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Abstract: In this work , we determine the transcendence measure of the

formal Laurent series "that”

o<

| ~ (=)
E=difr)= ) ° P

k=0

whose transcendence has been established by L.I.Wade. Using the methods
and lemmas in P.Bundschuh’s article, measure of the transcendence for the

above £ is determined as
— ..,,,d(l___l‘k —d=1)
Dl H) = H e,

On the other hand , it was proven that the transcendence series € is not a U

but is a .S or T-number according to the Mahler’s classification.
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INTRODUCTION

Let p a prime number and u > 1 an integer. Let F be a finite field with
q = p* elements. We denote the ring of the polynomials with one variable
over F' by F[z] and its quotient field by F(z) . If @ € F[z] is a non-zero
polynomial, denote its degree by da . If @ = 0 , then its degree is defined
as 30 := —oo. Let a and b (b # 0) two polinomials from F[z] and define a
discrete valuation of F'(z) as follows

& _ 8a-8b

Izl =g

Let K be the completion of F'(z) with respect to this valuation. Every element
w of K can be uniquely represented by

o0

w = chx_",cn e F.
n=k
If w = 0, then all ¢, are zero.If w # 0, then there exist an k& € Z for wich
ck # 0. If w# 0, then we have

lw] = g%

Therefore K is the field of all formal Laurent series. The classical theory of
transcendence over complex numbers has a similar version over K . Elements

of F(z] and F(z) correspond to integers and fractions of the classical theory,
respectively.

If w e K is one of the roots of a non-zero polynomial with coefficients in
F[z], then w € K is said to be algebraic over F'(z). Otherwise, w is called
transcendental over F(z) . The studies of transcendental numbers in K were
initiated first by Wade [1-4] . Also Geijsel [5-8] did similar studies. As it is the
case in the classical theory of transcendental numbers, it is possible to define

a measure of transcendence

The measure of transcendence is thoroughly studied in the classical theory.
For example, the transcendence measure of e has been widely investigated by
Mabhler [9] and Fel’dman [10] . Examples for the transcendence measure in the
field K have been given for the first time by Bundschuh [12].
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In this work, we determine a transcendence measure of some formal Laurent
series whose transcendence has ben established by L.I.Wade [2]. If r9" (where
r € RealNumbers)and Fy € F[z] is a fixed non-zero polynomial of degree
8(r?") = 0 and 8(Fi) = kq* then the series

R = 1)

is an element of K , and L.I.Wade showed its transcendence in [2] . (see
Theorem 3.1 and 3.2) Using the methods and lemmas in Bundschuh’s article
[12] , we determine a transcendence measure of ¢ . We take an arbitrary
non-zero polynomial

n

P(y) =) ay" (e € Flaliv =0,1,...,n) (2)

v=0

whose degree 9(P) is less than or equal to n. The height of P is denoted by
h(P) = mdgla,| = gt
For the transcendental element { of K |, we define the positive quantity
[n(H,§) = min|P()] .
where P # 0,0(P) < n,h(P)< H .

If T(n, H) is a function of the variables n, H of I',(H, £) which satisfies the
inequality

Tn(H,8) 2 T(n, H) ()

for all sufficiently large values of n and H , then T(n, H) is said to be a
transcendence measure of ¢.
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Theorem 1 :

We take an arbitrary , non-zero polynomial

P(y)=Za,,y”,(a,,EF[x];l/zO,l,...,n) 5 (4)

v=0

further let d(P) = d , h(P)=h and azmgj;g Oa, . We assume that

k
dq?logh > keloag (5)
we have -
|P()] 2 ke (=Y (6)
and a transcendence measure of € is
1—k
Tn, H) = B2 =10, (7)

As in the classical theory of transcendental number theory (see Schneider
[13], page 6), it is possible to define Mahler’s classification on K. Let £ € K
be transcendental, and define :

—lOg Fn(H,f)
#1l5 SUP log H
. 1
() = fimsup ~Ta(6) ®)
Hence I';,(¢) > n for every n € N and so I'(¢) > 1 . For everyn ,H € N,

TW(H,€) < H"q"maz(L, |€]") (9)

is satisfied (see Bundschuh [12],Lemma 3) .

On the other hand, let the least naturel number n satisfying I',,(¢) = oo be
denoted by p({). If there is no such n , then one may define u(¢) as co. In
this case, the transcendental number £ € R is called
S-Laurent series if 1 < T'(00) < 0o and p(¢) = oo,

T-Laurent series if I'(§) = co and p(oo

) = oo,
U-Laurent series if I'(€) = oo and p(oo0) < oo.
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Moreover, the U-class may be divided into subclasses.If p(£) = m(m > 0)
then ¢ is called a U,,-Laurent series. Leveque [11] was the first to show that for

all m, U,, is non-empty in the classical theory but the honour goes to Oryan
[14] if the ground field is K.

According to the above classification, the series defined in (1) can not be a
U-Laurent series. This fact may be proved by the help of the Theorem 1.

Theorem 2 : The ¢ Laurent series defined by (1) doesn’t belong to the
class U so that it belongs to the class S or to the class T'.

Preliminary
We will use the following lemmas in proof of the theorem.

Lemma 1: Let j

Py) =) ay" (10)

v=0

(a, € Flz], ag #0 (d > 1) ,a = mag,da, .

