RELATION BETWEEN DARBOUX INSTANTANEOUS ROTATION VECTORS OF CURVES ON A TIME-LIKE SURFACE H.Hüseyin UĞURLU

 Ali TOPAL

 Ali TOPAL}

Celal Bayar Üni. Fen-Edebiyat Fak. Mat. Bölümü 45040 MANİSA.

ABSTRACT

In this study, a fundamental relation, as a base for the geometry of the time-like surfaces, among the Darboux vectors of an arbitrary time-like curve (c) on a time-like surface and the parameter curves $\left(c_{1}\right)$ and $\left(c_{2}\right)$ in the Minkowski 3space \mathbf{R}_{1}^{3} was founded.

1. INTRODUCTION

In Euclidean 3-space, the Frenet and Darboux instantaneous rotation vectors for a curve (c) on the surface which the parameter curves are perpendicular to each other are known. Let us consider an arbitrary curve (c) and the parameter curves $\left(c_{1}\right),\left(c_{2}\right)$ passing through a point P on surface. If the Darboux instantaneous rotation vectors of these curves are shown by $\mathbf{w}, \mathbf{w}_{1}$ and \mathbf{w}_{2} respectively, then the following formula is valid [1]:

$$
w=w_{1} \cos \varphi+w_{2} \sin \varphi+N \frac{d \varphi}{d s}
$$

Instead of the space \mathbf{R}^{3}, let us consider the Minkowski 3-space \mathbf{R}_{1}^{3} provided with Lorentzian inner product

$$
\begin{equation*}
\langle\mathbf{a}, \mathbf{b}\rangle=\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}-\mathrm{a}_{3} \mathrm{~b}_{3} \tag{1.1}
\end{equation*}
$$

with $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right), \mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right) \in R^{3}$. In this case, a vector \mathbf{a} is said to be spacelike if $\langle\mathbf{a}, \mathbf{a}\rangle>0$, time-like if $\langle\mathbf{a}, \mathbf{a}\rangle\langle 0$, and light-like (null) if $\langle\mathbf{a}, \mathbf{a}\rangle=0$. The norm of a vector \mathbf{a} is defined as $|\mathbf{a}|=\sqrt{\mid\langle\mathrm{a}, \mathrm{a}\rangle}$. Let $\mathrm{e}=(0,0,1)$. A time-like vector a $=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)$ is future pointing (resp., past pointing) if $\langle\mathrm{a}, \mathrm{e}\rangle\langle 0$ (resp., $\langle\mathrm{a}, \mathrm{e}\rangle>0$). So a vector $a=\left(a_{1}, a_{2}, a_{3}\right)$ is future pointing time-like if $a_{1}^{2}+a_{2}^{2}-a_{3}^{2}<0$ and $a_{3}>0$, in other words, if $\sqrt{a_{1}^{2}+a_{2}^{2}}<a_{3}$ [2].

Let a solid perpendicular trihedron in space R_{1}^{3} be $\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right]$. In this condition, the following theorem can be given.

Theorem 1.1. For the unit vectors $\mathbf{e}_{1}, \mathbf{e}_{2} \mathbf{e}_{3}$ of the edges of a solid perpendicular trihedron that changes according to the real parameter t, the below formulae is valid:

$$
\begin{equation*}
\frac{d e_{i}}{d t}=w \wedge e_{1} \quad, \quad i=1,2,3 \tag{1.2}
\end{equation*}
$$

where \mathbf{e}_{1} and e_{2} are space-like vectors and e_{3} is a time-like vector and \wedge is Lorentzian vectoral product [3]. Then the Darboux instantaneous rotation vector is given by

$$
\begin{equation*}
\mathbf{w}=\left\langle\mathbf{e}_{3}^{\prime}, \mathbf{e}_{2}\right\rangle \mathbf{e}_{1}-\left\langle\mathbf{e}_{1}^{\prime}, \mathbf{e}_{3}\right\rangle \mathbf{e}_{2}-\left\langle\mathbf{e}_{2}^{\prime}, \mathbf{e}_{1}\right\rangle \mathbf{e}_{3} . \tag{1.3}
\end{equation*}
$$

[4].

