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Abstract

This paper discusses the use of the geometric programming method to determine the
optimum values of cutting speed and feed rate which yield mmmimur cost in a drilling operation
that is performed on a CNC lathe. During the formulation of the problem a number of
constraints are considered.

1. Introduction

The determmnation of economically optimal cutting conditions, i.e. cutting speed and
feed rate, is an essential step in computer aided process planning activities.

A survey of the literature on the optimisation of cutting conditions indicates that a few
number of researchers have studied the optimisation of cuiting conditions in drilling operations
In the cases especially where HSS drills are used, drilling operation may have considerable
influence on the machming time and therefore optimisation of cutting conditions might be
necessary.

Ermer and Shah [1] considered the problem of optimising cutting conditions m drilling.
They used both minimum cost and maximum production rate as optimisation criteria.

Arsecularatne [2] and Filiz, Sénmez, Baykasoglu, Dereli [3] studied the constrained
optimisation of cutting conditions in drillmg by using mmimum cost as optimisation
criteria. They used the torque available from machine tool, drill buckling, drill strength, axial-
circumferential slips in chuck as the constraints.

In the above mentioned analyses, cost per operation is expressed in terms of cutting
speed and feed rate. One of these variables is found by using partial differentiation of the
expression with respect to the variable of concern and the other variable is found as the value
which satisfy the above mentioned constraints. In these approaches both independent variables
could not be treated simultaneously.

In this study, the constramed optimisation of cutting conditions on a CNC drilling
operation is successfully and easily treated by the application of a non-linear programming
technique, namely, Geometric Programming (GP). In the solution of constrained GP problem
Lagrange Multipliers method is used as an additional tool. Minimum cost is used as the
objective function and the following restrictions are conmsidered in this work; Maximum
machine torque, Limiting torque for the drill, Circumferential slip in the chuck, Axial slip in the
chuck, Drill buckling, Maximum and minimum speeds available from machine tool, Maximum
and minimum feed rates available from machine tool.

A computer program is written in QBASIC and implemented on an IBM compatible
computer for automating the calculations in the optimisation procedure.
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2. Elements of Geometric Programming

In Geometric Programming the objective function is written in the following form:

Yo r
go(t) = Z (Cqj TT 1) forj=1,23.....q 1
=1 k=1
is a mimimum subject to;
4G T
g) =2 (C; I t**)<1 fori=12...p, k=12..rand >0 2
=1 k=1

where q,: number of terms in the objective function, C,;: coefficients of the objective function,
t:denotes variables, r: number of variables, p: number of constraint functions, q;: number of
terms in the i’th constraint function.

Duffin, Zener and Peterson [4] showed that the dual of the above stated problem
{primal programme) is given by;

oy Coj B PG 4 5
w@=I1(5=)")ALGC; R ) 3
i=1 o) =1 ;=1
is a maximum subject to;
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2. 6= 1 (normality condition) 4
=1
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i=0j=

where u(d) is the dual function and ;; , denotes dual vectors.

To solve the problem, the optimum value of the dual vectors &'; ,which make the dual
objective function maximum, should be found from dual constraint equations.

The optimum value of the original objective function g «(t) is obtained from the dual
program after finding the optimum values of the dual vector 8';. According to the definition of
the geometric programming, 8'; are the weight of the terms in the primal objective function,
ie.

r
€q I;nf‘““ =8 0.8 oft) for j=1,2,3....q0 6

There are q, equations and r variables. The variables t, are then found by solving these
equations simultaneously.

If (no. of equations = r +1), then (s-r-1) is termed the degree of difficulty of the
problem, where s is the number of terms in the objective and constraint functions. This
represents the number by which the independent variables exceed the number of equations in
the system of linear simultaneous equations given by normality and orthogonality conditions.

3. The Objective Function
The basic model describing the cost of a drilling operation, as given by many authors, is

expressed as follows;
Cr=XToa+XTa+YXTa/T) 7
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where X is machining cost rate (cost/min), Y: tool cost per cutting edge (in carbide inserts) or
drill depreciation cost plus drill resharpening cost (in HSS tools), T,,: machining time (min), T4:
tool change time (min), T: tool life (min).

