Mathematical & Computational Applications, Vol. 1, No. 2, pp 142-148, 1996 © Association for Scientific Research

THE STUDY MAPPING FOR DIRECTED SPACE -LIKE AND TIME-LIKE LINES IN MINKOWSKI 3-SPACE R³

H. Hüseyin UĞURLU* * Celal Bayar University, Department of Mathematics 45040 Manisa, Turkey ** Aegean University, Department of Mathematics 35100 İzmir, Turkey

ABSTRACT

In this study, the E. Study mapping was defined for the space-like and time-like lines in the Minkowski 3-space R_1^3 . Hence, there is one to one correspondence between directed space-like (resp.,time-like) lines of R_1^3 and ordered pair of vectors (a, a₀) such that $\langle a, a \rangle = 1$ (resp., $\langle a, a \rangle = -1$) and $\langle a, a_0 \rangle = 0$.

1. INTRODUCTION

Let \mathbb{R}_1^3 be the vector space \mathbb{R}^3 provided with Lorentzian inner product of signature (+, +, -). Let $\mathbf{a} = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) \in \mathbb{R}_1^3$. In this case, a vector \mathbf{a} is said to be space-like if $\langle \mathbf{a}, \mathbf{a} \rangle > 0$, time-like if $\langle \mathbf{a}, \mathbf{a} \rangle < 0$, and light-like (null) if $\langle \mathbf{a}, \mathbf{a} \rangle = 0$. The set of all vectors such that $\langle \mathbf{a}, \mathbf{a} \rangle = 0$ is called the light-like (null) cone. The norm of vector \mathbf{a} is defined to be $|\mathbf{a}| = \sqrt{|\langle \mathbf{a}, \mathbf{a} \rangle|}$. We also consider the time orientation as follows: A time-like vector $\mathbf{a} = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$ is future pointing (resp., past- pointing) if $\langle \mathbf{a}, \mathbf{e} \rangle < 0$ (resp., $\langle \mathbf{a}, \mathbf{e} \rangle > 0$), with $\mathbf{e} = (0,0,1)$ [1]. So a time-like vector $\mathbf{a} = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$ is future pointing iff $\sqrt{\mathbf{a}_1^2 + \mathbf{a}_2^2} < \mathbf{a}_3$ (resp., $\sqrt{\mathbf{a}_1^2 + \mathbf{a}_2^2} > \mathbf{a}_3$). The Lorentzian and hyperbolic sphere of radius 1 in \mathbb{R}_1^3 are defined by

$$\mathbb{S}_1^2 = \left\{ \mathbf{a} = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) \in \mathbb{R}_1^3 \mid \langle \mathbf{a}, \mathbf{a} \rangle = 1 \right\}$$

and

$$H_0^2 = \{a = (a_1, a_2, a_3) \in R_1^3 \mid \langle a, a \rangle = -1\}$$
,

respectively.

Lemma1.1. Let a and b be two future pointing (resp., past-pointing) time-like unit vectors in \mathbb{R}^3_1 . Then

$$\langle \mathbf{a}, \mathbf{b} \rangle = -\cosh\theta$$
 (1.1)

[1].

The vectoral product of two vector \mathbf{a} , $\mathbf{b} \in \mathbf{R}_1^3$ is defined by

$$\mathbf{a} \wedge \mathbf{b} = \begin{vmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & -\mathbf{e}_{3} \\ \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} \\ \mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} \end{vmatrix},$$
(1.2)

where $e_1 \wedge e_2 = e_3$, $e_2 \wedge e_3 = -e_1$, $e_3 \wedge e_1 = -e_2$ [2]. For this, following equalities are satisfied:

$$\langle \mathbf{a} \wedge \mathbf{b}, \mathbf{c} \rangle = -\det(\mathbf{a}, \mathbf{b}, \mathbf{c}),$$
 (1.3)

$$(\mathbf{a} \wedge \mathbf{b}) \wedge \mathbf{c} = -\langle \mathbf{a}, \mathbf{c} \rangle \mathbf{b} + \langle \mathbf{b}, \mathbf{c} \rangle \mathbf{a}$$
 (1.4)

$$\langle \mathbf{a} \wedge \mathbf{b}, \mathbf{a} \wedge \mathbf{b} \rangle = -\langle \mathbf{a}, \mathbf{a} \rangle \langle \mathbf{b}, \mathbf{b} \rangle + (\langle \mathbf{a}, \mathbf{b} \rangle)^2.$$
 (1.5)