2. THE INSTANTANEOUS ROTATION VECTOR FOR THE DARBOUX TRIREDRON OF A TIME-LUKE CURVE

Let us consider the time-like surface $y=y(u, v)$. At every point of a time-like curve (c) on this surface there exists Frenet trihedron [t, n, b]. Since curve (c) is on the surface, another trihedron can be mentioned. Let us show the curves' unit tangent vector as t and the surfaces' space-like normal unit vector as \mathbf{N} at the point P on surface. In this case, if we take space-like vector g , which is defined as $\mathbf{t} \wedge \mathbf{N}=\mathbf{g}$, then we construct a new trihedron as $[\mathbf{t}, \mathrm{g}, \mathrm{N}]$. To compare this trihedron with Frenets' let us show the angle between the vectors \mathbf{n} and \mathbf{N} as φ. In this situation, the formulae

$$
\begin{equation*}
\mathbf{g}=\mathbf{n} \sin \varphi \quad-\mathbf{b} \cos \varphi \quad, \quad \mathbf{N}=\mathbf{n} \cos \varphi+\mathrm{b} \sin \varphi \tag{2.1}
\end{equation*}
$$

can be writen. If we take the derivatives of vectors \mathbf{t}, N and g with respect to arc s of curve (c) then we obtain the formulae

$$
\begin{align*}
& \frac{d t}{d s}=\rho \sin \varphi g+\rho \cos \varphi \mathbf{N} \\
& \frac{d g}{d s}=\rho \sin \varphi t-\left(\tau-\frac{d \varphi}{d s}\right) \mathbf{N} \tag{2.2}\\
& \frac{d \mathbf{N}}{d s}=\rho \cos \varphi t+\left(\tau-\frac{d \varphi}{d s}\right) g .
\end{align*}
$$

Here, if we say

$$
\rho \cos \varphi=\frac{\cos \varphi}{R}=\frac{1}{\mathbf{R}_{n}}=\rho_{n}, \rho \sin \varphi=\frac{\sin \varphi}{R}=\frac{1}{\mathbf{R}_{g}}=\rho_{g}, \tau-\frac{d \varphi}{d s}=\frac{1}{T}-\frac{d \varphi}{d s}=\frac{1}{T_{g}}=\tau_{g}
$$

then the formulae (2.2) can be written as follows:

$$
\begin{equation*}
\frac{d \mathrm{t}}{\mathrm{ds}}=\rho_{\mathrm{g}} \mathrm{~g}+\rho_{\mathrm{n}} \mathbf{N}, \quad \frac{\mathrm{~d} g}{\mathrm{ds}}=\rho_{\mathrm{g}} \mathrm{t}-\tau_{\mathrm{g}} \mathbf{N}, \quad \frac{\mathrm{~d} \mathbf{N}}{\mathrm{ds}}=\rho_{\mathrm{n}} \mathrm{t}+\tau_{\mathrm{g}} \mathrm{~g} \tag{2.3}
\end{equation*}
$$

where ρ_{n} is normal curvature, ρ_{g} is geodesic curvature and τ_{g} is geodesic torsion.
For this, the Darboux instantaneous rotation vector of the Darboux trihedron can be written as below:

$$
\begin{equation*}
w=\frac{t}{T_{g}}+\frac{g}{R_{n}}-\frac{N}{R_{g}} \tag{2.4}
\end{equation*}
$$

Then the formulae

$$
\begin{equation*}
\frac{\mathrm{dt}}{\mathrm{ds}}=w \wedge \mathrm{t}, \frac{\mathrm{dg}}{\mathrm{ds}}=\mathrm{w} \wedge \mathrm{~g}, \frac{\mathrm{~d} \mathbf{N}}{\mathrm{ds}}=\mathrm{w} \wedge \mathbf{N} \tag{2.5}
\end{equation*}
$$

are satisfied.

3. THE DARBOUX INSTANTANEOUS ROTATION VECTORS OF CURVES ON A TIME-LIKE SURFACE

a) The tangent and geodesic normal of time-like curve (c)

Let us assume the parameter curves $u=$ const. and $v=$ const. which are constant on a time-like surface $y=y(u, v)$, as perpendicular to each other. Let any time-like curve that is passing through a point P on the surface be (c). Let us show time-like and space-like parameter curves $v=$ const.and $u=$ const passing through same point P as $\left(c_{1}\right)$ and $\left(c_{2}\right)$. Let the unit tangent vectors of curves $(c),\left(c_{1}\right)$ and $\left(c_{2}\right)$ at the point P as t, t_{1} and t_{2}, respectively. For the space-like normal unit vector \mathbf{N} of the surface at the point \mathbf{P}, the followings are satisfied.