Machining time for a drilling operation can be written as;

T = nDL/(1000V{) 8
where D is drill diameter (mm), L: length of cut (mm), f: feed rate (mm/rev), V: cutting speed
(m/min).

Taylor’s expanded tool life equation for drills has the following form[5];

m.D(mxv)

T=~ym fow ’

where C,,m,X,,y, are constants.
The substitution of tool life (T) and machining time (T,,) expressions into equation (7)

gives;
XaLDyy 1 1 4 (X T, +Y YLDy yo- l)f(myv-l) 10
000 1000 ) * X 1000(C,)" )V

For convenience, define;n=m.x,,A=(C.)" ,z=my,
Then the cost equation can be written as;

CHV, f}_(.XII.L.D.)V £1HXTq +Yxm) @-1) £ 1) 11

This equation is the objective function which will be optimised according to the mimimum cost
criterion.

4. Derivation of Constraint Functions

There are several constraints which effect the cutting conditions in a drilling operation.
The source of these constraints may be machine tool, cutting tool and workpiece specifications.
One must keep in mind that the larger the number of constraints, the harder the optimisation
problem is to solve.

4.1 Cutting Torque and Thrust in Drilling

Thrust load (Fy) and torque (M) i drilling operations are given by Arshinov et. al. [5]
as follows:
F,=9.81C,D?f® (N) 12
M =9.81.10°C,D*" f ™ (N.m.) 13
where ,Cy , Xm , Ym » Cp ,Xp ,¥p 2re constants for a given tool/workpiece pair.

4.2. Constraints
Following constraints are considered in this work;
1) Maximum machine torque : Maximum torque which can be provided by a machine is;

M, = 60Pnax /(MtNbreax1) 14
So; M;2M (Constraint 1) 15
where, P, is maximum power available from machine (W), Npreax: is the break speed of the
motor after which the power becomes constant (maximum) (rpm).
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2) Limiting Torque of The Drill : Limiting torque that the drill can withstand is calculated by
the formula;

M,= 7Dt /(16000£,) 16

where, D. is the equivalent diameter for the drill which is equal to 0.7D (mm), f; is factor of
safety , and 7 is the shear strength of the drill shank material (MP,).
Se; M:2M (Constraint 2) 17

3) Drill Buckling : The maximum load to avoid drill buckling can be calculated by using the
formula;

Fa= n°ED*/(64L%,) 18

where; E is the modulus of elasticity of the drill material (MP,), fs2 is factor of safety.
Se; F.2F, (Constraint 3) _ 19

4) Axial Slip in Chuck : The maximum allowable thrust to avoid axial slip in the chuck can be
calculated by using the expression;

Foo = pt [ Foo + Z (045 Y Wanin)’ ] 20
where, 1, is coefficient of friction of jaw i axial direction, F., is clamping force at zero speed
(N), m; is mass of chuck jaws (kg.), 1; is radial distance of jaws (mm. ), Wg, is minimum spindle
speed (rad/sec.).

So; FozEy (Constramt 4) 21

5) Circumferential Slip in The Chuck : To avoid circumferenctial slip in the chuck, the torque

developed in the cutting operation must be less than the frictional torque (M3) in the chuck
which can be calculated by using the formula;

Ms= ety [ Feot Z(m)(Wanin)” ] 22
where, r, is component gripped radius (mm), pc is coefficient of friction of jaw in the direction
of spindle rotation
So; M;>2M (Constramt 5) 23

6) Maximum-Minimum Rotational Speeds of the Machine Tool : The rotational speed can be
calculated by using the following equation;

N.= 1000V /(nD) 24
So; Nuax= N (Constraint 6) 25
Where; Ny is maximum machine speed.
7) Maximum-Minimum Feed Rates of the Machine Tool :

< fnme (Constraint 7) 26
Where; f,.. is maximum feed rate of the machine.
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S. The Primal and Dual Programmes
5.1. Primal Programme

