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Abstract: NanoMIPs that are prepared by solid phase synthesis have proven to be very versatile,
but to date only limited attention has been paid to their use in solid phase extraction. Thus, since
nanoMIPs show close similarities, in terms of binding behavior, to antibodies, it seems relevant to
verify if it is possible to use them as mimics of the natural antibodies that are used in immunoextrac-
tion methods. As a proof-of-concept, we considered prepared nanoMIPs against fluoroquinolone
ciprofloxacin. Several nanoMIPs were prepared in water with polymerization mixtures of different
compositions. The polymer with the highest affinity towards ciprofloxacin was then grafted onto a
solid support and used to set up a solid phase extraction–HPLC method with fluorescence detection,
for the determination of fluoroquinolones in human urine. The method resulted in successful selec-
tion for the fluoroquinolone antibiotics, such that the nanoMIPs were suitable for direct extraction of
the antibiotics from the urine samples at the µg mL−1 level. They required no preliminary treatment,
except for a 1 + 9 (v/v) dilution with a buffer of pH 4.5 and they had good analyte recovery rates;
up to 85% with precision in the range of 3 to 4.5%, without interference from the matrix. These
experimental results demonstrate, for the first time, the feasibility of the use of nanoMIPs to develop
solid phase extraction methods.

Keywords: molecularly imprinted polymer; nanoMIP; solid phase synthesis; MISPE; solid phase
extraction; fluoroquinolone; ciprofloxacin; urine

1. Introduction

Molecularly imprinted polymers (MIPs) find in the so-called “molecularly imprinted
solid phase extraction” (MISPE) technique one of their most popular applications, con-
sisting of selectively extracting target analytes in the presence of interfering substances
and complex matrices. Whether in the form of cartridges [1], monoliths [2], magnetic
particles [3], or nanofibers [4], the application of MIPs to extraction problems is certainly
competitive due to their resistance to chemical and biological degradation, the versatility of
their applications and the operative costs (if compared to similar methods based on natural
receptors such as immunoaffinity extraction) [5,6].

Despite these advantageous characteristics, the MISPE technique shows several draw-
backs which limit its wider applicability. First of all, the preparation of the imprinted
material requires the introduction into the polymerization mixture of a fair amount of
the target molecule that must act as a template [7]. Thus, the preparation of an adequate
quantity of the polymer requires a large quantity of the template, which cannot always
be recovered and recycled. In the case of analytes that are difficult to find, expensive or
unstable, or those that represent a hazard to health or safety, this is a practical obstacle
that cannot be easily overcome. Furthermore, the complete removal of the template from
the imprinted polymer is frequently rather difficult [8,9] and the unextracted residues can
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slowly leach out in the so-called “bleeding effect”, contaminating the samples in the solid
phase extraction process and irreparably compromising the results of the analysis.

To overcome these drawbacks, the “mimic template” technique has been introduced,
where a putative molecule that is structurally similar to the target molecule is able to raise
imprinted binding sites but does not interfere with the subsequent analytical technique.
This approach avoids the bleeding effect, but still requires the availability of large quantities
of the mimic template, which frequently must be prepared by ad hoc synthesis [10].

An innovative approach to solving all of these issues is presented by the solid phase
synthesis of nanoMIPs [11,12]. In this process, illustrated in Scheme 1, the polymerization
process takes place in the interstitial space between packed glass beads that are covalently
grafted with template molecules. The growth of cross-linked polymeric chains takes
place in proximity to the glass beads’ surfaces, resulting in the imprinting of the nascent
nanoparticles by the grafted template molecules. At the end of the polymerization process,
any residual monomers, polymerization by-products and low-affinity polymers are washed
away, whilst the high-affinity nanoMIPs are recovered by washing with a solution capable
of breaking the non-covalent molecular interactions between the imprinted nanoparticles
and the grafted template molecules. This solid phase synthesis technique addresses many
of the drawbacks of traditional solution-synthesis techniques. In fact, because the template
molecules are covalently grafted onto the glass beads, no residual template molecules
are present in the nanoMIPs, avoiding the bleeding effect entirely. Moreover, as the
functionalized glass beads require a small amount of the template and can be cleaned and
reused many times, this approach allows the use of expensive templates. Additionally, in
the case of toxic or harmful substances, the confinement of the reaction to the glass beads’
surfaces eliminates any health risks during the manipulation of the solid phase [13].
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Solid phase synthesis has proved to be very versatile and nanoMIPs that are able
to target small molecules [14,15], macrocyclic antibiotics [16,17], toxins [18,19], and pep-
tides [20,21] have been described, and used, for the development of sensors and biomimetic
assays. However, to date only limited attention has been paid to the use of nanoMIPs in
solid phase extraction [14]. Therefore, since nanoMIPs show close similarities, in terms of
binding behavior, to natural antibodies, it seems relevant to verify if it is possible to use
them as substitutes for natural antibodies in immunoextraction methods.

