THE FRTNET ANO DARBOUX INSTANTANEOUS ROTATION VECTORS OF CURVES ON TIME-LIKE SURFACE

H. Hiuseyin UĞURLU Hüseyin KOCAYİĞiT

C.B.Ü. Fen-Edebiyat Fakültesi Matematik Bölümü 45040 MANiSA.

Abstract

In this paper, depending on the Darboux instantaneous rotation vector of a solid perpendicular trihedron in the Minkowski 3 -space $R_{1}^{3}=\left[R^{3},(+,+,-)\right]$ the Frenet instantaneous rotation vector was stated for a space-like curve (c) with the principal normal n being a time-like vector. The Darboux instantaneous rotation vector for the Darboux trihedron was found when the curve (c) is on a time-like surface. Some theorems and results giving the relations between two frames were stated and proved.

1. INTRODUCTION

In Euclidean Space \mathbf{R}^{3}, a solid perpendicular trihedrons' Darboux instantaneous rotation vector and Darboux and Frenet instantaneous rotation vectors of a curve on the surface are known. Let φ be the angle between principal normal n and surface normal N on a point P of the curve. For the radii of geodesic torsion T_{g}, normal curvature R_{n} and geodesic curvature R_{g}, some relations are given in [1].

Instead of space R^{3}, Let us consider the Minkowski 3 -space R_{1}^{3} provided with Lorentzian inner product

$$
\begin{equation*}
\langle a, b\rangle=a_{1} b_{1}+a_{2} b_{2}-a_{3} b_{3} \tag{1.1}
\end{equation*}
$$

with $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right), \boldsymbol{b}=\left(b_{1}, b_{2}, b_{3}\right) \in R^{3}$. In this condition the following definitions can be given.

Definition1.1 Let $a=\left(a_{1}, a_{2}, a_{3}\right) \in R_{1}^{3}$ If;
i) $\langle\mathrm{a}, \mathrm{a}\rangle>0$ then a is space-like vector,
ii) $\langle\mathbf{a}, \mathbf{a}\rangle<0$ then a is time-like vector,
iii) $\langle a, a\rangle=0$ then a is light-like(null) vector.

If $\sqrt{a_{1}^{2}+a_{2}^{2}}<\mathrm{a}_{3}\left(\sqrt{a_{1}^{2}+a_{2}^{2}}>\mathrm{a}_{3}\right)$ then a is future pointing (past pointing) vector [2].
Definition1.2 Let (c) be a curve in space \mathbf{R}_{1}^{3}. $c^{\prime}(t)$ is the tangent vector for
$\forall t \in I \subset R$ then; if
i) $\left.\left\langle c^{\prime}(t), c^{\prime}(t)\right\rangle\right\rangle 0$ then (c) is space-like curve,
ii) $\left\langle c^{\prime}(t), c^{\prime}(t)\right\rangle<0$ then (c) is time -like curve,
iii) $\left\langle c^{\prime}(t), c^{\prime}(t)\right\rangle=0$ then (c) is light-like(null) curve,

Definition1.3 Let $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ be vectors in space R_{1}^{3}. The vectoral product of a and b is given by

$$
\begin{equation*}
a \wedge b=\left(a_{3} b_{2}-a_{2} b_{3}, a_{1} b_{3}-a_{3} b_{1}, a_{1} b_{2}-a_{2} b_{1}\right) \tag{1.2}
\end{equation*}
$$

[4].
Definition1.4 Let $y=y(u, v)$ be a surface in space \mathbb{R}_{1}^{3}. If $\forall p \in y(u, v)$ and $\left.\langle\rangle\right|_{\mathrm{y}$,$} is a Lorentzian metric then \mathrm{y}(\mathrm{u}, \mathrm{v})$ is time-like surface [5].

Defimition1.5 Let $\mathbf{a}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)$ and $\mathrm{b}=\left(\mathrm{b}_{1}, \mathrm{~b}_{2}\right) \in R_{1}^{2}$ be future-pointing (past-pointing) time-like vectors. The number $\theta \in \mathbf{R}$ in equality

$$
\left[\begin{array}{cc}
\cosh \theta & \sinh \theta \tag{1.3}\\
\sinh \theta & \cosh \theta
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
b_{1}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

in this equality $\theta \in \mathbb{R}$ number is an hyperbolic angle from \mathbf{a} to \mathbf{b} and θ is shown by θ $=(\mathbf{a}, \mathbf{b})[2]$.