The objective function and constraints functions can be written in the geometric
programming formats as explained in section 2;
Objective function

go(t) =Co tlaou tzaozl + Cpp tlaml tzam ) 27
where; t; denotes cutting speed V and t, demotes feed rate f and

X7nDL (XTa+Y)rLD™
Cor= , Cox= , 8011 = -1, agiz = m-1, agp = z-1 28
1000 1000A
Constraint Functions
. . 9.81x10° C, D™
Constrant 1;: Cy;t; ! t; H2<] where; Ci= s am =0,a;2= Vm 29
M,
-3 Xm
Constraint 2; C,; tlaz” tzam <1 where; C21=9'8bd1(:4 D , 8211 =0, 8212 = Vm 30
2
_ o) 9.81C, D™
Constraint 3: C31 t: L t> 12 <31 where 5 C31='—F'T"——, a3 = 0, 312 = ¥p 31
. 2., 2 9.81C, D™
Constraint 4; Cyty "'t, *2<1 where; Cy=——L——, a1 =0, 242=y, 32
)

9.81x10° C,, D™

Constraint 5; C51 tlaSH tzasu <1 where; Csf—‘ Mq S AS[] = 0, 4512 = Ym 33
81 A 1000
Constraint 6; Ce t; 't °2< 1 where; Cs1= . as11 = 1,862=0 34
TTDNmax
Constraint 7; Cr t,7" >2< 1 where; Cri= Vfpnax, 111 =0, 2712 =1 35
5.2 Dual Program

The primal objective function and the constraint functions have been developed m the
previous sections. It is seen that the objective function has two terms and there are seven
constraint functions. All of the constraint functions have single terms. So the dual objective
function turns out to be;
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C C
U(S) = ( Oll )801 ( 02 ) 6o’z Cnsu C21521 C31831 C“841 C51851 Cﬂsﬁx C71571 36

where; &o; and 8, are the dual variables of the objective function.
The dual variables are subjected to the linear constraints. According to the normality
condition of the Geometric Programming, first dual constraint function is given by;

801 + 802 =1 37
According to orthogonality condition, the other constraint functions are;
011 8012021 So2ta111 O11+a211 8218311 83118411 Ba1Hasy1 85118611 Se1 12711671 =0 38
2012 00173022 80218112 01178212 8212312 83118412 0412512 8511612 618712671 = 0 39
and the non-negative constraints are;
801 20, 502 20, 811 20, 821 _>.O, 831 20, 841 ZO, 651 20, 651 ZO, 871 20 40

The dual objective function U(8) has to be maximised by using the dual constramnt
functions. The maximum point obtained from dual objective function is the minimum value of
the original objective function. However, the degree of difficulty of the problem is six,
therefore an additional method is necessary to solve the problem. Following steps are taken for
solving the problem as suggested by Beightler [6] and Nisli [7].

Firstly, the natural logarithm of the dual objective function is taken;

F’(3) = InU(8) 41
F’(8) = 301(InCo1-n80; )+ 802(InCoz-Indoz)+ 81:InC+ 8211!1C21+ 831InCsy+ 84:InCy;
+ 851InCs1+ 861InCo1+ 87:1nC7y 42

Then, this non-linear optimisation problem can be solved by using the “Generalised Lagrange
Multipliers” method. The general formulation of this method is as follows;

N
F(3.1) =F°(8)-Z \G; (3) 43
=

where, G; (8) is the constraint function and N is the number of constraints functions.
The dual constraint equations are the constraint equations of the Lagrange Multipliers method;
G: (8)= a011 8012021 Doz ta11: 8111a211 82118311 83118411 Sartasy Ositae Os1+a711 Om1 45
G3 (8)= 012 80118022 o2 ta112 81118212 2118312 831+ 2412 841+ 8512 85112612 Bs1 712 011 46
Then the objective function can be writien as;
F(8,1)=80110C01-801n80;+ S02InCo2-80211805+8111nC11+621InC51 48311 C3,+84,InCy,
43510 Cs1+06:MCs1+371MC71-A1(801+002-1)-A2(a011 o1+ 021 Soota1nn Surtaznn 47
821123118317 24118411 5118512611861 12711071)-A3(2012001 2022002 21128112212
82112312 83112412 8412512 Os1+a612 O61 72712071 )
Here, A; for j=1,2,3 are non negative weighting factors, which are independent of 6°s and
identifiable as lagrange multipliers.
For optimum solution, the following set of equations must be satisfied,

