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Abstract: The need to get uranium out of leaching liquid is pushing scientists to come up with
new sorbents. This study uses the wet technique to improve the U(VI) sorption properties of
ZrO2/chitosan composite sorbent. To validate the synthesis of ZrO2/CS composite with Zirconyl-
OH, -NH, and -NH2 for U(VI) binding, XRD, FTIR, SEM, EDX, and BET are used to describe the
ZrO2/chitosan wholly formed. To get El Sela leaching liquid, it used 150 g/L H2SO4, 1:4 S:L ratio,
200 rpm agitation speed, four hours of leaching period, and particle size 149–100 µm. In a batch
study, the sorption parameters are evaluated at pH 3.5, 50 min of sorbing time, 50 mL of leaching
liquid (200 mg/L U(VI)), and 25 ◦C. The sorption capability is 175 mg/g. Reusing ZrO2/CS for seven
cycles with a slight drop in performance is highly efficient, with U(VI) desorption using 0.8 M acid
and 75 min of desorption time. The selective U(VI) recovery from El Sela leachate was made possible
using ZrO2/CS. Sodium diuranate was precipitated and yielded a yellow cake with a purity level
of 94.88%.

Keywords: ZrO2/chitosan; leaching liquid; adsorption; desorption; kinetics; U(VI) recovery

1. Introduction

Nuclear energy using uranium is regarded as a low-carbon emission and a potential
option to address the rising need for global energy [1]. However, nuclear energy’s high
radiologic and chemical toxicity has drawn increased attention to the environmental safety
issue of uranium contamination in water [2–4]. In Egypt, resources of radioactive raw
materials include certain conventional and nonconventional types discovered at some
places in the Eastern Desert, Sinai, and the Western Desert. The Egyptian Nuclear Materials
Authority has conducted extensive uranium mineral exploration projects for the past few
decades. These programs identified some uranium mineralization connected to the so-
called younger granites in the Eastern Desert. Gabal El Sela, a new uranium mineralization
discovery in Egypt’s far southeast, is located in the Halaib environment [5–7].

The uranium in the ore is dissolved by a process known as leaching. The leaching
process used to dissolve uranium minerals depends partly on the ore’s physical features, such
as mineralization type, ease of liberation, and the other minerals that make up the ore [8].
Different types of uranium ore processing and leaching techniques based on acid and alkaline
leaching approaches have been developed in the last few decades [9]. Inshas Pilot Plant Unit’s
leaching process may lose valuable uranium due to the clay minerals in El Sella ore materials,
which are present in relatively high concentrations in El Sela ore materials [10–12]. The most
frequent way of obtaining uranium from rocks is leaching with sulfuric acid. U(VI) recovery
from H2SO4 leaching is typically between 85 and 95 percent [13].
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On the other hand, carbonate materials are not suited because of their high acid
consumption. For uranium ore processing, sulfuric acid was the most common method
of uranium leaching [14,15]. However, because of the high acid use, this method is not
cost-effective for uranium carbonate rocks. In recent years, various alkaline leaching
agents, such as hydroxide or carbonates and bicarbonates, have explored the techniques for
uranium and vanadium alkaline leaching [16,17]. The selectivity of uranium (VI) leaching
in alkaline carbonate was higher than that of the most precipitated contaminants. Sodium
carbonate, hydrogen peroxide, and sodium hydroxide were used to selectively deplete
uranium from hydroxy Egyptian monazite. The quality of the uranium produced by this
method was less than 99% [18].

A liquid and a solid (sorbent) phase are separated via solid-phase separation. Sorption
on solid materials allows for the concentration and purification of analytes in the solution.
The liquid sample is passed over a cartridge, a column, a tube, or a disc that contains
a sorbent that recollects the analytes. The samples are eluted with appropriate solvents
after passing through the sorbent to recover the analytes [19–22]. All adsorbents can be
utilized in a solid-phase separation. They can be hydrophobic or polar, depending on
the material. Retention of ionic metal species on hydrophobic supports necessitates the
creation of hydrophobic complexes. The reagent is added to the sample, or the hydrophobic
solid sorbent is impregnated with the reagent. Because the reaction on the cartridge may
not change the metal equilibrium in the sample, the impregnation may be a significant
development in trace analysis [23–26].

The magnetic amine resins were synthesized by suspending polymerization of glycidyl
methacrylate through N, N-methylene bisacrylamide in the attendance of micro magnetite
particles and anchored with various amine ligands, which were then characterized by
their magnetic properties. It was discovered that the produced resins could bind uranium
ions. Three granite samples from Egypt’s Gabal Gattar pluton in the northeastern desert
were successfully processed for uranium extraction [27]. Phosphine oxide ligands would
harmonize with uranium in radioactive acidic liquid rubbish with elevated selectivity and
affinity. A design and formation of phosphine oxide broadcaster architecture structurally
systematized in the specified mesopores of m Zr-MOFs for uranium sorption [28]. Moreover,
vastly porous thiophene-comprising DUT-68 globules were prepared for sorption of iodine
vapor and CO2 [29]; also, the coconut fibers were modified with Saccharomyces cerevisiae
yeast cells to remove Pb(II) ions by sorption process [30].

Furthermore, it was necessary to separate and extract uranyl ions from real samples
using nanostructured mesoporous sodium zirconium phosphate (NaZrP-CEX). It was
possible to regenerate mesoporous NaZrP-CEX in a seven-cycle experiment with either
0.05 M HNO3 or 1 M HCl [31]. To remove U(VI) from the nitrate solution, zirconium
phosphate was developed as an inorganic ion exchanger by synthesizing it from zircon
crystal [32]. To remove cadmium (Cd) and cobalt (Co) ions from aqueous solutions, three
distinct Chitosan/ZrO2 composites were synthesized via the sol-gel system and tested.
For Cs(I) at pH9 and Co(II) at pH6, adsorption capacity is 124.6 mg/g and 111.1 mg/g,
respectively [33]. For U(VI) sorption, polydopamine and zirconium oxide were mixed to
create polydopamine/hydrous zirconium oxide. It had a uranium(VI) adsorption capability
of 100.56 mg/g [34]. Zirconium silicate and zirconium oxide were also used to investigate
the uranyl ion sorption mechanism [35].

