THE STUDY MAPPING FOR DIRECTED SPACE-LIKE AND TIME-LIKE LINES IN MINKOWSKI 3-SRACE R_{1}^{3}

H. Hüseyin UĞURLU*

Ali ÇALIŞKAN**

* Celal Bayar University, Department of Mathematics 45040 Manisa, Turkey
** Aegean University, Department of Mathematics 35100 Izmir, Turkey

ABSTRACT

In this study, the E. Study mapping was defined for the space-like and time-like lines in the Minkowski 3-space \mathbf{R}_{1}^{3}. Hence, there is one to one correspondence between directed space-like (resp.,time-like) lines of \mathbf{R}_{1}^{3} and ordered pair of vectors $\left(\mathbf{a}, \mathbf{a}_{0}\right)$ such that $\langle\mathbf{a}, \mathbf{a}\rangle=1$ (resp., $\langle\mathbf{a}, \mathbf{a}\rangle=-1$) and $\left\langle a, a_{v}\right\rangle=0$.

1. INTRODUCTION

Let \mathbf{R}_{1}^{3} be the vector space \mathbf{R}^{3} provided with Lorentzian inner product of signature $(+,+,-)$. Let $\mathbf{a}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right) \in \mathbf{R}_{1}^{3}$. In this case, a vector a is said to be space-like if $\langle\mathbf{a}, \mathbf{a}\rangle>0$, time-like if $\langle\mathbf{a}, \mathbf{a}\rangle<0$, and light-like (null) if $\langle\mathbf{a}, \mathbf{a}\rangle=0$. The set of all vectors such that $\langle\mathbf{a}, \mathbf{a}\rangle=0$ is called the lightlike (null) cone. The norm of vector \mathbf{a} is defined to $\mathbf{b e}|\mathbf{a}|=\sqrt{\mid\langle\mathbf{a}, \mathbf{a}\rangle}$. We also consider the time orientation as follows: A time-like vector $\mathbf{a}=\left(a_{1}, a_{2}\right.$ a_{3}) is future pointing (resp., past- pointing) if $\langle\mathbf{a}, \mathbf{e}\rangle\langle 0$ (resp., $\langle\mathbf{a}, \mathbf{e}\rangle\rangle 0$) , with $\mathbf{e}=(0,0,1)$ [1]. So a time-like vector $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ is future pointing (resp., past- pointing) iff $\sqrt{a_{1}^{2}+a_{2}^{2}}<a_{3}$ (resp. , $\sqrt{a_{1}^{2}+a_{2}^{2}}>a_{3}$). The Lorentzian and hyperbolic sphere of radius 1 in \mathbf{R}_{1}^{3} are defined by

$$
\mathrm{S}_{1}^{2}=\left\{\mathrm{a}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right) \in \mathrm{R}_{1}^{3} \mid\langle\mathbf{a}, \mathrm{a}\rangle=1\right\}
$$

and

$$
H_{0}^{2}=\left\{a=\left(a_{1}, a_{2}, a_{3}\right) \in R_{1}^{3} \mid\langle a, a\rangle=-1\right\},
$$

respectively.

Lemma1.1. Let \mathfrak{a} and b be two future pointing (resp., past-pointing) time-like unit vectors in \mathbf{R}_{1}^{3}. Then

$$
\begin{equation*}
\langle\mathbf{a}, \mathbf{b}\rangle=-\cosh \theta \tag{1.1}
\end{equation*}
$$

[1].
The vectoral product of two vector $a, b \in R_{1}^{3}$ is defined by

$$
a \wedge b=\left|\begin{array}{ccc}
e_{1} & e_{2} & -e_{3} \tag{1.2}\\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

where $\mathbf{e}_{1} \wedge \mathbf{e}_{2}=\mathbf{e}_{3}, e_{2} \wedge \mathbf{e}_{3}=-\mathbf{e}_{1}, \mathbf{e}_{3} \wedge \mathbf{e}_{1}=-\mathbf{e}_{2}$ [2]. For this, following equalities are satisfied:

$$
\begin{align*}
& \langle\mathbf{a} \wedge \mathbf{b}, \mathbf{c}\rangle=-\operatorname{det}(\mathbf{a}, \mathbf{b}, \mathbf{c}), \tag{1.3}\\
& (a \wedge b) \wedge c=-\langle a, c\rangle b+\langle b, c\rangle a \tag{1.4}\\
& \langle a \wedge b, a \wedge b\rangle=-\langle a, a\rangle\langle b, b\rangle+(\langle a, b\rangle)^{2} . \tag{1.5}
\end{align*}
$$