Then there are some elements Ag, Ay, ..., Ag € F[z] ,not all zero satisfying.
0A; < ad(qg®—d+1)for 0 <j<dand

¢ ~d

d _ d ‘
ZAjy"’ =p(y) D, A Y by = Py)Qy) (11)

j:O’qud k=0
where by := 1 and b; ,for k£ > 1 is the sum of product of exactly k terms from

ag, a1, ..., a4, multiplied by +

Proof: See [12], lemma 4, page 416

Lemma 2: Let £ € K and |¢| = ¢*. Under the hypotheses of Lemma 1 we
have
|Q(€)| < qad(qd—!H-1)+(qd—d)maz(a,,)\). (12)

Proof : See [12], lemma 5, page 417

104



PROOF OF THE THEOREMS
Proof of the Theorem 1 :

Consider the polynomial defined by (4). With d(p) =d, ag #0 . Let d > 1
. By Lemma 1 there are some elements the Ag, A1, ..., As € F[z] not all zero
,such that

¢’ —d

ZAM’ SR Y A by = P)G) (13)

3—0 g7 >d k=0
0(A;) < ad(qg* —d+1)<ad¢® (0<;<d) . (14)
In (13) we put € instead of y :

P)Q(E) = ZAf"’ ZAZ )t poe (15)

=0 k=0

k
+3 B

Furthermore let Dy = 7 ("1)6’;7:-
k=it =
Seperate in (12) sum as Ty + T3,where

= Fp z T, = Fp Z (16)

k=0 -,6+1

where 3 ,which is not a negative integer will be chosen later.

1) First, we prove that |T3| > 1 . That is, we prove Tj is a polynomial
but not equal zero. By the definition of Fjobviously 77 is polynomial.
Furthermore,

Ty = Dg(mod[ —1})
= (=1)"~AlB]...[8 — 1+
= (—1)P~TAiF, # 0(mod[B — 1))
for g sufficiently large. Therefore , for all sufficiently # T} is not identically
zero. So T is non-zero polynomial. So it shown that |71] > 1 . (where
degTy > 0 == |T1| > 1= ¢%T1 > ¢® = 1)

2) we wil show |T,| < 1 . Let 75 be any term of T; . Note that ,
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degDp = degFp + degA; — degngj + degr?®’

= degFp + degA; — degngj(where degri™’ = 0)
degTy = degFp + degFpyy + degDg

= degFp + degFp 1 — degFgJ_j + (degA;)

LS
. =a*(constant)
= rdegFp — degFp41 — degFg; + a*
=1/ —(B+ 1) — (B-j)¢’ +a*

where rf3¢? — (B +1)¢°* — (B —d)g®? <0 . Because ; since 0 < j < d
B—j>p—d=>—(8-j)>—(8—d) we have |
hence r3¢® < ¢P(B7+ g+ B —d) so we obtain f+d < (8+1)q. This inequality
is true everytime.
Therefore 8 — +, rB¢° — (8)¢?™' — (B — d)¢° — —. hence (—oo0 + a*) —>
—o0o . Therefore we may chose 3 so large that every term of T3 is negative.
That is ; [Tl =g¢*** < " =1 = [] < 1. 3) We will prove the claim
of the theorem . By the definition of T} and T3 , we can write

Ty + Tz = FpP(£)Q(E)-

Hence we obtain
Ty + To| = |F[|P(OIIQE)] - (17)
Since |T1] > 1 and |T3] < 1, we get

|Ty + T3| = maz (|Th], |Tof) = |Th| . (18)

By (17) and (18), we obtain

[PONQE)] = Tl F5| ™" (19)
Let |¢] = ¢* . By (1) and since
| B3| = q@eole F) = oo ~desk _ go—ket _ ghat

we get |¢] = ¢7F" = ¢ = ¢° Therefore A = 0 .Since Maz(a,)) =
Maz(a,0) = a and by Lemma 2 ,we find

IQ({)' < qad(qd—d+1)+(qd—d)ma:t:(u,)\)

< qadq"+aqd
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Q)] = "+
Since h = h(P) = ¢* ,

logh
g = .
logq
By (6) and (21) we find
d kg
adq® > —.

Consider the sequence
{q_17 qO’ q17 ‘127 }

There are f non-negative integers such that

d
< BqP.

a
Bgt < ——
kq*

Because , by (22)

From (21) we obtain the following statement for the above j

dd dd+1
adg® _ 5 adg

kq* T = kq*

Further ,by (24)
|| = gFe = ¢,

By (19),(20),(23),(25) and since |Tj| > 1 we get
[P = ITallFp|7HQ(&)I™
> |Fa| QO™

> g~ k(ade®H)—a(d+1)q?
= —ﬂqd(’lki—d—l).
By (26) and since h = ¢* we have

|P(e)] 2 Ao o,

This is the claim of the theorem 1.
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Proof of the Theorem 2 :

Let the degree of the polynomial P in Theorem 1 be (P) =d < n and let
its height be A(P) = h < H By (4),
|P(&)| > H*" (-1, (27)
(27) and (6) and by the definition of Mahler’s classification

T.(H,¢) > H—aq"(ilT—f‘—d—l)

for all sufficiently large natural numbers n and H . Hence consequently

1-k

logTn(H, £) > —aq"(q—k— == 1)] logH

_logrn(Ha 6) d qlbk

T S
logH < ag’( k

_log I‘n(Haf) e d(ﬂi
log H =0T

—d—1) (28)

[a(€) = ljm_sup — & =1 (29)

That is, for every index n
In(€) < oo.

By the definition of Mahler’s classification, p(¢) = oo . This shows ¢ can never
belong to the class U so that it belongs to the class S or to the class T
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