2. DUAL LORENTZIAN SPACE D₁³

Let $A = a + \epsilon a_0$, $B = b + \epsilon b_0 \in D^3$. The Lorentzian inner product of A and B is defined by

$$\langle \mathbf{A}, \mathbf{B} \rangle = \langle \mathbf{a}, \mathbf{b} \rangle + \varepsilon \left(\langle \mathbf{a}, \mathbf{b}_{\mathbf{0}} \rangle + \langle \mathbf{a}_{\mathbf{0}}, \mathbf{b} \rangle \right).$$
 (2.1)

We call the dual space D^3 together with this Lorentzian inner product as *dual* Lorentzian space and show by D_1^3 .

Definition 2.1. Let $A = a + \varepsilon a_0 \in D_1^3$. The dual vector A is said to be *space-like* if the vector **a** is space-like, *time-like* if the vector **a** is time-like, and *light-like* (*dual null*) if the vector **a** is light-like. We also defined the time orientation as follows, A time-like vector $A = a + \varepsilon a_0$ is *future- pointing* (resp., *past- pointing*) if the vector **a** is future-pointing (resp., past- pointing)

The set of all light-like vectors in D_1^3 is called the *dual light-like cone* and shown by Λ .

Definition 2.2. The norm of dual vector $\mathbf{A} = \mathbf{a} + \varepsilon \mathbf{a}_0$ is a dual number giving by

$$|\mathbf{A}| = \sqrt{\langle \mathbf{A}, \mathbf{A} \rangle} = \left(|\mathbf{a}|, \varepsilon \frac{\langle \mathbf{a}, \mathbf{a}_{\bullet}}{|\mathbf{a}|^2} \right),$$
 (2.2)

where $|\mathbf{a}| \neq 0$.

Definition 2.3. Let A, $B \in D_1^3$. We define the Lorentzian vectoral product of A and B by

$$\mathbf{A} \wedge \mathbf{B} = \begin{vmatrix} \mathbf{E}_1 & \mathbf{E}_2 & -\mathbf{E}_3 \\ \mathbf{A}_1 & \mathbf{A}_2 & \mathbf{A}_3 \\ \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{B}_3 \end{vmatrix} , \qquad (2.3)$$

where $A = (A_1, A_2, A_3)$, $B = (B_1, B_2, B_3)$ and $E_1 \land E_2 = E_3$, $E_2 \land E_3 = -E_1$, $E_3 \land E_1 = -E_2$.

Lemma 2.4. Let A, B, $C \in D_1^3$. In this case, we have

i)
$$\langle \mathbf{A} \wedge \mathbf{B}, \mathbf{C} \rangle = -\det(\mathbf{A}, \mathbf{B}, \mathbf{C})$$

ii) $(\mathbf{A} \wedge \mathbf{B}) \wedge \mathbf{C} = -\langle \mathbf{A}, \mathbf{C} \rangle \mathbf{B} + \langle \mathbf{B}, \mathbf{C} \rangle \mathbf{A}$
iii) $\langle \mathbf{A} \wedge \mathbf{B}, \mathbf{A} \wedge \mathbf{B} \rangle = -\langle \mathbf{A}, \mathbf{A} \rangle \langle \mathbf{B}, \mathbf{B} \rangle + (\langle \mathbf{A}, \mathbf{B} \rangle)^2$
iv) $(\mathbf{A} \wedge \mathbf{B}) \wedge \mathbf{C} + (\mathbf{B} \wedge \mathbf{C}) \wedge \mathbf{A} + (\mathbf{C} \wedge \mathbf{A}) \wedge \mathbf{B} = 0.$

Proof. By using the definitions of the Lorentzian inner product and the Lorentzian vectoral product it is easily shown.

Definition 2.5. Let $A = a + \varepsilon a_0 \in D_1^3$.

i) The set

 $S_1^2 = \{A = a + \varepsilon a_0 \mid |A| = (1,0); a, a_0 \in R_1^3 \text{ and the vector } a \text{ is space-like} \}$ is called the *dual Lorentzian unit sphere* in D_1^3 .

ii) The set

 $H_0^2 = \left\{ A = a + \epsilon a_0 \mid |A| = (1,0); a, a_0 \in R_1^3 \text{ and the vector } a \text{ is time-like} \right\}$

is called the dual hyperbolic unit sphere in D_1^3 .