2. DUAL LORENTZIAN SPACE D_{1}^{3}

Let $\mathbf{A}=\mathbf{a}+\varepsilon \mathbf{a}_{\mathbf{e}}, \mathbf{B}=\mathbf{b}+\varepsilon \mathbf{b}_{0} \in \mathbf{D}^{3}$. The Lorentzian inner product of \mathbf{A} and \mathbf{B} is defined by

$$
\begin{equation*}
\langle\mathbf{A}, \mathbb{B}\rangle=\langle\mathbf{a}, \mathbf{b}\rangle+\varepsilon\left(\left\langle\mathbf{a}, \mathbf{b}_{\boldsymbol{\bullet}}\right\rangle+\left\langle\mathbf{a}_{\bullet}, \mathbf{b}\right\rangle\right) . \tag{2.1}
\end{equation*}
$$

We call the dual space D^{3} together with this Lorentzian inner product as dual Lorentzian space and show by D_{1}^{3}.

Definition 2.1. Let $\mathbf{A}=a+\varepsilon a_{0} \in D_{1}^{3}$. The dual vector \mathbf{A} is said to be space-like if the vector a is space-like, time-like if the vector a ime-like, and light-like (dual null) if the vector a is light-like. We also defined the time orientation as follows, A time-like vector $\mathbf{A}=\mathbf{a}+\varepsilon \mathbf{a}_{0}$ is future-pointing (resp., past-pointing) if the vector a is future-pointing (resp., past- pointing)

The set of all light-like vectors in D_{1}^{3} is called the dual light-like cone and shown by Λ.

Definition 2.2. The norm of dual vector $\mathbf{A}=\mathbf{a}+\varepsilon_{a}$ is a dual number giving by

$$
\begin{equation*}
|\mathbf{A}|=\sqrt{\langle\mathbf{A}, \mathbf{A}\rangle}=\left(|\mathbf{a}|, \varepsilon \frac{\left\langle\mathbf{a}, \mathbf{a}_{0}\right.}{|\mathbf{a}|^{2}}\right), \tag{2.2}
\end{equation*}
$$

where $|a| \neq 0$.
Definition 2.3. Let $\mathbf{A}, \mathbb{B} \in \mathbb{D}_{1}^{3}$. We define the Lorentzian vectoral product of \mathbf{A} and \mathbf{B} by
$\mathbf{A} \wedge \mathbf{B}=\left|\begin{array}{ccc}\mathbf{E}_{1} & \mathbf{E}_{2} & -\mathbf{E}_{3} \\ \mathrm{~A}_{1} & \mathrm{~A}_{2} & \mathrm{~A}_{3} \\ \mathrm{~B}_{1} & \mathbf{B}_{2} & B_{3}\end{array}\right| \quad$,
where $A=\left(A_{1}, A_{2}, A_{3}\right), B=\left(B_{1}, B_{2}, B_{3}\right)$ and $\mathbf{E}_{1} \wedge \mathbf{E}_{2}=\mathbf{E}_{3}, \mathbf{E}_{2} \wedge \mathbf{E}_{3}=-\mathbf{E}_{1}, \mathbf{E}_{3} \wedge \mathbf{E}_{1}=-\mathbf{E}_{2}$.
Lemma 2.4. Let $\mathbf{A}, \boldsymbol{B}, \mathbf{C} \in \mathrm{D}_{1}^{3}$. In this case, we have
i) $\langle\mathbf{A} \wedge \mathbf{B}, \mathbf{C}\rangle=-\operatorname{det}(\mathbf{A}, \mathbf{B}, \mathbf{C})$
ii) $(\mathbf{A} \wedge \mathbf{B}) \wedge \mathbf{C}=-\langle\mathbf{A}, \mathbf{C}\rangle \mathbf{B}+\langle\mathbf{B}, \mathbf{C}\rangle \mathbf{A}$
iii) $\langle\mathbf{A} \wedge \mathbf{B}, \mathbf{A} \wedge \mathbf{B}\rangle=-\langle\mathbf{A}, \mathbf{A}\rangle\langle\mathbf{B}, \mathbf{B}\rangle+(\langle\mathbf{A}, \mathbf{B}\rangle)^{2}$
iv) $(\mathbf{A} \wedge \mathbf{B}) \wedge \mathbf{C}+(\mathbf{B} \wedge \mathbf{C}) \wedge \mathbf{A}+(\mathbf{C} \wedge \mathbf{A}) \wedge \mathbf{B}=0$.