Egypt’s most significant uranium and other economic element deposits can be found
in the southern area of the Eastern Desert at El Sela, where H2SO4 was employed to dissolve
the ions in the ore. The best conditions for leaching, such as acid concentration, solid/liquid
ratio, sorbing time, and temperature, are identified. Recovering and adsorbing U(VI) from
acidic solutions was achieved by preparing nano-zirconium oxide/chitosan ((ZrO2/CS)).
The ideal uranium adsorption conditions from their standard solutions and acidic leach
liquor are also obtained.
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2. Materials and Methods
2.1. Materials and Instrumentation

In all areas of this work, all chemicals and reagents employed were analytical grades;
they were not purified in the laboratory. Poole, England, was the source of nitric acid
(69 percent), hydrochloric acid (36.5 percent), and sulfuric acid (98 percent). Chitosan and
zirconyl chloride octahydrate (98 percent ZrOCl2.8H2O) were obtained from Sigma Aldrich
(2-amino-2-deoxy-(1→4)—D-glucopyranan-poly-1, 4-gluco-pyranose-amine, 90.5 percent).

Mineral composition analysis was carried out using the XRD technique (XRD) utilizing
Bruker company type D8. FTIR (Shimadzu I.R. Prestige21) was used to analyze the prepared
samples and examined adsorbents. To avoid the effects of signal-to-noise ratio noise, it
was necessary to calculate each spectrum as an average of 50 subsequent scans. An
environmental scanning electron microscope (SEM), the Philips XL 30, was used to identify
the precipitated uranium (the yellow cake) and the composites that were formed. Because
of this, it was used to investigate the mineral composition of the sorbent composite. NOVA
for Windows®® Version 1.12 was used to measure the surface area and pore volume of
nano metal oxide and the generated sorbent using the conventional volumetric nitrogen
adsorption method at 77 K (USA, Nova 2000 series, Quantachrone Corporation). The
uranium concentration was measured using a JANEWAY UV/Vis 6405 spectrophotometer
with quartz cells of 1 cm in diameter and a wavelength of 655.0 nm, casing the UV/visible
wavelength display of 200–1100 nm.

2.2. Production of Nanoparticles of ZrO2

The zirconyl chloride (ZrOCl2.8H2O) precursors were used in a solid-state process
to produce the nanocrystalline zirconia [36,37]. A fine powdered (700 ◦C) ZrOCl2.8H2O
and NaOH were ground and blended at room temperature first. It was then placed in an
autoclave, where the temperature was controlled for a certain time. The mixture was rinsed
twice with ethanol and deionized H2O to eliminate the solid water and any remaining
chloride ions. Afterward, the samples were dehydrated at (110 ◦C) for some time. At 550 ◦C
for 20 h, the dried samples were subjected to calcination.

2.3. Preparation of Zirconium Oxide/Chitosan

Zirconium oxychloride and chitosan matrix coordination were followed by cross-
linking with glutaraldehyde to form a ZrO2/chitosan composite [38,39]. As described
above, a homogenous gel was generated by dissolving 30.0 g of chitosan powder in
500 mL of a 2 percent (v/v) acetic acid aqueous solution. An amount of 1 M ZrOCl2.8H2O
was added gradually and agitated at 150 rpm for an hour under room temperature. To
precipitate the ZrO2/chitosan compound, 2.0 M sodium hydroxide was added drop-wise.
Glutaraldehyde aqueous solution was added and agitated briskly for an additional 150 min
after the first 50 mL. For 36 h, the suspension was kept at 2 ◦C in a refrigerator to finish
the cross-linking reaction. After six days of drying at 30 ◦C, the composite was rinsed
with distilled water to restore the pH level. For U(VI) adsorption investigations, the dry
composite was employed.

2.4. Sorption Data

ZrO2/CS sorbent was utilized to remove uranium from leaching liquid in the current
study. The adsorption process was carried out utilizing the batch approach. Some trials
were conducted to inspect U(VI) adsorption to ascertain the optimum circumstances for the
applicable factors governing the sorption process. These factors include pH, temperature,
sorbing time, ZrO2/CS dose, and uranium concentration. Additionally, the initial uranium
concentration was measured. All the trials were repeated, and the values that were obtained
from each set were averaged. Sorption tests were passed by combining 50 mL sample
solutions of varying uranium concentrations with doses ranging from 10 to 100 mg of
ZrO2/CS in 100 mL conical flasks, which were then shaken at a speed of 200 rpm by a
mechanical shaker. The contact times ranged from 5 to 120 min, and the temperatures
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ranged from 22 to 100 ◦C. The pH varied from 1 to 6, and either 0.3 M NaOH or 0.3 M
H2SO4 solutions were used to make adjustments as necessary. The difference between
the equilibrium concentration and the beginning concentration was utilized to compute
uranium ions taken up after the filtration.

On the other hand, the related experiments designed to regulate the sorption kinet-
ics, equilibrium isotherms, and thermodynamic characteristics of the uranium ions were
successfully carried out. The resulting equations were used to determine the distribution
coefficient (Kd), sorption capacity (qe, in mg/g), and adsorption (E, in %) for the uranium
ions that were adsorbed on ZrO2/CS during each adsorption experiment [40–42]:

qe = (C0 − Ce)×
V
m

(1)

E(%) =

(
C0 − Ce

C0

)
× 100 (2)

Kd =

(
C0 − Ce

Ce

)
× v

m
(3)

where C0 and Ce represent the initial and equilibrium U(VI) concentrations (mg/L), V and
v represent the volumes of the solution (L and mL, respectively), and m is the weight of the
ZrO2/CS (g).

2.5. Desorption Data

The uranium-loaded ZrO2/CS obtained from the previously revealed set of the ex-
amined processes was therefore put through the rigors of the study of the desorption
operations. Throughout this procedure, a variety of desorbing chemicals were utilized as
eluants. In each experiment, 1.0 g of loaded ZrO2/CS was agitated at room temperature
with 50 mL of various concentrations of individual desorbing agents for a contact time
of 75 min. The experiments were carried out in duplicate. After that, the solution was
filtered and the desorbing solution was used to remove the uranium ions that the filter had
retained. Arsenazo III was utilized to carry out spectrophotometric analysis to calculate the
uranium concentration. In this work, the factors known to influence uranium desorption
were explored. These factors included the concentration of the desorbing agent, the amount
of time spent in contact, and the temperature.

2.6. Precipitation of Yellow Cake

Uranium in the eluting solution created after desorption from the uranium-loaded
ZrO2/CS was normally precipitated before the final purification step. This was done
by adding 25% sodium hydroxide to a pH7 solution. Uranium ions were precipitated
as sodium diuranate, chemically represented by the formula Na2U2O7. Drying the final
uranium precipitate, also known as yellowcake, was the last step. The finished product
was implemented to characterize and improve the processes.