Lemma 1.6 Let a and b be future pointing time-like unit vectors. If θ is an hyperbolic angle from \mathbf{a} and \mathbf{b}, then

$$
\begin{equation*}
\cosh \theta=-\langle a, b\rangle \tag{1.4}
\end{equation*}
$$

Let $\left[\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right]$ be a solid perpendicular tribedron in space \mathbf{R}_{1}^{3}. In this situation the following theorem can be given:

Theorem.1.7 If a solid perpendicular trihedrons' unit vectors $\mathbf{e}_{1}, \mathbf{e}_{2} \mathbf{e}_{3}$ are changing relative to t parameter, then

$$
\begin{equation*}
\frac{d \mathrm{e}_{\mathrm{i}}}{d t}=\mathrm{w} \wedge \mathrm{e}_{\mathrm{i}} \quad \mathrm{i}=1,2,3 \tag{1.5}
\end{equation*}
$$

where, \mathbf{e}_{1} and \mathbf{e}_{2} are space-like vectors, \mathbf{e}_{3} is a time-like vector and Darboux instantaneous rotation vector is

$$
\begin{equation*}
w=a e_{1}-b e_{2}-c e_{3} \tag{1.6}
\end{equation*}
$$

[6].

2. FRENET TRIHEDRON FOR A SPACE-LIKE SPACE CURVE WITH TIME-LIKE PRINCIPAL NORMAL

Let us consider $c=c(s)$ space-like curve. For any parameter s on all points on this curve, we can construct Frenet trihedron [t, $\mathbf{n}, \mathbf{b}]$, here, \mathbf{t}, \mathbf{n} and \mathbf{b} tangent ,principal normal and binormal unit vectors, respectively. In this trihedron, \mathbf{n} is timelike unit vector; \mathbf{t} and \mathbf{b} are space-like unit vectors. For that,

$$
\begin{align*}
& \langle\mathbf{t}, \mathbf{t}\rangle=\langle\mathbf{b}, \mathbf{b}\rangle=1, \quad\langle\mathbf{n}, \mathbf{n}\rangle=-\mathbf{1} \tag{2.1}\\
& \langle\mathbf{t}, \mathbf{n}\rangle=\langle\mathbf{b}, \mathbf{t}\rangle=\langle\mathbf{n}, \mathbf{n}\rangle=0 \tag{2.2}
\end{align*}
$$

can be written. For Frenet trihedron's vectors, the vectoral product is given by

$$
\begin{equation*}
\mathbf{t} \wedge \mathbf{n}=-\mathbf{b}, \mathbf{n} \wedge \mathbf{b}=-\mathbf{t}, \quad \mathbf{b} \wedge \mathbf{t}=\mathbf{n} \tag{2.3}
\end{equation*}
$$

It can be written

$$
\begin{align*}
& \frac{d \mathbf{t}}{d s}=a_{11} t+a_{12} \mathbf{n}+a_{13} b \\
& \frac{d \mathbf{n}}{d s}=a_{21} t+a_{22} n+a_{23} b \tag{2.4}\\
& \frac{d b}{d s}=a_{31} t+a_{32} n+a_{33} b
\end{align*}
$$

for a parameter's specific value $s=s_{0}$ with $\mathbf{t}=\mathbf{t}(\mathbf{s}), \mathbf{n}=\mathbf{n}(\mathbf{s})$, and $\mathbf{b}=\mathbf{b}(\mathrm{s})$.
If we take derivatives of eqs. (2.1) and (2.2) with respect to arc s,then we have