There are two component of the dual hyperbolic unit sphere H_0^2 . The components of H_0^2 through (0,0,1) and (0,0,-1) are called the *future dual* hyperbolic unit sphere and the past dual hyperbolic unit sphere and shown by H_0^2 and H_0^2 , respectively. In this case, we have

 $\overset{+}{H_0}^2 = \{ \mathbf{A} = \mathbf{a} + \varepsilon \mathbf{a}_0 \mid | \mathbf{A} | = (1,0); \mathbf{a}, \mathbf{a}_0 \in \mathbb{R}^3_1 \text{ and the vector } \mathbf{a} \text{ is future pointing time-like} \}$

and

 $\overline{H}_0^2 = \{ \mathbf{A} = \mathbf{a} + \varepsilon \mathbf{a}_0 \mid |\mathbf{A}| = (1,0) ; \mathbf{a}, \mathbf{a}_0 \in \mathbf{R}_1^3 \text{ and the vector } \mathbf{a} \text{ is past pointing time-like} \}.$

Theorem 2.6. There is one to one correspondence between directed space-like (resp., time-like) lines of R_1^3 and ordered pair of vectors (a, a₀) such that

$$\langle \mathbf{a}, \mathbf{a} \rangle = 1$$
 (resp., $\langle \mathbf{a}, \mathbf{a} \rangle = -1$) and $\langle \mathbf{a}, \mathbf{a}_{0} \rangle = 0$.

Proof i) In \mathbb{R}_1^3 , a directed space-like line can be given by $\mathbf{y} = \mathbf{x} + \lambda \mathbf{a}$, where \mathbf{x} and \mathbf{a} are position vector and the direction vector of line, respectively. The moment vector $\mathbf{a}_0 = \mathbf{x} \wedge \mathbf{a}$ is not depend on chosen of the point on line. For this reason, by the help of ordered pair of vectors $(\mathbf{a}, \mathbf{a}_0)$, a directed space-like line was determined as one unique and the following conditions are satisfied:

 $\langle \mathbf{a}, \mathbf{a} \rangle = 1$, $\langle \mathbf{a}, \mathbf{a}_{\mathbf{0}} \rangle = 0$.

In D_1^3 , let us define a dual space-like unit vector $\mathbf{A} = \mathbf{a} + \varepsilon \mathbf{a}_0$ with \mathbf{a} and \mathbf{a}_0 which are determines a directed space-like line, where ε is a special dual unit with $\varepsilon^2 = 0$. In the equation (2,1) if we take $\mathbf{B} = \mathbf{A}$, then we obtain

 $\langle \mathbf{A}, \mathbf{A} \rangle = \langle \mathbf{a}, \mathbf{a} \rangle + 2\varepsilon \langle \mathbf{a}, \mathbf{a}_{\bullet} \rangle = 1,$

where the dual space-like unit vector A represented the directed space-like line (a, a_0) .

The coordinates of ordered pair of vectors (a, a_0) are called the normed plücker coordinates of a directed space-like line A in R_1^3 .

ii) Let the directed line be time-like. In this case, the moment vector \mathbf{a}_0 of a is a space-like vector. For this reason, by the help of ordered pair of vectors $(\mathbf{a}, \mathbf{a}_0)$, the directed time-like line is determined as one unique. Similarly to i), we have the dual time-like vector $\mathbf{A} = \mathbf{a} + \varepsilon \mathbf{a}_0$. If we take $\mathbf{B} = \mathbf{A}$ in (2,1) then we obtain

 $\langle \mathbf{A}, \mathbf{A} \rangle = \langle \mathbf{a}, \mathbf{a} \rangle + \varepsilon \langle \mathbf{a}, \mathbf{a}_{\mathbf{0}} \rangle = -1$,

where the dual time-like unit vector A represents the directed time-like line

 (a, a_{θ}) . That is, our directed time-like line will correspond to a dual point of the dual hyperbolic sphere.

The coordinates of ordered pair of vectors (a, a_0) are also called the normed plücker coordinates of a directed time-like line A in R_1^3 .