3. Results and Discussion
3.1. ZrO2/CS Depiction
3.1.1. XRD Investigation

Figure 1 demonstrates the XRD patterns of nano-zirconium oxide (ZrO2), chitosan
(CS), and ZrO2/CS both before and after the adsorption. These patterns were taken from
nano-zirconium oxide and chitosan, respectively. The distinctive peaks of nano-ZrO2
exhibit prominent broad peaks at 2θ = 24◦, 28◦, 30◦, 32◦, 34◦, 35◦, 38◦, 49◦, 51◦, 54◦, 56◦,
60◦, and 65◦, which corresponded to the database of Bruker software COD 2300203 and
9007485. These peaks can be seen at 24◦, 28◦, 30◦, 32◦, 34◦, 35◦, 38◦, and 49◦. According to
these findings, most of the nano-ZrO2 was made up of ZrO2 Baddeleyite.
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Figure 1. XRD patterns of nano-ZrO2, CS, ZrO2/CS, and U/ZrO2/CS.

Figure 1 reveals that the distinctive peaks of chitosan (CS) had a major broad peak
at 2θ = 19◦. This peak was in accordance with the database of the Bruker program COD
7114110, 7150157, and 8100678. Figure 1 displays the results of the XRD performed on
ZrO2/CS and U/ZrO2/CS. It was found that the peak position and peak form of CS with
high intensity at 2θ = 19◦ overlapped with the peaks of ZrO2. According to the respective
databases of the Bruker software COD 7211032, 2300203, and 9007485, the production of
new peaks caused by the surface electrostatic interaction between ZrO2 and CS resulted in
the formation of a novel composite called ZrO2/CS; the formation of new peaks caused
this. According to the database of Bruker software COD 1559157 and 2310148, some new
peaks were found in the XRD pattern of U/ZrO2/CS as a result of uranium ions adsorbing
onto ZrO2/CS.

3.1.2. SEM Analysis

SEM is the most reliable and practical technique for analyzing resin beads’ physical
structure treated with inorganic material. SEM is a scanning electron microscope. It was also
useful to examine ZrO2, CS, ZrO2/CS, and U/ZrO2/CS surface and physical formations in
Figure 2. Shapes and compositions of ZrO2 were visible in the SEM images of the materials.
It is impossible to connect the ZrO2 skeletons since they were made from little, uneven
parts with tiny diameters. As seen in Figure 2, the CS surface has been smoothed out by
several holes. Due to ZrO2 molecule collection and impregnation on the surface of SiO2/CS,
SEM images show rough surfaces with many holes. To make matters worse, the composites
used in the pictures had larger interstitial holes because of the way they were assembled.
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Following U(VI) adsorption on ZrO2/CS, SEM images revealed that pores were filled
with U(VI). These composites had erratic surfaces and were agglomerated with U(VI). More
surface area was available for U(VI) adsorption in these composite structures, as shown
by SEM. ZrO2, CS, ZrO2/CS, and U/ZrO2/CS were also analyzed using EDX spectrums
(Figure 2). N, C, and O peaks can be found in the CS spectrum, whereas zirconium and
oxygen peaks were in the ZrO2 spectrum. C, O, Zr, and N peaks appeared in the ZrO2/CS.
According to these results, the Zr, N, C, and O peaks were found to have been caused by
the ZrO2/CS composite. Adsorption of uranium ions on ZrO2/CS led to the discovery of
unique uranium ions peaks. The uranium peak appearance confirmed U(VI) adsorption on
ZrO2/CS.
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3.1.3. BET Surface Analysis

The Brunner–Emmett–Teller (BET) theory was used to calculate the surface area of
solid and porous materials. The physical structure of a solid can be inferred from the
size of its surface, which affects how it interacts with its environment. The surface area
of a substance can be altered during its production and processing. When a particle
is milled into smaller pieces, its surface area increases because additional surfaces are
created. Another physical or chemical process leading to increased particle surface area is
breakdown, dissolution, or other processes. The nitrogen adsorption–desorption analyzer
determines the adsorbent’s pore size and specific surface area. There are isotherm curves
in Figure 3 showing the materials studied for nitrogen adsorption–desorption behavior.
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ZrO2 had a BET surface area of 27.65 m2/g, according to Table 1. The isotherms of CS
were altered once ZrO2 was added. Because the specific surface area, pore volume, and pore
size differences between ZrO2 and CS were so large, it is reasonable to believe that ZrO2
coated CS pores. ZrO2 improved the CS’s ability to adsorb uranium ions by increasing its
pore size and surface area. A decrease in the surface area, pore size, and pore volume of the
adsorbents evaluated after adsorption was seen as a result of uranium ion blockage.



Separations 2022, 9, 311 8 of 24

Table 1. Specific surface area, pore size, and pore volume nano-ZrO2, CS, ZrO2/CS, and U/ZrO2/CS.

Materials SBET, m2/g Pore Size, nm Pore Volume, cc/g

Nano-ZrO2 27.65 2.78 0.041
CS 19.77 2.65 0.033

ZrO2/CS 25.52 2.66 0.038
U/ZrO2/CS 24.64 2.52 0.036

3.1.4. FTIR Analysis

Fourier Transform Infrared (FTIR) spectroscopy is a necessary analysis technique that
categorizes various distinct functional groups at the surface of the investigated sorbent.
The chemical bond will change shape when infrared light interacts with solid objects,
either expanding, contracting, or bending. Therefore, regardless of the support structure
of the molecules, each functional group inclines to absorb infrared light with a particular
wavenumber range.

The nano-ZrO2, CS, ZrO2/CS, and U/ZrO2/CS in Figure 4 were identified using
FTIR spectroscopy. The stretching mode of the large peak confirmed the OH group of
H2O extracted on the nano-ZrO2 surface at 3482 cm−1 in Figure 4 of nano-ZrO2. A peak
indicated the OH group of H2O at 1656 cm−1 [43–46]. The peak identified the hydroxyl
zirconium stretching mode (Zr-OH) group at 2370 cm−1 [47]. Two peaks that matched the
Zr-O group [48–52] were at 551 cm−1 and 499 cm−1.