$$
\mathbf{N} \wedge \mathbf{t}=-\mathbf{g}, \mathbf{N} \wedge \mathbf{t}_{1}=-\mathbf{g}_{1}, \mathbf{N} \wedge \mathbf{t}_{2}=\mathbf{g}_{2}
$$

In this condition, three Darboux trihedron are obtained as below:

$$
[\mathbf{t}, \mathbf{g}, \mathbf{N}] \quad, \quad\left[\mathbf{t}_{1}, \mathbf{g}_{1}, \mathbf{N}\right] \quad, \quad\left[\mathbf{t}_{\mathbf{2}}, \mathbf{g}_{2}, \mathbf{N}\right]
$$

The Darboux vectors corresponding to these are in the following form:
$w=\frac{t}{T_{g}}+\frac{g}{R_{n}}-\frac{N}{R_{g}}$
$W_{1}=\frac{t_{1}}{\left(T_{g}\right)_{1}}+\frac{g_{1}}{\left(R_{n}\right)_{1}}-\frac{\mathbf{N}}{\left(R_{g}\right)_{1}} \quad, \quad w_{2}=-\frac{\mathbf{t}_{2}}{\left(T_{g}\right)_{2}}-\frac{g_{2}}{\left(R_{\mathrm{n}}\right)_{2}}+\frac{\mathbf{N}}{\left(R_{g}\right)_{2}}$
Here, let us show the arc lengths of the curves (c), $\left(c_{1}\right)$ and $\left(c_{2}\right)$ measured in the certain direction from P as s, s_{1} and s_{2}, respectively. In this case, the following formulae are written:

$$
\begin{equation*}
\mathbf{t}_{1}=\frac{\mathbf{y}_{u}}{\left\|\mathbf{y}_{u}\right\|}=\frac{\mathbf{y}_{u}}{\sqrt{E}}, \quad \mathbf{t}_{\mathbf{2}}=\frac{\mathbf{y}_{v}}{\left\|y_{v}\right\|}=\frac{\mathbf{y}_{v}}{\sqrt{G}}, \quad \mathbf{t}=\mathbf{y}_{u} \frac{d u}{d s}+\mathbf{y}_{v} \frac{d v}{d s} \tag{3.2}
\end{equation*}
$$

If we write the two initial terms of (3.2) in the third term, then

$$
\begin{equation*}
t=y_{u} \frac{d u}{d s}+y_{v} \frac{d v}{d s}=\sqrt{E} t_{1} \frac{d u}{d s}+\sqrt{G} t_{2} \frac{d v}{d s} \tag{3.3}
\end{equation*}
$$

is obtained. Let us show the hyperbolic angle [2] between \mathbf{t} and \mathbf{t}_{1} as θ and if we multiply the both sides of the equation (3.3) with t_{1} and t_{2} scalarly, then

$$
\begin{align*}
& \left\langle t, t_{1}\right\rangle=-\cosh \theta=-\sqrt{E} \frac{d u}{d s},\left\langle t, t_{2}\right\rangle=\sinh \theta=\sqrt{G} \frac{d v}{d s} \tag{3.4}\\
& \mathbf{t}=\mathbf{t}_{1} \cosh \theta+\mathbf{t}_{2} \sinh \theta \tag{3.5}
\end{align*}
$$

are obtained.
For arcs $\mathrm{ds}, \mathrm{ds}_{1}$ and ds_{2}

$$
\begin{aligned}
& \mathrm{ds}^{2}=E d u^{2}+G d v^{2} ; F=0 \\
& d s_{1}=E d u^{2} ; v=\text { const. }, \mathrm{dv}=0 ; \mathrm{d} s_{2}=\mathrm{Gdv}^{2} ; \mathrm{u}=\text { const. , du}=0 \text { (3.6) }
\end{aligned}
$$

can be written. If the formulae (3.4) and the last two formulae of (3.6) are compared, then

$$
\begin{equation*}
\cosh \theta=\frac{\sqrt{\mathrm{E}} d \mathrm{u}}{\mathrm{ds}}=\frac{\mathrm{ds}_{1}}{\mathrm{ds}}, \quad \sinh \theta=\frac{\sqrt{\mathrm{G}} d \mathrm{v}}{\mathrm{ds}}=\frac{\mathrm{ds}_{2}}{\mathrm{ds}} \tag{3.7}
\end{equation*}
$$