$$
\begin{align*}
& \left\langle\mathbf{t}, \frac{\mathrm{dt}}{\mathrm{ds}}\right\rangle=\left\langle\mathbf{b}, \frac{\mathrm{db}}{\mathrm{ds}}\right\rangle=\left\langle\mathbf{n}, \frac{\mathrm{d} \mathbf{n}}{\mathrm{ds}}\right\rangle=0 \tag{2.5}\\
& \left\langle\frac{\mathrm{dt}}{\mathrm{ds}}, \mathbf{n}\right\rangle+\left\langle\mathbf{t}, \frac{\mathrm{d} \mathbf{n}}{\mathrm{ds}}\right\rangle=\left\langle\frac{\mathrm{d} \mathbf{t}}{\mathrm{ds}}, \mathbf{b}\right\rangle+\left\langle\mathbf{t}, \frac{\mathrm{d} \mathbf{b}}{\mathrm{ds}}\right\rangle=\left\langle\frac{\mathrm{d} \mathbf{n}}{\mathrm{ds}}, \mathbf{b}\right\rangle+\left\langle\mathbf{n}, \frac{\mathrm{d} \mathbf{b}}{\mathrm{ds}}\right\rangle=0
\end{align*}
$$

and

$$
a_{11}=a_{22}=a_{33}=0 .
$$

Assuming that

$$
a_{23}=a_{32}=a, a_{21}=a_{12}=c \text { and } a_{13}=-a_{31}=b
$$

we obtain the following formulas for derivatives :

$$
\begin{align*}
& \frac{d \mathrm{t}}{\mathrm{ds}}=\mathrm{c} \cdot \mathrm{n}+\mathrm{b} \cdot \mathrm{~b} \\
& \frac{\mathrm{dn}}{\mathrm{ds}}=\mathrm{c} \cdot \mathrm{t}+\mathrm{a} \cdot \mathrm{~b} \tag{2.6}\\
& \frac{\mathrm{db}}{\mathrm{ds}}=-\mathrm{b} \cdot \mathbf{t}+\mathrm{a} \cdot \mathrm{n}
\end{align*}
$$

On a space-like curve $c=c(s)$ given a point P, if the radius of curvature is R and radius of torsion is Then Frenet formulae are obtained as following [7].

$$
\begin{align*}
& \frac{d \mathbf{t}}{d s}=\frac{1}{\mathbf{R}} \cdot \mathbf{n} \\
& \frac{\mathrm{~d} \mathbf{n}}{\mathrm{ds}}=\frac{1}{\mathbf{R}} \cdot \mathbf{t}+\frac{1}{\mathrm{~T}} \cdot \mathbf{b} \tag{2.7}\\
& \frac{\mathrm{db}}{\mathrm{ds}}=\frac{1}{\mathrm{~T}} \cdot \mathbf{n}
\end{align*}
$$

If (2.6) and (2.7) are compared, then we obtain
$\mathrm{c}=1 / \mathrm{R}, \mathrm{b}=0, \mathrm{a}=1 / \mathrm{T}$. For that, for any perpendicular trihedron, the Darboux vector is

$$
\mathbf{w}=\mathbf{a} \cdot \mathbf{e}_{1}-\mathrm{b} \cdot \mathbf{e}_{2}-\mathbf{c} \cdot \mathbf{e}_{3}
$$

and for Frenet trihedron we find

$$
\begin{equation*}
\mathrm{f}=-\frac{\mathbf{t}}{\mathrm{T}}+\frac{\mathbf{b}}{\mathrm{R}} \tag{2.8}
\end{equation*}
$$

In this situation, if we apply the formula (1.5) obtained for a general perpendicular trihedron to Frenet trihedron, we can write

$$
\begin{align*}
& \frac{d \mathbf{t}}{d s}=\mathbf{f} \wedge \mathbf{t} \\
& \frac{\mathrm{d} \mathbf{n}}{\mathrm{ds}}=\mathbf{f} \wedge \mathbf{n} \tag{2.9}\\
& \frac{\mathrm{db}}{\mathrm{ds}}=\mathbf{f} \wedge \mathbf{b}
\end{align*}
$$

Then the matrix form of (2.7) is

$$
\frac{d}{d s}\left[\begin{array}{l}
\mathbf{t} \\
\mathbf{n} \\
\mathbf{b}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 / \mathbf{R} & 0 \\
1 / \mathbf{R} & 0 & 1 / \mathrm{T} \\
0 & 1 / \mathrm{T} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{t} \\
\mathbf{n} \\
\mathbf{b}
\end{array}\right] .
$$