Due to the -OH and -NH groups’ overlap, the FTIR spectrum of CS (Figure 4) showed
two peaks at 3363 and 3270 cm−1 [53]. Peaks at 2915 cm−1 and 2865 cm−1 belonged to
-CH2 groups. The unique peak at 1646 cm−1 was associated with the -NH2, while the
deformation peak of the -NH was located at 1434 cm−1 [54–58]. Peaks at 1164 cm−1 and
1018 cm−1 fit C-N, while the peak at 1550 cm−1 matched the C=N [59]. The stretching of
C-O and C-O-C is also responsible for the peaks at 1373 and 1311 cm−1. The distinctive
absorption of the -d-glucose unit was located in the absorption band at 894 cm−1 [60].
Furthermore, the ZrO2/CS spectrum (Figure 4) showed a high peak at 3417 and 3220 cm−1,
which explains the -OH and -NH of ZrO2 and CS. The Zr-O group, however, is comparable
to the peaks at 566 cm−1. As a result, ZrO2/CS formation was ready.

The results from the data acquired demonstrated the primary discrepancies between
the data, as mentioned earlier, after and before uranium ion adsorption on the ZrO2/CS
adsorbent. The reduction and redshifting of the -OH, -NH, stretching vibration bands for
the investigated adsorbents after U(VI) adsorption may be caused by the uptake of U(VI)
to the surface adsorbents, as demonstrated in the spectra of U/ZrO2/CS. Additionally,
additional (O=U=O) peaks emerged between 975 and 740 cm−1 [61–63]. This indicates that
-NH2, -NH, and -OH are reactants with the uranyl cations. Therefore, the CS-modified
ZrO2 was more amenable to U(VI) adsorption.

3.2. Leaching Application

Physical upgrading, leaching, and extraction of uranium ions from El Sela ore ma-
terials are all involved in the extraction of U(VI) from the leaching liquid. Appropriate
reagents dissolve valuable minerals from insoluble solids for the hydrometallurgical leach-
ing technique.

About 30 km south of Abu-Ramad city, in Egypt’s southern, Eastern Desert, in an
area known as El Sela where latitudes range from 22◦17′50′ ′ to 22◦18′6′ ′, and longitudes
range from 36◦13′36′ ′ to 36◦14′22′ ′ east, was used to collect the rock sample for the study.
Muscovites, plagioclases, potash-biotites, and feldspar were found in low-grade uranium
ores from the El Sela area [64–66]. There are three types of secondary minerals: kaolinite,
chlorite, and sericite. Opaque and garnet are two more minerals that can be found. The
primary uranium minerals in the El Sela sample are uranophane and beta-uranophane. The
mineral autunite (uranium phosphate) was found [67].



Separations 2022, 9, 311 9 of 24
Separations 2022, 9, x FOR PEER REVIEW 9 of 27 
 

 

 
Figure 4. ZrO2, CS, ZrO2/CS, and U/ZrO2/CS FTIR spectra. 

3.2. Leaching Application 
Physical upgrading, leaching, and extraction of uranium ions from El Sela ore mate-

rials are all involved in the extraction of U(VI) from the leaching liquid. Appropriate rea-
gents dissolve valuable minerals from insoluble solids for the hydrometallurgical leaching 
technique.  

About 30 km south of Abu-Ramad city, in Egypt’s southern, Eastern Desert, in an 
area known as El Sela where latitudes range from 22°17′50′′ to 22°18′6′′, and longitudes 
range from 36°13′36′′ to 36°14′22′′ east, was used to collect the rock sample for the study. 
Muscovites, plagioclases, potash-biotites, and feldspar were found in low-grade uranium 
ores from the El Sela area [64–66]. There are three types of secondary minerals: kaolinite, 
chlorite, and sericite. Opaque and garnet are two more minerals that can be found. The 
primary uranium minerals in the El Sela sample are uranophane and beta-uranophane. 
The mineral autunite (uranium phosphate) was found [67].  

X-ray fluorescence (XRF) is used to identify El Sela ore’s primary oxides and some 
minor elements. Table 2 lists the El Sela ore material’s primary and minor components. 
The investigation findings confirmed the host rock’s composition and defined the parent 
rock’s average element content. Approximately 67.78 percent of the El Sela sample was 
SiO2, while P2O5 was 0.11 percent. Na2O and K2O were found to be 2.29 and 2.14 percent 

Figure 4. ZrO2, CS, ZrO2/CS, and U/ZrO2/CS FTIR spectra.

X-ray fluorescence (XRF) is used to identify El Sela ore’s primary oxides and some
minor elements. Table 2 lists the El Sela ore material’s primary and minor components. The
investigation findings confirmed the host rock’s composition and defined the parent rock’s
average element content. Approximately 67.78 percent of the El Sela sample was SiO2,
while P2O5 was 0.11 percent. Na2O and K2O were found to be 2.29 and 2.14 percent in the
sample. The concentrations of U, Ba, rare earth elements (REEs), Ga, and Pb were found to
be 0.085 percent, 0.27 percent, 0.13 percent, 533 mg/kg, and 665 mg/kg, respectively.

Uranium was extracted from its deposits through leaching, one of the most critical
extraction processes. Uranium ions and certain related elements, such as iron, were found
in the El Sela sample during the chemical and mineralogical examinations. The El Sela
rock sample’s uranium leaching was first crushed and processed to precise particle size.
Leaching was completed next.

3.2.1. Leaching Agent Types

Eluting type was studied concerning leaching efficiency using a variety of leaching
agents such as H2SO4, HNO3, and HCl. The leaching trials were worked with 10 g of
powdered sample (150 mg/L individual leaching agent, 1:3, S/L ratio) and 30 milliliters of
150 mg/L individual leaching agent, with 150 rpm stirring speed. After that, the resulting
rock sludge was filtered and the precipitate was repeatedly washed with water to remove
any remaining contaminants. To determine U(VI), the obtained filtrate was diluted to a
specific volume to represent the leach liquor. Furthermore, the leach liquor’s total iron
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content was assessed. Uranium’s extreme leaching efficiency was 58.65 percent, according
to Figure 5a, but iron’s total leaching efficiency was only 5.43 percent using 150 mg/L
H2SO4. The acid leaching of uranium ions was therefore carried out using sulfuric acid.

Table 2. Chemical constituents of El Sela ore material.

