knot Tn, for n:;t:O,is equal to one.
Proof. This theorem is a corollary of the theorem 4 and follows from a

theorem of Crowell (9), which states "The genus of an alternating knot is equal to
the half of the degree of its Alexander polynominal".

A geometric method (cut and paste) is used to prove theorem 5 in (3).
4. THE PRESENTATION OF THE GROUP OF TWIST KNOTS
The group of twist knot Tn, 7q (S3- Tn), is denoted by Gn.
Theorem 6. G2n and G2n+ 1 are not isomorphic.
Proof. The groups G2n and G2n+ 1 are obtained by Wirtinger's method In

(4). Their calculations are justified by Dehn's method in (2). These are as follows:

Here and later x means x-I. Since the lengths of the relations in G2n and G2n+ 1
are different and no contractions occur these groups are obviously not isomorphic.

5. THREE SHEETED COVERING SPACES OF TWIST KNOTS
In this section the following notations are used.
S3, the symetric gpoup of order six.
Ln, the three sheeted (cyclic in 5.1 and 5.2, irreguler In 5.3 and 5.4)

branched covering space of S3-Tn, branched over Tn.

an, the branch curve in Ln lying over Tn.
An = It] (l:n -a J, the first homotopy group of (l:n -a J.
Bn = It] (l: n), the first homotopy group of, l: n
HI (l:J, the first integral homology group ofl:n·

All twist knot groups accept at least one representation in S3' Namely the
cyclic representation. f:Gn ~ S3 , f(b)=f(c)=(123). But only the groups of TSm+]

and T6m+4 (m=O,1,2, ...) accept a arepresentation onto S3' Namely for n=6m+l

and n=6m+4
h:Gn ~ S3 ,h(b)=(l2), h(c)=(23).

According to the results obtained by Fox's algorithm (11) the three sheeted

covering spaces of S3 branched over twist knots (simply called covering space of
twist knots) can be devided into fOUf classes.



According to the fundamental theorem of covering spaces (11) the cyclic
representation f: G:;n ----? S 3 ' f (b) = f ( c) = (123)corresponds to a three sheeted
regular covering space of S3 - T;n. Sincej(b) = j(c) = (132) the following

table] shows that f takes the relation of G 2nonto the identity permutation in S3'

.., ,.,.., 23 I 31 31 2 12 12 1 31 31-' --' . ,. ...
,., 31 31 2 12 . 12 3 23 23 2 12 ...12
3 2 12 12 .., ,.,.., .,.., 1 31 31 3 23 23-' --' --' ...

n n n n
Table 1.

By Fox's algorithm which is equivalent to Reidemeister-Schreier's Theorem
(11, pages 146-148) one obtains the following free product A2n * f~ .

bj,b2 C,(b2CJ"b3(C3b3rbJbICI)"bl(C3b3r =1

A2n *F:; = b3,c1 C\(b3C3)"b\(clblrb2(b2CJnb:;(clblr = 1

c:;,c3 c:;(bjcl)"b:;(c:;b:;rb3(b3C3)"b3(C:;bJn = 1

Where F2 is a free group of rank 2. As generators of F:; one can choose c:;

and C, Adjoining c:; = 1, c3 = 1 to A:;11* F2 one eliminates F2 and obtains

A2n·

b2 nb;-lhl(hl~lclrhl-1h; = 111
c-1b:nb b~+lh,-llh~lTlb-nh~' = 1

I J I ~ .' _ 3 _

The branch relations are bjb2b3 = 1, C1C2C3 = 1 which reduce to c1 = 1 and

b 3 = (b Ib:; ) ~I . Adjoining these to A 2n and denoting bland b:; with x and y

respectively one obtains

y -n (xy rn-I x -n (xy rn = 1

(xy r xyn-I (xy r yn_j (xy r yn = 1



5.2 THE THREE SHEETED CYCLIC COVERING SPACE OF TZn+1

The cyclic representation h:G h:G2n+J ~ S3' h(b):::: h(c):::: (123)corresponds to a

three sheeted regular covering space of S3 - T2n+1. Since h(b") ::::h(c) ::::(132) the

following tabel 2shows that h takes the relation of G 2nT1 onto the identitiy permu -

tation in S3'
1 3 23. .. 23 2 12. .. 12 3 23. .. 23 1 3 1 3 1
2 1 31 ... 31 3 23 23 1 31 ... 31 2 12 12
3 2 12... 12 1 31 31 2 12... 12 3 23 23

n+ 1 n+ 1
Table 2.