3. DARBOUX TRIHEDRON FOR A SPACE-LIKE CURVE WITH TIME-LIKE GEODESIC NORMAL

Let us consider time-like surface $y=y(u, v)$. For a space-like curve (c) on $y=$ $y(u, v)$ there exists the Frenet trihedron $[\mathbf{t}, \mathbf{n}, \mathbf{b}]$ at all points of (c).There is also a second trikedron because the curve (c) is on surface $y=y(u, v)$. Let us denote the
tangent space-like unit vector with \mathbf{t}, the normal space-like unit vector with \mathbf{N} at the point P. In this case, if we take the time-like vector g defined by
$\mathbf{t} \wedge \mathbf{g}=-\mathbf{N}$
$\mathrm{g} \wedge \mathbf{N}=-\mathbf{t} \quad \mathbf{N} \wedge \mathrm{t}=\mathrm{g}$
then we obtain a new trihedron $[\mathbf{t}, \mathbf{g}, \mathbf{N}]$
Let θ is the hyperbolic angle between the time-like vectors \mathbf{N} and \mathbf{g} (Figure 1).

Figure 1
Then we can write

$$
\begin{equation*}
\mathbf{N}=\mathbf{n} \sinh \theta+\mathbf{b} \cosh \theta \quad \mathbf{g}=\mathbf{n} \cosh \theta+\mathbf{b} \sinh \theta \tag{3.2}
\end{equation*}
$$

If we take the derivatives of t, g and \mathbf{N} according to the arc s of curve (c), we can find

$$
\begin{aligned}
& \frac{d \mathrm{t}}{d s}=\rho \mathbf{g} \cosh \theta-\rho \mathbf{N} \sinh \theta \\
& \frac{d \mathrm{~g}}{d s}=\rho \mathbf{t} \cosh \theta+\left(\tau+\frac{\mathrm{d} \theta}{\mathrm{ds}}\right) \mathbf{N} \\
& \frac{d \mathbf{N}}{d s}=\rho \mathbf{t} \sinh \theta+\left(\tau+\frac{\mathrm{d} \theta}{\mathrm{ds}}\right) \mathbf{g} \\
& \rho \cosh \theta=\frac{\cosh \theta}{\mathbf{R}}=\frac{1}{\mathbf{R}_{\mathrm{g}}}=\rho_{\mathrm{g}}
\end{aligned}
$$

$$
\begin{aligned}
& \rho \sinh \theta=\frac{\sinh \theta}{\mathrm{R}}=\frac{1}{\mathbf{R}_{\mathrm{n}}}=\rho_{\mathrm{u}} \\
& \tau+\frac{\mathrm{d} \theta}{\mathrm{ds}}=\frac{1}{\mathrm{~T}}+\frac{\mathrm{d} \theta}{\mathrm{ds}}=\frac{1}{\mathrm{~T}_{\mathrm{g}}}=\tau_{\mathrm{g}}
\end{aligned}
$$

then the Darboux derivative formulae are given by

$$
\begin{align*}
& \frac{d \mathbf{t}}{d s}=\rho_{\mathrm{g}} \mathbf{g}-\rho_{\mathrm{n}} \mathbf{N} \\
& \frac{d \mathrm{~g}}{d s}=\rho_{\mathrm{g}} \mathbf{t}+\tau_{\mathrm{g}} \mathbf{N}, \tag{3.3}\\
& \frac{d \mathbf{N}}{d s}=\rho_{\mathrm{n}} \mathbf{t}+\tau_{g} \mathbf{g}
\end{align*}
$$

where ρ_{g} is geodesic curvature, ρ_{n} is normal curvature and τ_{g} is geodesic torsion. The matrix form of (3.3) is

$$
\frac{d}{d s}\left[\begin{array}{l}
\mathrm{t} \\
\mathbf{g} \\
\mathbf{N}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \rho_{\mathrm{g}} & -\rho_{\mathrm{n}} \\
\rho_{\mathrm{g}} & 0 & \tau_{\mathrm{g}} \\
\rho_{\mathrm{n}} & \tau_{\mathrm{g}} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{t} \\
\mathbf{g} \\
\mathbf{N}
\end{array}\right] .
$$