are found. Since vector g is $t \wedge N=g$, we can write

$$
\begin{equation*}
\mathbf{g}=\cosh \theta \mathbf{g}_{1}-\sinh \theta \mathbf{g}_{2} \tag{3.8}
\end{equation*}
$$

b) The fundamental theorems connected with the Darboux trihedron

Theorem 3.1. The Darboux trihedrons [$\left.\mathbf{t}_{1}, \mathrm{~g}_{1}, \mathbf{N}\right]$ and $\left[\mathrm{t}_{2}, \mathrm{~g}_{2}, \mathbf{N}\right]$ of parameter curves of the time-like surface are such that the directions and the orders are different and they are always coincident. The darboux derivative formulae for these trihedrons are in the below form:

$$
\begin{equation*}
\frac{\partial \mathbf{t}_{i}}{\partial s_{j}}=w_{j} \wedge \mathbf{t}_{1} \quad, \frac{\partial \mathbf{g}_{i}}{\partial s_{j}}=w_{j} \wedge g_{1} \quad, \frac{\partial \mathbf{N}}{\partial s_{j}}=w_{j} \wedge \mathbf{N} \quad(\mathbf{i}, \mathbf{j}=1,2) \tag{3.9}
\end{equation*}
$$

Proof. N is coincident at the Darboux trihedrons of parameter curves on the time-like surface. In equations $-g_{1}=\mathbf{N} \wedge \mathbf{t}_{1}$ and $g_{2}=\mathbf{N} \wedge \mathbf{t}_{2}$. If we write $\mathbf{N}=\mathbf{t}_{1}$ $\wedge \mathbf{t}_{2}$, then

$$
\begin{equation*}
\mathbf{g}_{1}=-\mathbf{t}_{2} \quad, \quad \mathbf{g}_{2}=\mathbf{t}_{1} \tag{3.10}
\end{equation*}
$$

are found. From (2.5),

$$
\begin{align*}
& \frac{\partial \mathbf{t}_{1}}{\partial \mathrm{~s}_{1}}=\mathbf{w}_{1} \wedge \mathbf{t}_{1} \quad, \quad \frac{\partial \mathbf{g}_{1}}{\partial \mathrm{~s}_{1}}=\mathbf{w}_{\mathbf{1}} \wedge \mathbf{g}_{1} \quad, \quad \frac{\partial \mathbf{N}}{\partial \mathrm{~s}_{1}}=\mathbf{w}_{\mathbf{1}} \wedge \mathbf{N} \\
& \frac{\partial \mathbf{t}_{\mathbf{2}}}{\partial \mathrm{s}_{2}}=\mathbf{w}_{2} \wedge \mathbf{t}_{\mathbf{2}} \quad, \quad \frac{\partial \mathbf{g}_{2}}{\partial \mathrm{~s}_{2}}=\mathbf{w}_{\mathbf{2}} \wedge \mathbf{g}_{2} \quad, \quad \frac{\partial \mathbf{N}}{\partial \mathrm{~s}_{2}}=\mathbf{w}_{\mathbf{2}} \wedge \mathbf{N} \tag{3.11}
\end{align*}
$$

are obtained. From (3.10), we have $\frac{\partial \mathbf{g}_{2}}{\partial s_{2}}=w_{2} \wedge g_{2}$ and $\frac{\partial \mathbf{t}_{1}}{\partial s_{2}}=w_{2} \wedge \mathbf{t}_{1}$. This shows that the derivative of t_{1} with respect to s_{2} is equal to the Lorentzian vectoral product of t_{1} and w_{2}. For the other vectors of the Darboux trihedron the same conditions are satisfied.