::::1

::::1

I Cz ,c3

As generatos of Fz one can choose Cz and c3· Adjoining c2 ::::.1, c3 ::::1 to

AZn+1 * F2 one eliminates F2 and obtains AZn+I as follows,
'b
I
, b2 b;n-I (cJ bJ r+1b;nb~+1

b-n-lbn+Jb-n (- b )nTJcJ 3 2 3 C1 Cj 1

(-b )n+J Jbn+1b (-b )n+lbn+1
1C1 C; 3 1 1Cj 2 :::: 1

::::1

::::1

After adjoining the branch relations b Jb 2b 3 ::::1, c1 c2c3 ::::1 which reduce to
cJ ::::1,b3::::(b1b2t to A2n+1 and denoting bl and bzwithxandy

respectively one obtains B2n+1.

X y-n-lxn+1y-n(xy)"n-1 ::::1

y )('+ly-n-lxn (xy rn+2yrix-·n-lyn+1 ::::1

Hence, HJ (L2n+J ):::: Z3n+2E9Z3n+Z'

5.3 THREE SHEETED IRREGULAR COVERING SPACE OF T6m+1

The presentation of the group of T6m+1 is
G

6m
+

1
:::: Ix,y:y(xy fm+J y-l (xy r3m-1x(xy)3rn+l y(xy r3m-1

:::: 11..

The mapping h:G6m+1 ~ S3' h(x):::: (12), h(y):::: (23) is a representation of

T
6m

+
1

ontoS3 .This representation corresponds to a three sheeted covering space of



T6m~1. The groups A6m+1 and B6m+1 are again found by Fox's method. One can see
that L6mTl is a homotopy sphere.

a,b X-I (abyx)"' a-Iy-l (ybciX)"'y-1b2 (byxa)"' b-1y(ciXJib)"' a = 1

A6mo1= y-I (byxa)'" b-ly(ciXybr a(xaby)'" x" (xyba)"' X-I = 1

x,y (xaby)"' (xyba)"' x-1a(abyx r a-ly(ybciX)m y-1b = 1

B6m_1 0::: 11:1 (L6m-l ) = {I}.

Hence HI (L6m+ I ) = {O} .
Theorem 7. The three sheeted irregular branched covering space" ofL..6m+1

T6m-1 is a three sphere.
Proof. Since the twist knot T6m_1is (l2m+ 3,6m+ 1) two bridge knot and

three sheeted irregular covering space of (a, ~) two bridge knot is S3 by Burde's

theorem (8), the theorem follows.
5.4. THE THREE SHEETED IRREGULAR COVERING SPACE OF T6m-4

The presentation of the group of T6m+4 is
G6m14=lx,y:yCxy)'m-2x(xyr3m-2x(Xy)3m~2x-l(xyr3m-2 = 11.
The mapping f: G 6mT4-~ S3' f( x) = (12), f(y) = (23) is a representation of

G6m.4onto S3. This representation corresponds to a three sheeted irregular

covering space of T6m_4.The groups A6m~4and B6m~4are obtained by similar

calculations.

a ,b (abyx r·1xa(xyba r-1 ab(b yxar-1 (ybciX)"'-1 = 1

A6md= (byxar-I a(ybaX)"'~l x(xabyr xay(aX yb)"' ax = 1

x,y (xaby r xay(ciX yb)"' ciXa(abyx rabY(x yba)"'+l ay = 1

B6m-4 = {I}.
Hence HI (L6m+4 ) = {O}. Thus L6m- 4 is a homotopy sphere.

Theorem 8. The three sheeted irregular branched covering space of T6m_4

is a three sphere.
Proof. Since the twist knot T6m-4is (12m+9 , 6m+5) two bridge knot the

theorem follows from Burde's theorem (8).
The results obtained here classifYall three sheeted branched covering

spaces of all twist knots.
Is there a geometric proof of theorem 7 or 8 ?
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