We can write the Darboux instantaneous rotation vector of Darboux trihedron

$$
\begin{equation*}
w=-\frac{t}{T_{g}}-\frac{\mathbf{g}}{R_{\mathrm{n}}}+\frac{\mathbf{N}}{\mathbf{R}_{\mathrm{g}}} . \tag{3.4}
\end{equation*}
$$

Darboux derivative formulae (3.3) can be given with Darboux vector as below

$$
\begin{align*}
& \frac{d \mathbf{t}}{d s}=\mathbf{w} \wedge \mathbf{t} \\
& \frac{d \mathrm{~g}}{d s}=\mathbf{w} \wedge \mathbf{g} \tag{3.5}\\
& \frac{d \mathbb{N}}{d s}=\mathbf{w} \wedge \mathbf{N}
\end{align*}
$$

Theorem 3.1 If the radius of torsion of the space-like (c) drawn on time-like surface $y=y(u, v)$ is T and the hyperbolic angle between time-like unit vectors \mathbf{n} and g is θ, then we have

$$
\begin{equation*}
\frac{1}{T_{g}}=\frac{1}{\mathrm{~T}}+\frac{\mathrm{d} \theta}{\mathrm{ds}} \tag{3.6}
\end{equation*}
$$

Proof: If we take derivative of both sides of equation $\langle\mathbf{n}, \mathbf{g}\rangle=-\cosh \theta$ and use the (2.7) and (3.3) we obtain

$$
\begin{aligned}
& \frac{d \mathrm{n}}{d s} \mathrm{~g}+\mathrm{n} \frac{\mathrm{~d} \mathrm{~g}}{\mathrm{ds}}=-\sinh \theta \frac{\mathrm{d} \theta}{\mathrm{ds}} \\
& \left(\frac{1}{\mathrm{R}} \mathbf{t}+\frac{1}{\mathrm{~T}} \mathbf{b}\right) \mathbf{g}+\mathbf{n}\left(\frac{1}{\mathbf{R}_{\mathrm{g}}} \mathbf{t}+\frac{1}{T_{g}} \mathbf{N}\right)=-\sinh \theta \frac{\mathrm{d} \theta}{\mathrm{ds}} \\
& \frac{1}{\mathbf{R}}\langle\mathbf{t}, \mathbf{g}\rangle+\frac{1}{\mathrm{~T}}\langle\mathbf{b}, \mathbf{g}\rangle+\frac{1}{\mathbf{R}_{\mathrm{g}}}\langle\mathbf{n}, \mathbf{t}\rangle+\frac{1}{T_{g}}\langle\mathbf{n}, \mathbf{N}\rangle=-\sinh \theta \frac{\mathrm{d} \theta}{\mathrm{ds}} .
\end{aligned}
$$

Since $\langle\mathbf{n}, \mathbf{N}\rangle=-\sinh \theta$, we have

$$
\begin{aligned}
& \frac{1}{T} \sinh \theta-\frac{1}{\mathrm{~T}_{\mathrm{g}}} \sinh \theta=-\sinh \theta \frac{\mathrm{d} \theta}{\mathrm{ds}} \\
& \frac{1}{T_{g}}=\frac{1}{\mathrm{~T}}+\frac{\mathrm{d} \theta}{\mathrm{ds}}
\end{aligned}
$$

Theorem.3.2 If the radius of curvature of the space-like curve (c) on timelike surface $\mathbf{y}=\mathbf{y}(\mathrm{u}, \mathrm{v})$ is R and the hyperbolic angle between time-like unit vectors n and g is θ. then we have

$$
\begin{align*}
& \frac{1}{R_{n}}=\frac{\sinh \theta}{\mathbf{R}} \\
& \frac{1}{R_{g}}=\frac{\cosh \theta}{\mathbf{R}} \tag{3.7}
\end{align*}
$$