As a proof-of-concept, we considered prepared nanoMIPs against ciprofloxacin, a
fluoroquinolone of relevant interest as an analytical target in MISPE [22–24] on which we
have recently published the characterization of the binding properties [25,26]. Several
nanoMIPs were prepared with polymerization mixtures of different compositions and the
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polymer with the highest affinity towards ciprofloxacin was used to set up a method for
the extraction of the target analyte from human urine.

2. Materials and Methods
2.1. Materials

The template molecule, ciprofloxacin hemisuccinamide (CIP-HS), was synthesized
according to a modified version of the procedure given by Noël et al. [27]. Glass beads
(Spheriglass-2429, 70–100 µm average particle size, Potters, UK) were aminated and grafted
with the template as previously described [26]. The acrylic acid (AA), chlortetracycline
(CTX), ciprofloxacin (CIP), danofloxacin (DAN), enrofloxacin (ENR), N-isopropylacrylamide
(NIPAm), levofloxacin (LEV), lomefloxacin (LOM), N,N′-methylene-bis-acrylamide (BIS),
morpholinoethansulfonic acid (sodium salt, MES), moxifloxacin (MOX), norfloxacin (NOR),
sarafloxacin (SAR), N-tert-butylacrylamide (TBAm), ammonium persulphate (APS) and
N,N,N′,N′-tetramethylethylenediamine (TEMED) that were used in this study were pur-
chased from Merck (Milan, Italy). The solvents and all other chemicals were also purchased
from Merck (Milan, Italy). All of the solvents were of HPLC grade, whereas all of the
chemicals were of analytical grade. The water used was ultra-purified in a PURELAB Prima
System from Elga (Marlow, UK). The fluoroquinolone stock solutions were prepared by
dissolving 25 mg of the substance in 25 mL of water/methanol 1 + 1 (v/v), these solutions
were then stored in the dark at −20 ◦C.

Synthetic urine was prepared as previously reported [28], stored at 4 ◦C and discarded
no later than a week after its preparation.

2.2. Synthesis of NanoMIPs

The polymerization mixtures were prepared by modifying the general protocol re-
ported in the literature [13] and adjusting the dilution of the monomers in order to avoid the
formation of unwanted lumps of polymer. All of the mixtures (the molar compositions of
which are reported in Table S1, Supplementary Materials) were made in 25 mL of ultrapure
water by mixing BIS, AA, NIPAm and TBAm (each of which was dissolved in 0.5 mL of
ethanol). Then, 5 mL of each of the mixtures was added to 50 mL capacity polypropylene
SPE cartridges containing 2.5 g of functionalized glass beads. The cartridges were purged
with nitrogen for 5 min, 3 µL of TEMED and 100 µL of a 30 mg mL−1 aqueous solution of
APS were added, and then polymerization was carried out at room temperature for 1 h
in a roller-equipped incubator. The supernatant was drained by vacuum aspiration, the
dry cartridges were cooled to 4 ◦C and the polymerization by-products and low-affinity
nanoMIPs were washed with 10 × 2 mL of ice-cold water. The high-affinity nanoMIPs
were collected by eluting the cartridges with 5 × 2 mL of hot water. The eluates were
lyophilized, weighed and stored at 4 ◦C.

The nanoMIPs were grafted onto aminated glass beads in accordance with the protocol
that has been previously reported [26].