Constituents Wt,% Constituents Conc., mg/kg

SiO2 67.78 Cu 45
Al2O3 12.66 Cr 59
Fe2O3 7.95 V 121
TiO2 1.32 Ni 41
CaO 1.57 Co 68
MgO 2.29 Ga 533
Na2O 2.14 Pb 665
K2O 2.63 Sr 37
P2O5 0.11 Zn 199

L.O.I.* 0.74 Th 52
Ba 0.27 Nb 7

∑REEs 0.13 Rb 3
U 0.085 Zr 43

*: Total Loss of Ignition (1000 ◦C).
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Figure 5. Influence of (a) leaching types, (b) sulfuric acid concentration, (c) solid-to-liquid ratio,
(d) leaching time, (e) stirring speed, and (f) particle size on leaching efficiency of U(VI) and total iron
from El Sela mineralization.
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3.2.2. H2SO4 Concentration Influence

Uranium leaching from the El Sela granitic rock materials was explored using H2SO4
concentrations ranging from 25 to 300 g/L (0.25 to 3 M). A 1:3 S/L ratio, 150 rpm stirring speed,
and 100–149 µm particle size were the additional experimental parameters that remained
constant over the 3 h of contact duration at room temperature (Figure 5b). When H2SO4
concentration was increased to 150 g/L (1.5 M), the leaching efficiency of U(VI) reached
58.66 percent; however, the leaching efficiency did not improve when 150 g/L (1.5 M) H2SO4
was used. When uranium was extracted, the total iron in the leaching liquid was an unwanted
impurity. According to the results, the iron concentrations were measured and found to be
quite low. Another finding revealed that H2SO4 in concentrations of 150 g/L (1.5 M) had the
best efficiency in dissolving El Sela mineralization’s most abundant uranium ions.

3.2.3. Solid: Liquid Ratio Influence

S:L ratios of 1:1 to 1:7 were used to test the effect on the leaching efficiency of 150 g
of H2SO4 per liter, 149 to 100 micrometers in particle size, and 150 rpm stirring speed for
three hours at room temperature. Figure 5c shows that as the (S:L) ratio fell from 1:1 to
1:4, uranium leaching efficiency steadily climbed to 75.24 percent. It was still possible to
maintain a consistent uranium leaching efficiency by altering the S:L ratio from 1:4 to 1:7.
The leaching efficiency of total iron is 6.54 percent, even though the finest solid: liquid
phase ratio was chosen as 1:4.

3.2.4. Leaching Time Influence

It was found that leaching time significantly impacted uranium leaching efficiency by
altering the contact period from 1 to 8 h. Figure 5d shows the improvement in uranium
leaching from 42.11 to 87.63 percent when the contact time was increased from 1 to 4 h.
After increasing the leaching time to more than four hours, there was no change in leaching
efficiency. With increasing time, however, the leaching efficiency of total iron rose from
6.55 to 18.43 percent. For this reason, the leaching time for U(VI) was fixed at four hours to
minimize total iron leaching.

3.2.5. Stirring Speed Influence

The stirring speed was utilized to examine the effect of stirring speed on uranium
leaching. Temperature and acid concentration was held constant at 150 g/L for 4 h, along
with a 1:4 S:L phase ratio and particle size range of 149–100 µm, although stirring speed
ranged from 50 to 350 rpm. According to Figure 5e, the leaching efficiency was 88.77 %
when the stirring speed was 200 rounds per minute. A stirring speed of 200 rpm increased
total iron leaching efficiency by 6.45 percent, while overall iron leaching efficiency was 6.45
percent. Consequently, the 200 rpm stirring speed proved advantageous in future tests.

3.2.6. Particle Size Influence

It was found that particle size significantly impacted the efficiency of the uranium
leaching process, and the other experimental variables remained constant. Figure 5f
showed that the leaching efficiency of uranium was 95.65% at the particle size of 100–63 µm,
and it remained constant after that. Total iron leaching efficiency remained consistent at
7.43 percent throughout the experiment. Consequently, particles of 100–63 µm in diameter
worked best in uranium leaching.

3.3. Adsorption Application

Zirconium oxide-modified chitosan (ZrO2/CS) was employed to eliminate U(VI) from
the leaching liquid. The analytical methods used to identify optimal conditions are pH,
sorbing time, amount of U(VI), and initial concentration.
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3.3.1. Impact of pH

The pH of the solution governs the adsorption process. Figure 6a displays the effect of
pH on the adsorption effectiveness of U(VI) from the leaching liquid (200 mg/L U(VI)). An
extensive range of pH values, from 1 to 6, was tested in numerous experiments. A 50 mL
solution leaching liquid was held at room temperature while the other conditions were
kept constant at 0.05 g ZrO2/CS sorbent dose and 30 min of sorbing time. The adsorption
efficiency of U(VI) increased from 16.0% to 61.7% when the pH was raised from 1.0 to
3.5, according to the collected data. Increasing the pH from 3.5 to 6.0, on the other hand,
reduced U(VI) adsorption efficiency to 18.0%.
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Figure 6. Influence of (a) pH and (b) ZrO2/CS dose on the U(VI) adsorption efficiency from leach-
ing liquid.

An acidic solution was used for the condensed adsorption of the ZrO2/CS sorbent
since it could adsorb so many bisulfate (HSO4

−) ions to its active sites. On the other hand,
bisulfate ions competed with uranium anion complexes for adsorption surfaces. As the
pH was increased, the concentration of bisulfate ions was lowered. It was accomplished,
and the adsorption effectiveness was improved until the maximum adsorption at pH 3.5.
U(VI) sorption was found to be reduced at pH > 3.5, which suggests that some U(VI) ions
precipitated as sodium diuranate was produced. A pH of 3.5 has been chosen as the optimal
pH for administering the following investigations.

3.3.2. Impact of ZrO2/CS Dose

At a pH of 3.5 and a leaching liquid concentration (200 mg/L U(VI)) of 50 mL, a series
of tests were applied via ZrO2/CS as a sorbent dose, ranging from 10 to 150 mg. The
adsorbent dose was studied for 50 min at room temperature (Figure 6b). According to the
findings, the ZrO2/CS accumulative adsorbent dosage improved the U(VI) adsorption
efficiency. Up to 60 mg of ZrO2/CS, the adsorption efficiency of U(VI) steadily rose with
growing adsorbent dosages before remaining constant. As a result, 60 mg of ZrO2/CS
was shown to be the optimal adsorbent dosage. As an alternative, the subsequent studies
utilized the 50 mg adsorbent dose to change the results.

3.3.3. Impact of Adsorbing Time

The ZrO2/CS adsorption effectiveness of U(VI) was examined during a timescale
of 5 to 120 min. On the other hand, the other adsorption parameters were set to pH 3.5,
50 mg adsorbent dosage, and 50 mL leaching liquid. At 50 min, the effectiveness of U(VI)
adsorption had achieved equilibrium; however, as shown in Figure 7a, it increased as
adsorbing time increased. The equilibrium adsorption period was 50 min to accommodate
the extra effort.
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Figure 7. Influence of (a) adsorbing time, (b) 1st-order kinetic, (c) 2nd-order kinetic, (d) U(VI)
concentration, (e) Freundlich isotherm, (f) Langmuir isotherm on the adsorption efficiency of U(VI)
using ZrO2/CS.