Proof. By using the definitions of the Lorentzian inner product and the Lorentzian vectoral product it is easily shown.

Definition 2.5. Let $\mathbf{A}=a+\varepsilon a_{\theta} \in D_{1}^{3}$.
i) The set
$\mathbf{S}_{1}^{2}=\left\{\mathbf{A}=\mathbf{a}+\varepsilon_{\mathbf{a}}| | \mathbf{A} \mid=(1,0) ; \mathbf{a}, \mathbf{a}, \in \mathbf{R}_{1}^{3}\right.$ and the vector \mathbf{a} is space-like $\}$ is called the dual Lorentzian unit sphere in D_{1}^{3}.
ii) The set
$H_{0}^{2}=\left\{\mathbf{A}=\mathbf{a}+\varepsilon_{a}| | \mathbf{A} \mid=(1,0) ; \mathfrak{a}, a_{0}, \in \mathbf{R}_{1}^{3}\right.$ and the vector a is time-like $\}$
is called the dual hyperbolic unit sphere in D_{1}^{3}.
There are two component of the dual hyperbolic unit sphere H_{0}^{2}. The components of H_{0}^{2} through $(0,0,1)$ and $(0,0,-1)$ are called the future dual hyperbolic unit sphere and the past dual hyperbolic unit sphere and shown by $\stackrel{+}{\mathbf{H}}_{0}^{2}$ and $\overline{\mathrm{H}}_{0}^{2}$, respectively. In this case, we have

$$
\stackrel{+}{\mathbf{H}}_{0}^{2}=\left\{\mathbf{A}=\mathbf{a}+\varepsilon \mathbf{a}_{0}| | \mathbf{A} \mid=(1,0) ; \mathbf{a}, \mathbf{a}_{0} \in \mathrm{R}_{1}^{3} \text { and the vector } \mathbf{a}\right. \text { is future }
$$ pointing time-like $\}$

and

$$
\overline{\mathbf{H}}_{0}^{2}=\left\{\mathbf{A}=\mathbf{a}+\varepsilon \mathbf{a}_{0}| | \mathbf{A} \mid=(1,0) ; \mathbf{a}, \mathbf{a}_{\bullet} \in \mathbf{R}_{1}^{3} \text { and the vector } \mathbf{a}\right. \text { is past }
$$ pointing time-like $\}$.

Theorem 2.6. There is one to one correspondence between directed space-like (resp., time-like) lines of R_{1}^{3} and ordered pair of vectors (a, a_{0}) such that

$$
\langle\mathbf{a}, \mathbf{a}\rangle=1(\text { resp., }\langle\mathbf{a}, \mathbf{a}\rangle=-1) \text { and }\langle\mathbf{a}, \mathbf{a}\rangle\rangle=0 .
$$

Proof i) In \mathbf{R}_{1}^{3}, a directed space-like line can be given by $\mathbf{y}=\mathbf{x}+\lambda \mathbf{a}$, where x and a are position vector and the direction vector of line, respectively . The moment vector $a_{9}=\mathbf{x} \wedge \mathbf{a}$ is not depend on chosen of the point on line. For this reason, by the help of ordered pair of vectors (a, a \mathbf{a}_{0}, a directed space-like line was determined as one unique and the following conditions are satisfied:

$$
\langle\mathbf{a}, \mathbf{a}\rangle=1, \quad\left\langle\mathbf{a}, \mathbf{a}_{\mathbf{0}}\right\rangle=0 .
$$