2.3. HPLC Method

A reverse-phase HPLC analysis was used for fluoroquinolone determination. The
HPLC apparatus (Merck-Hitachi, Milan, Italy) that was utilized was a LaChrom Elite
system, composed of a programmable binary pump (L-2130), an auto-sampler (L-2200) and
a fluorescence detector (L-7485). The LaChrom Elite system was provided with EZChrom
Elite software for instrumental programming, data acquisition and data processing. The
column used was a 100 mm × 4.6 mm C-18 Onyx (Phenomenex, Milan, Italy). The mobile
phases used were water/acetonitrile 88 + 12, acetic acid 1% (v/v) for fluoroquinolones,
a 50 mmol L−1 acetate buffer and pH 8.1/methanol 40 + 60 (v/v) for chlortetracycline.
Elution was performed in isocratic conditions at a flow rate of 0.7 mL min−1. The sam-
ple volume that was injected was 5 µL and the fluorescence wavelengths were: CIP,
DAN, ENR, LOM, NAR, SAR: λex = 280/λem = 440 nm; LEV: λex = 278/λem = 540 nm;
MOX: λex = 294/λem = 503 nm; and CTX: λex = 380/λem = 532 nm. The analyte solutions
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between 5 and 100 ng mL−1 in concentration were analyzed in triplicate and the mean
peak areas were plotted against each concentration. The calibration plot was drawn by
using a weighted linear regression (weight = 1/conc).

2.4. Determination of Binding Properties

To measure the equilibrium binding isotherms, unbound fractions of fluoroquinolones
were measured by reverse-phase HPLC analysis with fluorescence detection, in accordance
with the previous literature [25]. Each experimental data point was assessed as the average
of three repeated measures and binding parameters were calculated in accordance with the
Langmuir binding isotherm by nonlinear least squares fitting.

2.5. Preparation of MISPE Cartridges

Adequate amounts of glass beads grafted with nanoMIPs (1 g) were suspended
in water and packed into 5 mL capacity, empty polypropylene SPE cartridges that were
provided with frits to secure the packing and outlet stopcocks. The columns were connected
to a vacuum manifold and washed extensively with water, then dried under a vacuum.
Immediately before any use, the cartridges were activated with 500 µL of MES buffer
50 mmol L−1, pH 4.5. When necessary, the columns were cleaned and regenerated by
washing with 500 µL mL of water/acetic acid 9 + 1 v/v and 3 × 500 µL of water.

2.6. Optimization of the MISPE Method

In order to optimize the procedure of fluoroquinolone extraction, different protocols
were applied during the loading and washing steps. In the subsequent experiments, each
extraction was repeated three times and the amount of analyte recovery was evaluated as
the average of the single values that were measured.

To investigate the effects of the different loading solutions, ciprofloxacin (200 ng mL−1)
in synthetic urine was diluted 1 + 9 v/v with 50 mmol L−1 MES (pH 4.5–5.5) or phosphate
buffers (pH 6.5–8.5), and then 250 µL of diluted solution was loaded into the cartridge.
After the sample loading, the cartridge was washed with 250 µL of methanol/acetic acid
9 + 1 v/v.

To investigate the effects of the different washing solutions, ciprofloxacin (200 ng mL−1)
in synthetic urine was diluted 1 + 9 v/v with 50 mmol L−1 MES buffer, pH 4.5, then 250 µL
of diluted solution was loaded into the cartridge. After the sample loading, air was
passed through the cartridge for 10 min in order to remove all of the residual traces
of the solution. Then, the cartridge was washed with 250 µL of 50 mmol L−1 MES
buffer, pH 4.5, ultrapure water, methanol, acetonitrile, acetone, tetrahydrofuran or ethyl ac-
etate. Air was passed through the cartridge for 10 min to remove all of the residual traces of
the washing solution and the retained ciprofloxacin was eluted with 250 µL of methanol/acetic
acid 9 + 1 v/v.

To investigate the effects of the different loading volumes, ciprofloxacin (200 ng mL−1)
in synthetic urine was diluted 1 + 9 v/v with 50 mmol L−1 MES buffer, pH 4.5 and 0.10, 0.25,
0.50, 1.00, 2.00 or 5.00 mL of diluted solution was loaded into the cartridge. Then, air was
passed through the cartridge for 10 min in order to remove all of the residual traces of the
loading solution and the retained ciprofloxacin was eluted with 250 µL of methanol/acetic
acid 9 + 1 v/v.

2.7. MISPE Selectivity

In order to investigate the selectivity of the optimized extraction protocol in the
loading solution, ciprofloxacin was substituted with 7 other fluoroquinolones (danofloxacin,
enrofloxacin, levofloxacin, lomefloxacin, moxifloxacin, norfloxacin and sarafloxacin), and
chlortetracycline, which was chosen as an unrelated substance. For each of these ligands, a
standard solution of 200 ng mL−1 in synthetic urine was diluted 1 + 9 v/v with 50 mmol L−1

MES buffer, pH 4.5 and then 250 µL of this diluted solution was loaded into the cartridge.
Then, air was passed through the cartridge for 10 min in order to remove all of the residual
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traces of the solution. The retained ligands were eluted with 250 µL of methanol/acetic
acid 9 + 1 v/v.