3.3.4. Kinetic Evaluation

Kinetic models were investigated to evaluate the mechanism of the adsorption process
and the rate-controlling phases. Pseudo-1st-order and pesudo-2nd-order kinetic mod-
els were employed to assume the kinetic adsorption mechanism of U(VI) adsorption on
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ZrO2/CS composite. The 1st-order model is expressed in the linear form as the following
equation [68–70]:

log(qe − qt) = log qe −
(

k1

2.303

)
t (4)

k1 (min–1) is the 1st-order rate constant, while qe and qt (mg/g) are the U(VI) uptake at
equilibrium and time t (min). It is possible to determine k1 and the qe from the slope and
intercept of log(qe–qt) vs. time. Figure 7b and Table 3 reveal that the adsorption scheme’s
correlation coefficient R2 and qe values do not fit a 1st-order kinetic model, respectively.
According to the objective results, the 1st-order reaction cannot be carried out using U(VI)
adsorption on ZrO2/CS adsorbent.

The 2nd-order kinetic model, conversely, is executed and built up in the equation
below [71–73]:

t
qt

=
1

k2q2
e
+

(
1
qe

)
t (5)

There is a 2nd-order equation, k2 (g/mg·min), which is the rate constant of the 2nd-
order equation, and qt (mg/g) is the quantity of U(VI) adsorbed at the moment of time t
(min). The rate-dominant stage, chemical adsorption, can be predicted kinetically using
this approach. When the 2nd-order reaction was genuine, a straight line represented
the relationship between t/qt and t. qe and k2 were calculated by intercepting the slope.
The correlation coefficient (R2) was similar to one. However, the calculated value of the
adsorbed quantity at equilibrium was closer to the practical capability (Figure 7c and
Table 3). ZrO2/CS adsorbed U(VI) well according to the 2nd-order model, as demonstrated
by these data.

Table 3. ZrO2/CS adsorbent kinetic adsorption parameters.

1st-Order 2nd-Order

qe k1 R2 qe k2 R2

120.64 (mg/g) 0.077 (1/min) 0.937 192.31 (mg/g) 6.05 × 10−4

(g/mg.min)
0.995

3.3.5. U(VI) Concentration Impact

The U(VI) concentration is a vital adsorption technique parameter that can impact
ZrO2/CS adsorption performance. The adsorption effectiveness of 50 mg of ZrO2/CS
sorbent was tested in batch tests to see how the U(VI) concentration affected the results. At
room temperature (25 ◦C), 50 mL of standard uranium ions solution (25 to 600 mg/L) at
pH3.5 was shaken for 50 min. Figure 7d shows that the uranium ions concentration rose,
and the adsorption uptake peaked at 200 mg/L. As of 200 mg/L (U(VI)), 175.0 mg/g of
the adsorption capacity is utilized. Hence, the maximal loading capacity of 175.0 mg/g
was also accurate. After the adsorption reached 200 mg/L, the adsorbent was said to
have attained its maximum loading capacity, and the uptake remained steady (saturation
capacity). All the ZrO2/CS active sites were occupied and blocked by uranium ions due to
the high mobility of uranium ions in the solutions.

3.3.6. Isotherm Studies

Adsorption isotherms are useful for transferring ions to the adsorbents during the
adsorption reaction. To detail any adsorption process, the adsorption isotherm is also
essential. It was necessary to study the adsorption isotherms to determine significant
data for adsorption when the adsorbed ions were dispersed across the solid and aqueous
phases at equilibrium [74,75]. Characterization of the adsorption approach was done using
Freundlich and Langmuir models. The adsorption of U(VI) on the ZrO2/CS surface is
described by the Freundlich isotherm. Surface energies and heterogeneity are frequently
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studied using this method [76–79]. Here is a convenient formula for determining Fre-
undlich isotherm:

log qe = log K f +
1
n

log Ce (6)

where qe (mg/g) is the quantity of U(VI) adsorbed at equilibrium, Ce is the concentration
of U(VI) in a solution at equilibrium, Kf (mg/g) is the constant connection to maximal
adsorption capacity, n is the constant correlated to surface heterogeneity, and to get the n
and Kf values, a regression line was drawn using the logqe vs. logCe curve (Figure 7e) as
the intercept and slope for ZrO2/CS (Table 4). The U(VI) experimental capacity was higher
than the Kf (mg/g) value. The information demonstrated how the Freundlich isotherm did
not correspond to the adsorption system.

Saturated monolayer adsorption on the Langmuir isotherm model occurs on the
homogenous surface at constant energy [80–83]. It can be quantified using the follow-
ing equation:

Ce

qe
=

1
qmaxb

+

(
1

qmax

)
Ce (7)

In this equation, qe (mg/g) is the equilibrium amount of adsorbent adsorption, qmax
(mg/g) is the maximum amount of adsorption, b is a constant associated with the affinity of
the binding sites and the adsorption energy (L/mg) of each adsorbent unit mass. This way,
the relation between Ce/qe and Ce is publicized in Figure 7f and Table 4. The adsorption
capacity (175.44 mg/g) was close to the experimental uptake capacity (175.0 mg/g), and
the correlation coefficient (R2) was closer to unity for ZrO2/CS. The data show that the
Langmuir isotherm model was followed in U(VI) adsorption.

Table 4. Characteristics of ZrO2/CS adsorption isotherm with U(VI).

Freundlich Langmuir

Kf n R2 qmax b R2

60.55 mg/g 4.852 mg.min/g 0.561 175.44 mg/g 0.422 L/mg 0.9998

3.3.7. Temperature Impact

At 25 to 55 ◦C, U(VI) adsorption temperature was studied. For 50 min of sorbing time,
the experimentations were performed using 50 mL of leaching liquid (200 mg/L U(VI)), pH
3.5, and 0.05 g of ZrO2/CS (Figure 8a). The adsorption effectiveness decreased from 175.0 to
168.0 mg/g when the temperature was raised to 55◦ C. Since the Van der Waals bonds break
down with increased temperature, the active sites are reduced. Because of this, uranium
ions can be better adsorbent at room temperature (25 ◦C) than at any other temperature.
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3.3.8. Thermodynamic Features

The thermodynamic settings of the adsorption method were obtained by examining
the adsorption procedure’s practicality and nature through temperature. Some adsorption
trails at various temperatures were used to assess the thermodynamic conditions, such as a
change in Gibbs free energy (∆G◦), enthalpy (∆H◦), and entropy (∆S◦).