Corollary 3.2. When (3.10) is considered, the Darboux vectors \mathbf{w}_{1} and \mathbf{w}_{2} are obtained by using the vectors $\mathbf{t}_{1}, \mathbf{t}_{2}$ and \mathbf{N} in the following form:

$$
\begin{equation*}
w_{1}=\frac{t_{1}}{\left(T_{g}\right)_{1}}-\frac{t_{2}}{\left(R_{n}\right)_{1}}-\frac{N}{\left(R_{g}\right)_{1}}, w_{2}=-\frac{t_{2}}{\left(T_{g}\right)_{2}}-\frac{t_{1}}{\left(R_{n}\right)_{2}}+\frac{N}{\left(R_{g}\right)_{2}} \tag{3.12}
\end{equation*}
$$

Theorem 3.3. When the tangent vectors \mathbf{t}_{1} and \mathbf{t}_{2} of the parameter curves $\left(c_{1}\right)$ and $\left(c_{2}\right)$ on the time-like surface are considered, then the relations

$$
\text { i) } \begin{align*}
\left\langle t_{1}, \frac{\partial t_{2}}{\partial s_{1}}\right\rangle & =\left\langle-t_{2}, \frac{\partial t_{1}}{\partial s_{1}}\right\rangle=-\frac{(\sqrt{E})_{v}}{\sqrt{E G}} \\
\left\langle t_{2}, \frac{\partial t_{1}}{\partial s_{2}}\right\rangle & =\left\langle-t_{1}, \frac{\partial t_{2}}{\partial s_{2}}\right\rangle=\frac{(\sqrt{G})_{u}}{\sqrt{E G}} \tag{3.13}
\end{align*}
$$

ii) $\left\langle t_{1}, d t_{2}\right\rangle=\left\langle-t_{2}, d t_{1}\right\rangle=-\frac{(\sqrt{E})_{v}}{\sqrt{G}} d u-\frac{(\sqrt{G})_{u}}{\sqrt{E}} d v$
are satisfied.
Proof. i) From (3.2), $t_{1}=\frac{\mathbf{y}_{u}}{\sqrt{E}}$ and $t_{2}=\frac{\mathbf{y}_{v}}{\sqrt{G}}$ are written. From here, since $\left\langle y_{u}, y_{u}\right\rangle=\left(t_{1} \sqrt{E}\right)^{2}=-E$ and $\left\langle y_{v}, y_{v}\right\rangle=\left(t_{2} \sqrt{G}\right)^{2}=G$ we have

$$
y_{u v}=\left(t_{1}\right)_{v} \sqrt{E}+t_{1}(\sqrt{E})_{v} \quad, \quad y_{v u}=\left(t_{2}\right)_{u} \sqrt{G}+t_{2}(\sqrt{G})_{u} .
$$

From last equations, $\left\langle y_{u v}, y_{u}\right\rangle=-\sqrt{E}(\sqrt{E})$ and $\left\langle y_{v u}, y_{v}\right\rangle=\sqrt{G}(\sqrt{G})_{u}$ are found. From

$$
\frac{\partial t_{1}}{\partial v}=\frac{y_{u v} \sqrt{E}-y_{u}(\sqrt{E})_{v}}{E}, \frac{\partial t_{2}}{\partial u}=\frac{y_{v u} \sqrt{G}-y_{v}(\sqrt{G})_{u}}{G}
$$

the followings are found:

$$
\begin{align*}
& \left\langle t_{2}, \frac{\partial t_{1}}{\partial v}\right\rangle=\frac{\left\langle y_{u v}, y_{v}\right) \sqrt{E}}{E \sqrt{G}}=\frac{\sqrt{G}(\sqrt{G})_{u} \sqrt{E}}{E \sqrt{G}}=\frac{(\sqrt{G})_{u}}{\sqrt{E}} \tag{3.15}\\
& \left\langle t_{1}, \frac{\partial t_{2}}{\partial u}\right\rangle=\frac{\left\langle y_{u}, y_{v u}\right\rangle \sqrt{G}}{G \sqrt{E}}=-\frac{\sqrt{E}(\sqrt{E})_{v} \sqrt{G}}{G \sqrt{E}}=-\frac{(\sqrt{E})_{v}}{\sqrt{G}} \tag{3.16}
\end{align*}
$$

From (3.6)

$$
\begin{align*}
& \left\langle t_{2}, \frac{\partial t_{1}}{\partial s_{2}}\right\rangle=\frac{1}{\sqrt{G}}\left\langle t_{2}, \frac{\partial t_{1}}{\partial v}\right\rangle=\frac{(\sqrt{G})_{u}}{\sqrt{E G}} \tag{3.17}\\
& \left\langle t_{1}, \frac{\partial t_{2}}{\partial s_{1}}\right\rangle=\frac{1}{\sqrt{E}}\left\langle t_{1}, \frac{\partial t_{2}}{\partial u}\right\rangle=-\frac{(\sqrt{E})_{v}}{\sqrt{E G}} \tag{3.18}
\end{align*}
$$