In D_{1}^{3}, let us define a dual space-like unit vector $\mathbf{A}=\mathbf{a}+\varepsilon a_{0}$ with a and as which are determines a directed space-like line, where ε is a special dual unit with $\varepsilon^{2}=0$. In the equation $(2,1)$ if we take $\mathbf{B}=\mathbf{A}$, then we obtain

$$
\langle\mathbf{A}, \mathbf{A}\rangle=\langle\mathbf{a}, \mathbf{a}\rangle+2 \varepsilon\left\langle\mathbf{a}, \mathbf{a}_{\mathbf{0}}\right\rangle=1,
$$

where the dual space-like unit vector \mathbf{A} represented the directed space-like line (a, a_{8}).

The coordinates of ordered pair of vectors (a, a_{0}) are called the normed plücker coordinates of a directed space-like line \mathbf{A} in \mathbf{R}_{1}^{3}.
ii) Let the directed line be time-like. In this case, the moment vector a_{s} of a is a space-like vector . For this reason, by the help of ordered pair of vectors (a , as), the directed time-like line is determined as one unique. Similarly to i), we have the dual time-like vector $\mathbf{A}=\boldsymbol{a}+\varepsilon \boldsymbol{a}_{\mathbf{a}}$. If we take $\mathbf{B}=\mathbf{A}$ in $(2,1)$ then we obtain

$$
\langle\mathbb{A}, \mathbf{A}\rangle=\langle\mathbf{a}, \mathbf{a}\rangle+\varepsilon\left\langle\mathbf{a}, \mathbf{a}_{\bullet}\right\rangle=-1,
$$

where the dual time-like unit vector \mathbf{A} represents the directed time-like line (a , a_{0}). That is, our directed time-like line will correspond to a dual point of the dual hyperbolic sphere.

The coordinates of ordered pair of vectors ($\mathbf{a}, \mathbf{a}_{\mathbf{e}}$) are also called the normed plücker coordinates of a directed time-like line \mathbf{A} in \mathbf{R}_{1}^{3}.

3. ANGLE IN SPACE D_{1}^{3}

Case 1: Let \mathbf{A} and \mathbf{B} be dual space-like unit vectors. Let us consider the Lorentzian inner product of \mathbf{A} and \mathbf{B} which is given by (2.1). The dual space like unit vectors \mathbf{A} and \mathbf{B} determine two directed space-like lines d_{1} and d_{2}, since the moment vectors of a and b are a_{0} and b_{0}, respectively. The real part of inner product (2.1) is

$$
\langle\mathbf{a}, \mathbf{b}\rangle=\cos \varphi . \quad 0 \leq \varphi \leq \Pi \quad \varphi \in \mathbf{R} \text { (3.1) }
$$

and the dual part is

$$
\begin{equation*}
\left\langle\mathbf{a}, \mathbf{b}_{0}\right\rangle+\left\langle\mathbf{a}_{0}, \mathbf{b}\right\rangle=-\varphi_{0} \sin \varphi . \tag{3.2}
\end{equation*}
$$

Consequently, we have

$$
\begin{equation*}
\langle\mathbf{A}, \mathbf{B}\rangle=\cos \varphi-\varepsilon \varphi_{0} \sin \varphi=\cos \left(\varphi+\varepsilon \varphi_{0}\right)=\cos \Phi . \tag{3.3}
\end{equation*}
$$

Where the real part φ and the dual part φ_{0} of Φ give the angle and the smallest distance between two directed space-like lines, respectively.

Definition 3.1. We shall call the dual number $\Phi=\varphi+\varepsilon \varphi_{0}$ the dual central angle between dual space-like unit vectors \mathbf{A} and \mathbf{B}.