2.8. MISPE of Real Samples

Blank urine samples collected from four individuals were mixed and then filtered
through a 0.22 µm polypropylene membrane. The resulting 10 mL samples were spiked
with known amounts of ciprofloxacin (ranging from 2 to 20 µg), or a mixture of ciprofloxacin,
danofloxacin and norfloxacin (20 µg each), and then immediately extracted with the op-
timized protocol reported in Section 2.7. To evaluate the reproducibility of the MISPE
protocol, each extraction was repeated five times and the rate of analyte recovery was
evaluated as the average of the single values that were measured.

3. Results
3.1. Optimization of the Polymerization Mixture

The polymerization mixture that has been previously used [26] to prepare nanoMIPs
with molecular ciprofloxacin recognition properties was composed of a cross-linking agent
(N,N′-methylene-bis-acrylamide) and two functional monomers, which have the task of
interacting with the template through either hydrogen bonds/ion pairs (acrylic acid) or
hydrophobic interactions (N-tert-butylacrylamide). These monomers constitute 70% molar
of the mixture, the remaining 30% of which consists of N-isopropylacrylamide, a ther-
moresponsive monomer that is useful for the selective detachment of nanoMIPs from
the solid phase at the end of the synthesis process. However, since we were not sure
that this mixture was optimal for obtaining nanoMIPs that are characterized by a high
affinity constant towards ciprofloxacin, we chose to utilize a two-factor central compos-
ite (d = 2, n = 9) experimental design by varying the relative quantity of the cross-linker
(1–5 mol%) and the functional monomers (acrylic acid, 10–50 mol%) in the polymerization
mixtures, keeping unchanged the amount of thermoresponsive monomer.

The binding affinities for ciprofloxacin calculated from Langmuirian binding models
(the results of which are reported in Table S2, Supplementary Materials) were fitted against
the molar percentages of AA and tBAM by using a six-parameter polynomial model. The
response surface, reported in Figure 1, fits quite well with the experimental design points
used in the design, with r2 = 0.921 and fit standard error = 0.607 (see Table S3, Supple-
mentary Materials). Less complex five- or four-parameter designs that were lacking in
interaction or quadratic parameters were discarded because they produced response sur-
faces with lower correlation coefficients (r2 < 0.8) and higher fit standard errors (>1–2), As
the polynomial model that was used provides an interaction term between the independent
variables (parameter a5 in Table S3), the resulting surface shows an obvious saddle shape,
with two distinct regions where the binding affinities are higher and an intermediate region
with a saddle-centered maximum where the binding affinities are lowest. It should be noted
that the formulation of the polymerization mixture previously reported in literature [26]
corresponds to a response surface region characterized by high binding constants. For
these reasons, several polymers with very different molar composition were potentially
suitable to set up a MISPE protocol with, among which we have chosen the formulation P6,
which corresponds to nanoMIPs with high affinity (3.00 ± 0.75 × 106 M−1) and binding
site concentration (18.8 ± 2.9 nmol g−1).
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Figure 1. Responding surface of the two-factor central composite design. Red dots: experimental points.

3.2. Optimization of the MISPE Protocol

In order to optimize the procedure of fluoroquinolone extraction, we initially focused
our attention on the composition of the loading and washing solutions. Synthetic urine
containing 200 ng mL−1 of ciprofloxacin was diluted 1 + 9 with buffers of different pH
levels. As reported in Figure 2, there is a clear effect of the buffer’s pH on the retention of
ciprofloxacin, as the acidic buffer shows a limited loss of analytes while the neutral and
basic pH buffers do not quantitatively retain them. This result confirms the results reported
in literature, where ciprofloxacin-binding nanoMIPs show binding constants decreasing
when pH increases [26].
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Figure 2. Effect of pH on loading of 1 mL of synthetic urine containing 200 ng mL−1 of ciprofloxacin,
diluted 9 + 1 v/v with 50 mmol L−1 buffers.