are found. On the other hand, since the parameter curves are perpendicular, if we take derivatives with respect to s_{1} and s_{2} the proof is completed.
ii) If we take differential from equality $\left\langle\mathbf{t}_{1}, \mathbf{t}_{2}\right\rangle=0$, we obtain

$$
\left\langle\mathbf{t}_{1}, d t_{2}\right\rangle=\left\langle\mathbf{t}_{1},\left(\frac{\partial \mathbf{t}_{2}}{\partial \mathrm{~s}_{1}} \cdot \mathrm{ds}_{1}+\frac{\partial \mathrm{t}_{2}}{\partial \mathrm{~s}_{2}} \cdot \mathrm{ds}_{2}\right)\right\rangle=-\frac{(\sqrt{E})_{v}}{\sqrt{G}} d u-\frac{(\sqrt{G})_{u}}{\sqrt{E}} \mathrm{dv}
$$

Corollary 3.4. If the geodesic curvatures of parameter curves $\left(c_{1}\right)$ and $\left(c_{2}\right)$ are $\frac{1}{\left(\mathbb{R}_{g}\right)_{1}}$ and $\frac{1}{\left(R_{g}\right)_{2}}$ respectively, then

$$
\begin{equation*}
\frac{1}{\left(R_{g}\right)_{1}}=-\frac{(\sqrt{E})_{v}}{\sqrt{E G}}, \frac{1}{\left(R_{g}\right)_{2}}=\frac{(\sqrt{G})_{u}}{\sqrt{E G}} \tag{3.19}
\end{equation*}
$$

are valid.
Theorem 3.5. Let us take any curve (c) on the time-like surface and the arc elements of curves (c), $\left(c_{1}\right)$ and $\left(c_{2}\right)$ as s, s_{1} and s_{2}, respectively. Let the Darboux instantaneous rotation vectors of $\left(c_{1}\right)$ and $\left(c_{2}\right)$ be $\mathbf{w}_{1}, \mathbf{w}_{2}$ and if the hyperbolic angle between the tangent t of curve (c) and t_{1} is θ then

$$
\begin{equation*}
\mathbf{a}=\cosh \theta \mathbf{w}_{1}+\sinh \theta \mathbf{w}_{2} \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{dt}_{1}}{\mathrm{ds}}=\mathbf{a} \wedge \mathrm{t}_{1}, \frac{\mathrm{dt}_{2}}{\mathrm{ds}}=\mathbf{a} \wedge \mathrm{t}_{2}, \frac{\mathrm{dN}}{\mathrm{ds}}=\mathbf{a} \wedge \mathbf{N} \tag{3.21}
\end{equation*}
$$

are valid.
Proof. We saw that $\mathbf{t}, \mathbf{t}_{1}, \mathbf{t}_{2}$ and \mathbf{N} vectors are functions of arcs s_{1} and s_{2} For this,

$$
\frac{\mathrm{dt}_{1}}{\mathrm{ds}}=\frac{\partial \mathrm{t}_{1}}{\partial \mathrm{~s}_{1}} \frac{\mathrm{ds}_{1}}{\mathrm{ds}}+\frac{\partial \mathrm{t}_{1}}{\partial \mathrm{~s}_{2}} \frac{\mathrm{ds}_{2}}{\mathrm{ds}}
$$

is obvious. If (3.7) and (3.9) are considered, then

$$
\begin{aligned}
\frac{d t_{1}}{d s} & =\left(w_{1} \wedge t_{1}\right) \cosh \theta+\left(w_{2} \wedge t_{1}\right) \sinh \theta \\
& =\left(w_{1} \cosh \theta+w_{2} \sinh \theta\right) \wedge t_{1} \\
& =a \wedge t_{1}
\end{aligned}
$$

are obtained. The others are shown, similarly.
Corollary 3.6. The equality $\left\langle\mathrm{t}_{2}, \frac{\mathrm{dt}_{1}}{\mathrm{ds}}\right\rangle=-\left\langle\mathrm{t}_{1}, \frac{\mathrm{dt}_{2}}{\mathrm{ds}}\right\rangle=\langle\mathbf{a}, \mathbf{N}\rangle$ is valid.
Theorem 3.7. Let us consider the curves $(c),\left(c_{1}\right)$ and $\left(c_{2}\right)$ passing through a point P of time-like surface. Let the Darboux instantaneous rotation vectors corresponding to these curves at the point \mathbf{P} be $\mathbf{w}, \mathbf{w}_{1}$ and \mathbf{w}_{2}, respectively.