Since endpoints of dual space-like unit vectors $\mathbf{O A}=\mathbf{A}$ and $\mathbf{O B}=\mathbf{B}$ indicate the dual points \mathbf{A} and \mathbf{B} of the dual Lorentzian unit sphere with the center \mathbf{O}, the angle $\Phi=\varphi+\varepsilon \varphi_{0}$ between dual space-like unit vectors \mathbf{A} and \mathbf{B} can be considered as arc length AB of dual curve passing from the dual points A and B of S_{1}^{2}.

Case 2. Let \mathbf{A} and \mathbf{B} be two future pointing (resp., past-pointing)dual time-like unit vectors. In this case, the real part of the inner product (2.1) is

$$
\begin{equation*}
\langle\mathrm{a}, \mathrm{~b}\rangle=-\cosh \theta \quad, \quad \theta \in \mathbf{R} \tag{3.4}
\end{equation*}
$$

and the dual part of (2.1) is

$$
\begin{equation*}
\left.\left\langle a, b_{0}\right\rangle+a_{8}, b\right\rangle=-\theta_{0} \sinh \theta . \tag{3.5}
\end{equation*}
$$

Consequently, the Lorentzian inner product of \mathbf{A} and \mathbf{B} isgiven by

$$
\begin{equation*}
\langle\mathbf{A}, B\rangle=-\cosh \theta-\varepsilon \theta_{0} \sinh \theta .=-\cosh \left(\theta+\varepsilon \theta_{0}\right)=-\cosh \Theta \text {. } \tag{3.6}
\end{equation*}
$$

Hence we give the following definition:
Definition 3.2. We shall call the dual number $\Theta=\theta+\varepsilon \theta_{0}$ the dual hyperbolic angle between future pointing (resp., past-pointing) time-like unit vectors A and \mathbf{B}.

The dual hyperbolic angle $\Theta=\theta+\varepsilon \theta_{0}$ consists of the hyperbolic angle θ between directed time-like lines which are represented in R_{1}^{3} of dual time-like unit vectors \mathbf{A} and \mathbf{B} and the smallest distance θ_{0} between two lines.

Since the endpoints of future-pointing (resp., past-pointing) time-like unit vectors $\mathbf{O A}=\mathbf{A}$ and $\mathbf{O B}=\mathbf{B}$ indicate the dual points \mathbf{A} and \mathbf{B} of \dot{H}_{0}^{2} (resp., \dot{H}_{0}^{2}) with the center O, the dual hyperbolic angle $\Theta=\theta+\varepsilon \theta_{0}$ between the vectors \mathbf{A} and \mathbf{B} can be considered as arc length $A B$ of dual space-like curve passing from the dual points A and B of $\stackrel{+}{H}_{0}^{2}$ (resp., $\overline{\mathrm{H}}_{0}{ }^{2}$).

From the formula (3.2), the cases with respect to each other of future pointing time-like vectors A and R can be given as follows:
i) $\langle\mathbf{A}, \boldsymbol{B}\rangle \neq$ pure dual. That is, \mathbf{A} and \mathbf{B} can not be orthogonal.
ii) $\langle\mathbf{A}, \mathbf{B}\rangle=$ pure real iff $\theta_{0}=0$. The lines \mathbf{A} and \mathbf{B} intersect and the expression
$\left\langle\mathrm{a}, \mathrm{b}_{\boldsymbol{\bullet}}\right\rangle+\left\langle\mathrm{a}_{\boldsymbol{\theta}}, \mathrm{b}\right\rangle=0$
is the condition of intersection of two lines.
iii) If $\langle\mathbf{A}, \mathbf{B}\rangle=(-1,0)$, the lines \mathbf{A} and \mathbf{B} are coincide and same directed.

REFERENCES

[1] Birman , G.S.; Nomizu , K. " Trigonometry in Lorentzian Geometry ".Ann. Math.Mont. 91 (9), 543-549, (1984).
[2] Akutagava, K. ; Nishikawa, S. " The Gauss map and space-like surfaces with prescribed mean curvature in Minkowski 3-space'", Tohoku Math. J. 42, 67-82 (1990).