Once optimal loading conditions were defined, we evaluated the effect of the washing
solutions; considering 1 mL of water, an MES buffer at pH 4.5 and organic solvents of
decreasing polarity (methanol, acetonitrile, acetone, tetrahydrofuran and ethyl acetate).
As reported in Figure 3, none of these solutions, with the exception of the less-polar ethyl
acetate, is capable of quantitatively retaining ciprofloxacin. It should be noted that the
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loading buffer is also unable to fully retain the analyte, even if the loss is significantly less
(~25%) than that of all of the other solutions. As a consequence of this result and taking into
account that, by eluting the cartridges loaded with real urine samples with ethyl acetate,
the corresponding chromatogram does not show any peak whatsoever, it was therefore
decided to omit the washing step, limiting the process to drying the cartridges carefully
after loading the sample.
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Figure 3. Effect of 1 mL of washing solutions on retention of ciprofloxacin after loading of 1 mL of
synthetic urine containing 200 ng mL−1 of ciprofloxacin, diluted 9 + 1 v/v with 50 mmol L−1 MES
buffer, pH 4.5.

The effect of increasing the loading volumes was evaluated considering samples of
synthetic urine spiked with ciprofloxacin at a fixed concentration of 200 ng mL−1 and
diluted 1 + 9 v/v with 50 mmol L−1 of MES buffer. The results, reported in Figure 4, show
that when the loading volumes are larger than 0.25 mL, the recovery of the analyte drops
sharply, becoming very small when 5 mL of the sample is loaded. This is unexpected,
as the nanoMIP P6 that was used to prepare the MISPE cartridges shows a binding site
concentration of 18.8 ± 2.9 nmol g−1. This is a static binding capacity of ~6 µg/cartridge
of ciprofloxacin, corresponding to 60 times greater than the amount present in 5 mL
of the sample. The cause of this poor loading capacity is unclear, but, in any case, a
loading volume of 0.25 mL ensures a good retention of the analyte in the MISPE protocol
reported here.
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3.3. MISPE Selectivity

The selectivity of the optimized MISPE protocol was investigated by extracting sev-
eral analogues that are related to different generations of antibiotics [29], the molecular
structures of which are reported in Scheme 2. They are different from ciprofloxacin by
substituents but they share the common fluoroquinolone nucleus.
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The results, reported in Figure 5, show that the imprinted cartridge is able to retain
all of the examined fluoroquinolones with recovery rates greater than 80%, while chlorte-
tracycline (an antibiotic substance with a molecular structure completely different from
that of fluoroquinolones) is poorly retained. The group selectivity shown by the nanoMIPs
can be explained by considering that the positions on the rigid molecular structure of
the fluoroquinolone, which presumably are most responsible for the interaction with the
binding site, correspond to the positions C3 (carboxyl) and C4 (quinone); these are far from
the positions N1 and C7 that determine structural differences. It follows that the significant
molecular recognition of all fluoroquinolones is essentially determined by the presence of
some ubiquitous structures on this class of molecules. These ubiquitous structures are the
condensed ring systems that give shape and size to the binding site and the presence of
the carboxyl-quinone system in positions C3-C4, which guarantees the same non-covalent
interaction mechanism for all molecules. Moreover, it is clear that the basic shape of the
ligands is equally important. Chlortetracycline, which possesses a pair of substituents
in the C1-C2 positions (similar to the carboxyl-quinone system) but exhibits a radically
different condensed ring system, is poorly recognized by nanoMIPs.
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Figure 5. Selectivity after loading of 1 mL of synthetic urine containing 200 ng mL−1 of analyte,
diluted 9 + 1 v/v with 50 mmol L−1 MES buffer, pH 4.5.

3.4. MISPE of Real Samples

In order to evaluate the ability of the MISPE cartridges to extract from real samples of
human urine, blanks were spiked with known amounts of ciprofloxacin or a mixture of
three different fluoroquinolones (ciprofloxacin, danofloxacin, and norfloxacin).

The recovery of ciprofloxacin was determined by comparing the HPLC detector re-
sponses of five different urine samples. The recovery rates, reported in Table 1, were
determined at five concentration levels of ciprofloxacin (between 0.2 to 2 µg mL−1), re-
sulting in levels between about 82% and 85% with a relative standard deviation <5%.
Moreover, pairwise t-tests performed to compare the recovery rates obtained at different
ciprofloxacin concentrations showed no statistical differences between the groups, with
t-values (n = 5, α = 0.05) between 0.290 and 0.938 (see Table S4, Supplementary Materials).
These results show that the extraction protocol performed well, with good recovery rates
and a substantial insensitivity to varying concentration levels.