Proof: From (2.9) and (3.5),

$$
(\mathbf{f}-\mathbf{w}) \wedge \mathbf{t}=0 .
$$

If the values of vectors \mathbf{f} and \mathbf{w} are written,

$$
\frac{1}{R}(b \wedge t)+\frac{1}{\mathbf{R}_{\mathrm{n}}}(\mathrm{~g} \wedge \mathbf{t})-\frac{1}{\mathbf{R}_{\mathrm{g}}}(\mathbf{N} \wedge \mathbf{t})=0
$$

are obtained. Here, since

$$
\mathbf{b} \wedge \mathbf{t}=\mathbf{n}, \mathbf{g} \wedge \mathbf{t}=\mathbf{N}, \mathbf{N} \wedge \mathbf{t}=\mathbf{g}
$$

we find

$$
\frac{\mathbf{n}}{R}=-\frac{\mathbf{N}}{\mathbf{R}_{\mathbf{n}}}+\frac{\mathbf{g}}{\mathbf{R}_{\mathrm{g}}} .
$$

If the both sides of this equation are scalarly multiplied with the vectors \mathbf{N} and \mathbf{g} and considered the equalities

$$
\langle\mathbf{N}, \mathbf{g}\rangle=0,\langle\mathbf{n}, \mathbf{g}\rangle=-\cosh \theta,\langle\mathbf{g}, \mathbf{g}\rangle=-1,
$$

the proof is completed.

Corollary 3.3. There is a relation between Frenet and Darboux vectors as follows :

$$
\mathbf{w}=\mathbf{f}-\frac{\mathrm{d} \theta}{\mathrm{ds}} \mathbf{t}
$$

Proof: From equations (2.9) and (3.5) we can write

$$
\mathbf{w}=\mathbf{f}+\lambda \mathbf{t}, \quad \lambda \in \mathbf{R} .
$$

From (2.8) and (3.4)

$$
-\frac{1}{\mathrm{~T}_{\mathrm{g}}}=-\frac{1}{\mathrm{~T}}+\lambda
$$

is obtained. If we consider the formula (3.6) we have

$$
\lambda=-\frac{\mathrm{d} \theta}{\mathrm{ds}} .
$$

This completes the proof.
Corollary 3.4. Instantaneous rotation velocity vector w of the Darboux trihedron is consists of two components. One of them coincides with Frenet trihedrons' instantaneous rotation velocity vector. The other is a component in the opponent direction of tangent and equals to $\mathrm{d} \theta / \mathrm{ds}$. For this reason, when a point \mathbf{P} of space-like curve (c) on the time-like surface moves on this curve Darboux trihedron moves with radial velocity $\mathrm{d} \theta / \mathrm{ds}$ according to Frenet trihedron in the opposite direction to the tangent at any time.

Corollary 3.5 If the byperbolic angle between the principal normal of a spacelike curve on a time-like surface and the vector g at the same of point of the surface of g vector becomes always constant , then

$$
\frac{1}{T_{g}}=\frac{1}{\mathrm{~T}} \quad, \quad \mathbf{w}=\mathbf{f}
$$

Thus, the torsion of the curve at each point equals to the geodesic torsion of the surface at that point.

REFERENCES

[1] Akbulut, F. "Bir yüzey üzerindeki eğrilerin Darboux vektörleri", E.Ü. Fen Fakültesi Lzmir, (1983).
[2] Birman, G.S. ; Nomizu, K. "Trigonometry in Lorentzian Geometry ",

Ann. Math. Mont. 91(9), 543-549, (1984).
[3] O'Neill ,B. "Semi-Riemannian Geometry with aplications to relativity", Academic Press, London (1983).
[4] Akutagava, K. ; Nishikawa, S. "The Gauss map and space-like surfaces with prescribed mean curvature in Minkowski 3-space '", Tohoku Math. J. 42,6782 (1990).
[5] Beem, John K. ; Ehrlich, Paul E. "Global Lorentzian Geometry '", Marcel Dekker, Inc. New York, (1981).
[6] Uğurlu, H.Hüseyin. ; Çalışkan, Ali. "Time-like regle yüzey üzerindeki bir time-like eğrinin Frenet ve Darboux vektörleri '", I. Spil Fen Bilimleri Kongresi, Manisa, (1995).
[7] Woestijne, V.D.I. "Minimal surfaces of the 3-dimensional Minkowski space ', Proc. Congres Geometrie differentielle et applications, Avignon (30 May -3 Jime1988), World Scientific Publishing, Singapore, 344-369.

