A NEW ALGORITHM TO OBTAIN δ-OPERATOR BASED TRANSFER FUNCTION FROM ITS CONTINUOUS TIME COUNTERPART

Omer GUNDOGDU

Department of Mechanical Engineering,
Aeronautical Engineering and Mechanics
Rensselear Polytechnic Institute
Troy, New York 12180

ABSTRACT

This paper discusses the advantages of the δ -operator over the forward shift operator q in implementation of discrete-time systems. The δ -operator gives better coefficient representation and less round-off noise in many cases. As an application, a new algorithm is introduced here to obtain δ -operator based transfer functions from continuous time counterparts. Finally, a fourth-order Butterworth low-pass filter is taken as an example to compare coefficient sensitivity effects of q- and δ -operator systems.

Keywords: δ-Transform, coefficient sensitivity, numerical instability, discretization, stability

INTRODUCTION

A widely used operator in digital control is the forward shift-operator q. However, q-operator based algorithms are ill-conditioned in high speed applications. As an alternative, δ -operator-based implementation of discrete-time systems has become the center of recent research activities because of their

- a) superior finite word length coefficient representations and reduced round-off noise
- b) convergence to continuous-time counterparts as the sampling time approaches to zero. Therefore, better results can be obtained if the shift operator is replaced by an incremental difference operator, namely δ-operator:

$$\delta = \frac{q-1}{T} \tag{1}$$

where T is the sampling time [1-4].

As an application, the counterpart of Groutage algorithm [5] is introduced here to show how to obtain the δ -operator equivalent of a continuous time transfer function by means of the bilinear transformation. The counterpart of the bilinear transformation

$$s = \frac{2\delta}{2 + T\delta} \tag{2}$$

where T is the sampling time, is frequently used to obtain an approximate discrete equivalent $H(\delta)$ from a continuous transfer function H(s) [1]. Given the continuous time transfer function of linear time invariant, finite-dimensional system

$$H(s) = \frac{A_n s^n + A_{n-1} s^{n-1} + \dots + A_0}{B_n s^n + B_{n-1} s^{n-1} + \dots + B_0}$$
(3)

where A_n and B_n are non zero, the function $H(\delta)$ will be

$$H(\delta) = \frac{\sum_{i=0}^{n} A_{n-i} 2^{n-i} \delta^{n-i} (2 + T\delta)^{i}}{\sum_{i=0}^{n} B_{n-i} 2^{n-i} \delta^{n-i} (2 + T\delta)^{i}}$$
(4)

 $H(\delta)$ can also be written as the ratio of two n-th degree polynomials:

$$H(\delta) = \frac{A'_{n} \delta^{n} + A'_{n-1} \delta^{n-1} + \dots + A'_{0}}{B'_{n} \delta^{n} + B'_{n-1} \delta^{n-1} + \dots + B'_{0}}$$
(5)

The problem becomes finding the coefficients A'_n and B'_n of the polynomials in equation (5). To solve this, one equates the respective numerators and denominators of (4) and (5)

$$A'_{n} \delta^{n} + A'_{n-1} \delta^{n-1} + \dots + A'_{0} = \sum_{i=0}^{n} A_{n-i} 2^{n-i} \delta^{n-i} (2 + T\delta)^{i}$$
(6)

$$B'_{n} \delta^{n} + B'_{n-1} \delta^{n-1} + \dots + B'_{0} = \sum_{i=0}^{n} B_{n-i} 2^{n-i} \delta^{n-i} (2 + T\delta)^{i}$$
(7)

Let δ take (n+1) values of r_k 's on the circumference of the shifted circle of radius 1/T, which is located at (-1/T,0). The values of the roots can be calculated using the formula

 $r_k = \frac{1}{T}(-1 + e^{i\theta k})$ for k=0,1,...,n. When these values are substituted into the equations (6)

and (7), the resulting (n+1) equations can be solved for (n+1) coefficients A'_n and B'_n. The set of equations in the matrix form is given as

$$F_n a_n = \Sigma_a \tag{8}$$

where F_n is the (n+1)x(n+1) complex matrix of coefficients

$$F_{n} = \begin{bmatrix} r_{0}^{n} & r_{0}^{n-1} & \dots & r_{0}^{0} \\ r_{1}^{n} & r_{1}^{n-1} & \dots & r_{1}^{0} \\ & \dots & & & \\ r_{n}^{n} & r_{n}^{n-1} & \dots & r_{n}^{0} \end{bmatrix}$$
(9)

a, is the (n+1)x1 complex vector of unknowns

$$a_n = [A'_n \ A'_{n-1} \ \dots \ A'_0]^T$$
 (10)

and Σ_n is the (n+1)x1 complex vector of function evaluations

$$\Sigma_{a} = \begin{bmatrix} \sum_{i=0}^{n} A_{n-i} 2^{n-i} \delta^{n-i} (2 + T\delta)^{i} \Big|_{\delta = r_{0}} \\ \dots \\ \sum_{i=0}^{n} A_{n-i} 2^{n-i} \delta^{n-i} (2 + T\delta)^{i} \Big|_{\delta = r_{n}} \end{bmatrix}$$
(11)

The solution to this system is given by

$$a_n = F_n^{-1} \Sigma_a \tag{12}$$

However, since r_0 's are all zero, each element at the first row of the matrix F_n is zero. Therefore, it is not possible to invert this matrix to get a solution, but if the system is carefully investigated it can be seen that it is not actually necessary to solve the equations for A'_0 and B'_0 , because they can easily be figured out from equations (5) and (6) that $A'_0 = 2^n A_0$ and $B'_0 = 2^n B_0$ when i=n. Thus, the system turns out to be a nxn matrix system, and as is expected the complex term in the solution is zero. Similarly, the coefficients B'_n of the denominator can be evaluated from $b_n = F_n^{-1} \Sigma_b$ in the same way.

As an example, step responses for q- and δ -operator implementations of a fourth order Butterworth low-pass filter [1] are drawn in the figure to show the finite word length effect and the convergence of the δ system to its continuous counterpart as the sampling rate is increased.

Conclusion

The superiority of the δ -operator over forward shift operator q is mainly due to better numerical results obtained by the computers that allow only a certain number of binary bits on each mantissa. Since the δ -operator gives better coefficient representation and converges to its continuous-time counterpart as the sampling rate is increased, it leads to an implementation of shorter wordlength and a unified treatment of both continuous and discrete time systems.

References

- 1. Middleton, R.H., and Goodwin, G.C., Digital Control and Estimation, Prentice-Hall, 1990.
- 2. Vijayan, R., Poor, H.V., Moore, J.B., and Goodwin, G.C., IEEE Trans. On Auto. Cont., vol. 36, pp. 314-321, Mar. 1991.
- 3. Goodwin, G.C., Middleton, R.H., and Poor, H.V., Proce. of the IEEE, vol. 80, pp 240-259, 1992.
- 4. Likourezos, G., Proce. of the IEEE, vol. 80, 238-239, 1992.
- 5. Groutage, F.D., et al., IEEE Trans. On Auto. Cont., vol. AC-32, pp 635-637, July 1987.
- 6. Gundogdu, O., ASME Grad. Stud. Tech. Conf. Tampa, Florida, May 1995.