The Van’t Hoff equations were utilized to evaluate the thermodynamic conditions for
U(VI) adsorption by ZrO2/CS [84–88]:

log Kd =
∆S◦

2.303R
− ∆H◦

2.303RT
(8)

∆G◦ = ∆H◦ − T∆S◦ (9)

where Kd is the equilibrium constant for adsorption (L/g), R is the universal gas constant
(8.314 J/mol.K), and T is the absolute temperature (K). Figure 8b depicts the thermody-
namic conditions of ZrO2/CS. The slope and intercept yielded the values for ∆H◦ and
∆S◦ (Table 5). The negative ∆G◦ values designated that the spontaneous adsorption of
U(VI) on ZrO2/CS was observed. Adsorption methods were favorable because of the
electrostatic attraction among U(VI) and the investigated ZrO2/CS, as confirmed by the
∆G◦ of the contacts. Exothermic adsorption may be recommended if ∆H◦ is negative.
Furthermore, the negative ∆S◦ established the feasibility and unpredictability of adsorption
at the ZrO2/CS/solution interface.

Table 5. The thermodynamic U(VI) sorption settings.

T, K 298 303 308 313 318 323 328

∆G◦, kJ/mol −4.360 −4.312 −4.265 −4.217 −4.170 −4.122 −4.075

∆H◦, kJ/mol −7.19

∆S◦, kJ/(mol. K) −0.95 × 10−2

R2 0.9928

3.4. U(VI) Desorption

The desorption of uranium from the loaded ZrO2/CS is completed. An important
factor in minimizing the cost of adsorbent purification is desorption methods that can reuse
and regenerate the adsorbent material. In batch procedures, desorbing concentrations, S:L
phase ratio, and desorbing time affect desorption efficiency.

3.4.1. Desorbing Type Impact

The effect of different eluting types, such as NaCl, HNO3, H2SO4, (NH4)2CO3, HCl,
and Na2CO3, on the U(VI) desorption from U/ZrO2/CS was studied by shaking the loaded
ZrO2/CS at 1:30 S:L phase ratio. The additional desorption parameters were held constant
at 1 M (eluting concentration) and 60 min of desorbing time at room temperature. As
publicized in Figure 9a, the desorption efficiency of U(VI) from U/ZrO2/CS to 1 M H2SO4
has reached a high of 83.0 percent. As a result, sulfuric acid was shown to be the best
method for removing U(VI) from the surface of U/ZrO2/CS.

3.4.2. H2SO4 Concentration Influence

The desorbing agent concentration strongly influences the metal ions’ desorption from
the loaded sorbent. To remove U(VI) from ZrO2/CS, H2SO4 concentrations ranging from
0.2 to 1.2 M were used in the desorption processes. At 1 g loaded ZrO2/CS and 1:30 S:L
phase ratio, the associated parameters were constant for 60 min of desorbing time. Figure 9b
displays that the desorption efficiency of U(VI) for ZrO2/CS rose to 85.0 percent by growing
the H2SO4 concentration from 0.2 to 0.8 M. To sum up: 0.8 M H2SO4 was deemed appropriate
for the ensuing desorption procedure.
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Figure 9. Impact of (a) desorbing agent, (b) H2SO4 concentration, (c) S:L ratio, and (d) desorbing
time upon the U(VI) desorption efficiency for U/ZrO2/CS.

3.4.3. S:L Ratio Influence

To remove the U(VI) ions from the loaded-ZrO2/CS, it is critical to determine the
smallest possible eluent volume. U/ZrO2/CS desorption of U(VI) was investigated by
varying quantities of 0.8 M sulfuric acid from 10 to 70 mL in combination with 1 g of
uranium-loaded adsorbent (S:L phase ratio alternating from 1:10 to 1:70), whilst maintaining
consistent contact time and temperature of 60 min with 0.8 M H2SO4 (Figure 9c). The
desorption efficiency of uranium ions rose by decreasing the S:L phase ratio to a 1:50 ratio;
after that, the U(VI) desorption efficiency remained practically constant at 94.0 percent for
the ZrO2/CS. U/ZrO2/CS was used in the subsequent trials with a 1:50 S:L ratio.

3.4.4. Desorbing Time Influence

For various desorption times ranging from 10 to 120 min, 1 g of U(VI)-loaded ZrO2/CS
was stirred in 50 mL of 0.8 M H2SO4. The observed maximum U(VI) desorption efficiency
(98.0 percent) in U/ZrO2/CS after 75 min of contact time is shown in Figure 9d, which
shows that the system has reached equilibrium for U/ZrO2/CS. Thus, 75 min was the
optimal desorbing time.
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3.5. Regeneration and Reused

The reusable uranium-loaded ZrO2/CS has undergone regeneration many times.
The ZrO2/CS examined was regenerated using 0.8 M H2SO4 and a 1:50 S:L phase ratio
for 75 min at room temperature to reuse and recycle. When the desorption efficiency
dropped from 98.0 percent to 82% after seven consecutive series of adsorption–desorption
procedures, the ZrO2/CS for uranium recovery showed a good adsorption constancy.

3.6. Sorption Mechanism

U(VI) adsorption mechanism was supported by the results obtained from XRD, SEM,
EDX, surface, and FTIR scrutiny before and after U(VI) adsorption. Figure 1 shows the
obtained XRD patterns. High-intensity CS peak locations and shapes overlapped with ZrO2
peak positions and shapes. Because of the surface electrostatic interaction of ZrO2 with
CS, novel composites were generated. Some novel peaks were found in the XRD pattern of
U/ZrO2/CS due to uranium ions adsorption on the investigated adsorbent. Figure 2 expresses
the SEM images of ZrO2/CS and U/ZrO2/CS, which reveal that the pores of these composites
were filled with U(VI), while the surfaces were uneven and agglomerated with U(VI). The
EDX spectra corresponding to the adsorption of uranium ions on ZrO2/CS revealed their
presence (Figure 2). The presence of uranium peaks confirmed the adsorbed uranium ions
on the ZrO2/CS surfaces. Figure 3 shows that uranium ions adsorption, the surface area,
pore size, and pore volume of ZrO2/CS decreased due to pore blocking by uranium ions, as
expected. The ZrO2/CS was a strong adsorbent for U(VI) ions. ZrO2/CS pre- and after-U(VI)
adsorption FTIR spectra are shown in Figure 4, confirming the appearance of new (O=U=O)
peaks at 975 and 740 cm−1. Adsorption of U(VI) on ZrO2/CS relocated the peaks of the
investigated adsorbents to redshift by 5–10 cm−1.