3. ANGLE IN SPACE D_1^3

Case 1: Let A and B be dual space-like unit vectors. Let us consider the Lorentzian inner product of A and B which is given by (2.1). The dual space like unit vectors A and B determine two directed space-like lines d_1 and d_2 , since the moment vectors of a and b are a_0 and b_0 , respectively. The real part of inner product (2.1) is

 $\langle \mathbf{a}, \mathbf{b} \rangle = \cos \varphi.$ $0 \le \varphi \le \prod \varphi \in \mathbb{R}$ (3.1)

and the dual part is

 $\langle \mathbf{a}, \mathbf{b}_0 \rangle + \langle \mathbf{a}_0, \mathbf{b} \rangle = -\varphi_0 \sin \varphi.$ (3.2)

Consequently, we have

$$\langle \mathbf{A}, \mathbf{B} \rangle = \cos \varphi - \varepsilon \varphi_0 \sin \varphi = \cos(\varphi + \varepsilon \varphi_0) = \cos \Phi.$$
 (3.3)

Where the real part φ and the dual part φ_0 of Φ give the angle and the smallest distance between two directed space-like lines, respectively.

Definition 3.1. We shall call the dual number $\Phi = \varphi + \varepsilon \varphi_0$ the dual central angle between dual space-like unit vectors A and B.

Since endpoints of dual space-like unit vectors $\mathbf{OA} = \mathbf{A}$ and $\mathbf{OB} = \mathbf{B}$ indicate the dual points \mathbf{A} and \mathbf{B} of the dual Lorentzian unit sphere with the center \mathbf{O} , the angle $\Phi = \varphi + \varepsilon \varphi_0$ between dual space-like unit vectors \mathbf{A} and \mathbf{B} can be considered as arc length $\stackrel{\frown}{AB}$ of dual curve passing from the dual points \mathbf{A} and \mathbf{B} of \mathbf{S}_1^2 .

Case 2. Let A and B be two future pointing (resp., past-pointing)dual time-like unit vectors. In this case, the real part of the inner product (2.1) is

 $\langle \mathbf{a}, \mathbf{b} \rangle = -\cosh\theta$, $\theta \in \mathbf{R}$ (3.4)

and the dual part of (2.1) is

$$\langle \mathbf{a}, \mathbf{b}_{\mathbf{e}} \rangle + \mathbf{a}_{\mathbf{e}}, \mathbf{b} \rangle = -\theta_{\mathbf{o}} \sinh \theta$$
 (3.5).

Consequently, the Lorentzian inner product of A and B isgiven by

 $\langle \mathbf{A}, \mathbf{B} \rangle = -\cosh\theta - \varepsilon\theta_0 \sinh\theta = -\cosh(\theta + \varepsilon\theta_0) = -\cosh\Theta.$ (3.6)

Hence we give the following definition:

Definition 3.2. We shall call the dual number $\Theta = \theta + \varepsilon \theta_0$ the *dual* hyperbolic angle between future pointing (resp., past-pointing) time-like unit vectors A and B.

The dual hyperbolic angle $\Theta = \theta + \varepsilon \theta_0$ consists of the hyperbolic angle θ between directed time-like lines which are represented in R_1^3 of dual time-like unit vectors A and B and the smallest distance θ_0 between two lines.

Since the endpoints of future-pointing (resp., past-pointing) time-like unit vectors $\mathbf{OA} = \mathbf{A}$ and $\mathbf{OB} = \mathbf{B}$ indicate the dual points A and B of $\overset{+2}{\mathrm{H}_0}$ (resp., $\overset{-2}{\mathrm{H}_0}$) with the center O, the dual hyperbolic angle $\Theta = \theta + \varepsilon \theta_0$ between the vectors A and B can be considered as arc length AB of dual space-like curve passing from the dual points A and B of $\overset{+2}{\mathrm{H}_0}$ (resp., $\overset{-2}{\mathrm{H}_0}$). From the formula (3.2), the cases with respect to each other of future pointing time-like vectors A and B can be given as follows:

i) $\langle A, B \rangle \neq$ pure dual. That is, A and B can not be orthogonal.

ii) $\langle A, B \rangle$ = pure real iff $\theta_0 = 0$. The lines A and B intersect and the expression

 $\langle a, b_0 \rangle + \langle a_0, b \rangle = 0$

is the condition of intersection of two lines.

iii) If $\langle A,B \rangle = (-1,0)$, the lines A and B are coincide and same directed.

REFERENCES

Birman, G.S.; Nomizu, K. "Trigonometry in Lorentzian Geometry".Math.Mont. 91 (9), 543-549, (1984).

 [2] Akutagava, K.; Nishikawa, S. "The Gauss map and space-like surfaces with prescribed mean curvature in Minkowski 3-space", Tohoku Math.
 J. 42, 67-82 (1990).