OF(3,\) 15=0, OF(3,\) /OA=0 "

In this problem,;

5% =InCop; - 1 - Inko; = Ay = Azao1; = Asdorz =0
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—a—F—=1nCoz -1 -InXo2 - Ay - Aza021 - Azdgzz =0
002

oF
—éasP:= InCy; - 222511 - Aza;12=0, 8621 =InCy; - Az - Azazz =0
—QLG&I =nCs: - Aza311 ~ Asa312 =0, 668131 =nCy1 - Az - 32412 =0 49
OF. = InCs; - Azasyy - Azasiz =0, oF _ InCs; - Aza611 - Azagi =0
00s1 0061
O - InCy; - Aza71; - Azay =0 5 QF—— = -8¢1 - Oz +1 =0
0671 oy
OF
5}1‘— = -2011 S01-021 Oo2-2111 811-8211 821-2311 831-2411 41-8511 8s51-8611 S61-8711 871
;}: = -8012 001-8022 802-8112 811-8212 821-2312 8318412 B41-8512 O51-8612 Bs1-2712 671
3

Now, there are 12 equations and 12 unknowns so, the problem can be solved as
explained in previous sections..

6. Computer Program and Example

A computer program has been developed for the solution of the optimisation problem
which is formulated in the previous sections. QBASIC is used as the programming language in
the application.

Inputs:

Maximum spindle motor power : 12 kW, Maximum and minimum spindle speeds: 2500
rpm -10 rpm, Break speed of spindle motor: 500 rpm, Maximum and minimum feed rates: 3
mm/ rev-0.001 mm/rev, Clamping force: 12000 N, Mass of chuck jaws: 2 kg, Coefficients of
friction of chuck jaws: 0.35, Tool material: HSS, Shear strength of tool material: 512 MPa,
Modulus of elasticity of tool material: 220 GPa, Workpiece material: Free machining carbon
steel, Drill diameter: 25 mm, Drill length: 65 mm, Machining length: 50 mm, Component
gripped radius: 30 mm, Machining cost rate: 1000 TL/min, Tool depreciation and resharpening
cost: 5000 TL, Tool change time: 0.1 min.

Outputs:

Optimum cutting speed : 60.2 m/min
Optimum feed rate : 0.05 mm/rev
Cost :1380.3 TL
Cutting time : 1.305 min
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A comparison between results obtained from this program and from Ref[3] (By
considering the same objective function, constraits and constants), and from Machining Data

Handbook [8] are given in Table 6.1:

Table 6.1 Comparison of Results

Geometric Ref.[3] Ref.[8]
Programming
Cutting speed (m/min) 60.2 55 50
Feed rate (mm/rev) 0.05 0.041 0.021
Cost (TL) 1380.3 1772.93 3744.1
Cutting time (min) 1.305 1.741 3.74

As seen in this table, GP algorithm gives better results than the results given in Ref. [3] and [8].

7. Conclusions

In this study a mathematical model has been developed for the constrained optimisation
of cutting conditions in drilling operations by using geometric programming technique.

Geometric programming is relatively straight forward and easy to apply in solving
algebraic non-linear programming problems subject to non-linear constramts. However, in
cases where degree of difficulty is greater than one, geometric programming requu'es additional
effort to optimise the objective function.

Cutting conditions in smgle pass machining operatlons with less number of constraints
can be easily optimised by using geometric programming technique. In the case of multi pass
machining operations and higher number of constramts additional methods are needed for
solving the optimisation problem in geometric programming.

In this study drilling operation considered as a single pass machining operation. Seven
constraints are used i the optimisation. For solving six degree of difficulty problem Lagrange
Multipliers method was used in addition to geometric programming technique.
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