In this case, the equation

$$
\begin{equation*}
\mathbf{w}=\mathbf{w}_{1} \cosh \theta+\mathbf{w}_{2} \sinh \theta+\mathbf{N} \frac{d \theta}{d s} \tag{3.22}
\end{equation*}
$$

is satisfied.
Proof. From (3.5)

$$
\mathbf{t}=\mathbf{t}_{1} \cosh \theta+\mathbf{t}_{2} \sinh \theta
$$

can be written. If the derivatives of both sides of this equation are taken with respect to s then

$$
\frac{d t}{d s}=\frac{d t_{1}}{d s} \cosh \theta+\frac{d t_{2}}{d s} \sinh \theta+t_{1} \sinh \theta \frac{d \theta}{d s}+t_{2} \cosh \theta \frac{d \theta}{d s}
$$

is obtained. Since in the Darboux trihedrons $\left[\mathbf{t}_{1}, \mathbf{g}_{1}, \mathbf{N}\right]$ and $\left[\mathbf{t}_{2}, \mathbf{g}_{2}, \mathbf{N}\right]$,
$-\mathrm{t}_{1}=\mathbf{N} \wedge \mathrm{g}_{1}$ and $\mathrm{t}_{2}=\mathbf{N} \wedge \mathrm{g}_{2}$ we have

$$
\frac{\mathrm{dt}}{\mathrm{ds}}=\frac{\mathrm{dt}_{1}}{\mathrm{ds}} \cosh \theta+\frac{\mathrm{dt}_{2}}{\mathrm{ds}} \sinh \theta+\left(\mathrm{g}_{1} \wedge \mathbf{N}\right) \sinh \theta \frac{\mathrm{d} \theta}{\mathrm{ds}}-\left(\mathrm{g}_{2} \wedge \mathbf{N}\right) \cosh \theta \frac{\mathrm{d} \theta}{\mathrm{ds}}
$$

If the equations (3.10) and (3.21) are considered

$$
\frac{d t}{d s}=\left(a+N \frac{d \theta}{d s}\right) \wedge t
$$

is obtained. If we take $\boldsymbol{a}+\mathbf{N} \frac{\mathrm{d} \theta}{\mathrm{ds}}=\mathbf{b}$, then we have

$$
\begin{equation*}
\frac{\mathrm{dt}}{\mathrm{ds}}=\mathrm{b} \wedge \mathbf{t} \quad, \quad \frac{\mathrm{~d} \mathbf{N}}{\mathrm{ds}}=\mathrm{b} \wedge \mathbf{N} . \tag{3.23}
\end{equation*}
$$

If (2.5) and (3.23) are considered then

$$
\begin{equation*}
\mathbf{b}-\mathbf{w}=\lambda \mathbf{t} \quad, \quad \lambda \in \mathbf{R} \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{b}-\mathbf{w}=\mu \mathbf{N} \quad, \quad \mu \in \mathbf{R} \tag{3.25}
\end{equation*}
$$

are obtained. From (3.24) and (3.25) it is easily seen that $\lambda=\mu=0$. This completes the proof.

Corollary 3.8. If the curve (c) is taken as space-like, the formula (3.22) is given by

$$
\mathbf{w}=w_{1} \sinh \theta+w_{2} \cosh \theta+\mathbb{N} \frac{d \theta}{d s} .
$$

REFERENCES

[1] Akbulut, F. "Bir yüzey üzerindeki eğrilerin Darboux vektörleri ", E.Ü. Fen Fakültesi İzmir, (1983).
[2] Birman , G.S. ; Nomizu , K. "Trigonometry in Lorentzian Geometry ", Ann. Math. Mont. 91(9), 543-549, (1984).
[3] Akutagava , K. ; Nishikawa, S. "The Gauss map and space-like surfaces with prescribed mean curvature in Minkowski 3-space '", Tohoku Math. J. 42,67-82 (1990).
[4] Uğurlu, H.Hüseyin. ; Çalşskan, Ali . "Time-like regle yüzey üzerindeki bir time-like eğrinin Frenet ve Darboux vektörleri '", I. Spil Fen Bilimleri Kongresi , Manisa, (1995).