U(VI) binding to ZrO2/CS may be mediated by the deprotonation of functional
groups, as indicated by the pH-dependent nature of the binding process. For optimal
U(VI) concentrations, the pH should be 3.5 (UO2

2+, dimmer [(UO2)2(OH)2]2+, trimmer
[(UO2)3(OH)5]+. Hydroxyl, zirconyl (Zr-OH), -NH, and -NH2 groups were the active sites
on ZrO2/CS surfaces that reacted with uranyl ions. Due to electrostatic attraction and
complexation systems, the deprotonation of active sites and the production of different
uranium hydrolysis products were highly adsorbable. The kinetic results suggested that
the 2nd-order kinetic was suited more to U(VI) adsorption. Adsorption was found to
be controlled by chemisorption, according to the results. The experimental data from
the isotherm study suited the Langmuir model perfectly. The ZrO2/CS surfaces’ active
sites had a uniform U(VI) distribution, ensuing in a single layer of adsorption for this
element. Besides, thermodynamics documents express that the adsorption progression
was exothermic and spontaneous. The active functional groups of ZrO2/CS produced
complexes with U(VI) ions from the discussion beyond analysis. U(VI) reactions could be
adsorbed onto ZrO2/Cs surfaces, as Figure 10 shows one potential pathway.

3.7. Uranium Separation

The best conditions for leaching, adsorption, desorption, and precipitation of uranium
ions from the El Sela ore materials sample were used. At room temperature, 5 kg of the
El Sela sample (100–63 µm particle size) was mixed with 20 L of 150 mg/L (1.5 M) H2SO4
and 200 rpm of stirring speed for 4 h leaching time. A typical leaching efficiency of 95.65%
was achieved by filtering the gangue to produce a leach liquor with 200 mg/L of uranium
ions. The metal ions in the leaching fluid were identified through ICP-OES (Table 6). A
masking agent of citric acid can be added to the 20 L leach solution to mask any trace
amounts of metal ions (such as Fe). The adsorption was performed on 20 L of leaching
liquid containing 200 mg/L U(VI) using 25 g of ZrO2/CS at a pH of 3.5 for a sorbing time
of 50 min, and the U(VI) adsorption uptake was 175.0 mg/g. On 25 g of ZrO2/CS, U(VI)
was finally trapped (4000 mg U(VI)/25 g ZrO2/CS) from the leaching liquid.
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Table 6. Chemical constituents of El Sela leach liquor.

Constituents g/L Constituents mg/L

Si4+ 1.77 U6+ 200
Al3+ 2.54 Pb2+ 10
K+ 1.55 Co3+ 28

Na+ 0.97 REE3+ 110
Fe3+ 1.76 Ba2+ 3
Mg2+ 0.12 V5+ 6
Ti4+ 0.09 Cu2+ 7
P5+ 0.07 Th4+ 7

Zn2+ 0.03 Cr2+ 12
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The desorption of uranium ions from its loaded ZrO2/CS was carried out under these
supreme conditions. After the uranium ions were sited onto 25 g ZrO2/CS, 0.8M H2SO4
was used to agitate the mixture for 75 min to desorb the U(VI). There were 3.16 g of uranium
ions per liter of aqueous phase U(VI).

After desorption procedures, the uranium ions were precipitated as sodium diuranate
using sodium hydroxide. The sodium diuranate (yellowcake) was made from a 1.25 L
evaporated to 300 mL. A 25 percent NaOH solution was used to modify the pH to 7,
resulting in the precipitous uranium ions as Na2U2O7.6H2O, desiccated at 110 ◦C. Finally,
the result was Na2U2O7, which weighed 5.78 g.

2[UO2(SO4)3]
4− + 14NaOH + 8H+ pH7→ Na2U2O7.6H2O ↓ +6Na2SO4 + 5H2O

The scanning electron microscope (SEM) and sodium diuranate’s equivalent EDX
spectrum were used to examine the sodium diuranate (Figure 11a). In addition, its chemical
components were discovered using ICP-OES (Table 7). According to the gathered informa-
tion, sodium diuranate had a purity level of 94.88 percent. According to Figure 11b, the
XRF spectrum showed that sodium diuranate and certainly accompanying metal ions were
present in the sample.
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Table 7. Chemical analysis of sodium diuranate.

Constituents Conc., % Constituents Conc., %

U6+ 68.13 Y3+ 0.42
Na+ 7.15 La3+ 0.17
Ti4+ 0.02 V5+ 0.05
Fe3+ 0.75 Co3+ 0.02
Mg2+ 0.09 Zn2+ 0.03

K+ 0.04 Co3+ 0.01
P5+ 0.04 Cr3+ 0.06

4. Conclusions

An inorganic/organic sorbent polymer (ZrO2/chitosan) has been developed in the cur-
rent work for uranium sorption and recovery. It has high adsorption capacity, fast kinetics,
strong selectivity, outstanding reusability, and suitability to arrange in batch systems. Zirco-
nium oxychloride and chitosan are polymerized with glutaraldehyde and then combined
to form ZrO2/chitosan. The prepared sorbent can increase U(VI) binding to Zr-OH, -NH2,
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and NH at the ZrO2/CS interface. SEM, EDX, and BET validate the ZrO2/CS composite’s
formation. The optimal leaching conditions, including 150 g/L H2SO4, a 1:4 S:L ratio, a
200 rpm stirring speed, a leaching time of four hours, and a particle size of 149–100 µm, were
used to produce the El Sela leaching liquid. According to pH3.5, 50 min of the sorbing time
and 50 mL of leaching liquid (200 mg/L U(VI)), the U(VI) sorption from the leaching liquid
was studied. Uptake capacity was assessed at 175 mg/g. The 2nd-order kinetic model better
explained the kinetic data. Using the Langmuir model rather than the Freundlich model is
preferable for describing equilibrium sorption data. Thus, the ZrO2/CS adsorbed uranium in
a monolayer form. There was also a look at thermodynamic constants as well. Exothermic
and spontaneous uranium sorption by ZrO2/CS was shown by the values of ∆G◦, ∆H◦, and
∆S◦. A 0.8 M acid was used to desorb U(VI) for 75 min with excellent efficiency. Seven cycles
of ZrO2/CS yielded a slightly decreased performance. For selective U(VI) recovery, ZrO2/CS
was distributed over the El Sela leachate. After precipitation as sodium diuranate, a yellow
cake was obtained with a purity level of 94.88 percent.
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