Table 1. Recovery of ciprofloxacin in human urine after dilution 9 + 1 v/v with 50 mmol L−1 MES
buffer, pH 4.5 and MISPE. Values are the mean ± 1σ of 5 samples.

Ciprofloxacin, µg mL−1 Recovery, %

0.2 84.8 ± 4.4
0.5 82.7 ± 4.5
1.0 85.4 ± 4.5
1.5 82.9 ± 3.6
2.0 85.0 ± 3.1

t-values for pairwise comparison: 0.432 (0.2 vs. 0.5 µg mL−1), 0.821 (0.2 vs. 1.0 µg mL−1), 0.477 (0.2 vs. 1.5 µg mL−1),
0.910 (0.2 vs. 2.0 µg mL−1), 0.316 (0.5 vs. 1.0 µg mL−1), 0.938 (0.5 vs. 1.5 µg mL−1), 0.290 (0.5 vs. 2.0 µg mL−1),
0.352 (1.0 vs. 1.5 µg mL−1), 0.880 (1.0 vs. 2.0 µg mL−1), 0.334 (1.5 vs. 2.0 µg mL−1).

Satisfactory sample clean-up was achieved; this can be seen in the example reported
in Figure 6, where the chromatograms of before and after the MISPE of the urine spiked
with the fluoroquinolone mixture at a concentration level of 2 µg mL−1 are reported.
When comparing the chromatograms, it can be seen that fluoroquinolones can be detected
with some difficulty when a sample of urine is separated directly by reverse phase-HPLC
without preliminary MISPE, while the same sample that was analyzed after MISPE shows
a cleaner chromatographic trace, where the peaks corresponding to fluoroquinolones can
be more easily detected and, as a consequence, quantified.
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4. Discussion

In this work, we demonstrate that it is possible to use nanoMIPs prepared by solid
phase synthesis to develop a MISPE technique that is suitable for real matrices. This re-
sult was not taken for granted from the start; in fact, unlike materials prepared through
more traditional molecular imprinting techniques, solid phase synthesis allows the prepa-
ration of nanopolymers only in very small quantities, at the level of mg per synthesis
cycle. Furthermore, the typical dimensions of nanoMIPs obviously do not make their
direct use as packing materials for SPE cartridges possible. We, therefore, thought of
supporting nanoMIPs on glass microspheres, based on an experimental approach that
we have previously used to successfully measure the binding isotherms of this type of
nanomaterials [25,26]. We also considered it feasible to use very limited amounts of the
nanoMIPs by designing their use in this study to align with the use of natural antibodies
in the preparation of cartridges for immunoaffinity studies. In fact, even in this case, the
typical quantity of antibodies that are covalently bound to the supports is very small.
Nonetheless, this small amount does not affect the extraction efficiency of the method [30].
However, it should be noted that the attempt to preconcentrate the samples to further
increase the method’s sensitivity was not effective, as the ability of MISPE cartridges to
retain the analytes with loading volumes greater than 0.25 mL involves a significant drop
in the recovery rate. Since the static binding capacity of the MISPE cartridges used is much
greater than the amount of ciprofloxacin that is actually loaded into them, even in the
presence of large sample volumes, it is clear that further studies will be necessary to clarify
the origin of this behavior and to try to find a possible remedy.

In conclusion, the experimental results reported here show a MISPE/HPLC method
allowing the direct extraction of fluoroquinolones from buffered urine samples at the
µg mL−1 level, with good recovery rates and precision, without interference from the
matrix. We believe that these results are, although limited to a small number of analytes in
a single real matrix, a good proof-of-concept for the use of nanoMIPs in MISPE methods.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/separations8110226/s1, Table S1: molar composition of the prepolymerization mixtures
used in the experimental design and resulting binding affinities of the corresponding nanoMIPs.
Table S2: nonlinear fitting of Langmuirian binding models for ciprofloxacin-imprinted nanoMIPs.
Table S3: nonlinear fitting of 6-parameter polynomial model for the two-factor central composite
(d = 2, n = 9) experimental design.

https://www.mdpi.com/article/10.3390/separations8110226/s1
https://www.mdpi.com/article/10.3390/separations8110226/s1
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