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Abstract: Azo dyes are synthetic organic dyes used in the textile, leather, and paper industries. They
pose environmental problems due to their toxic and persistent nature. The toxicity is due to the
presence of azo groups in the dye molecule that can break down into aromatic amines, which are
highly toxic to aquatic organisms and humans. Various treatment methods have been developed to
remove azo dyes from wastewater. Conventional wastewater treatments have some drawbacks, such
as high operating costs, long processing times, generation of sludge, and the formation of toxic by-
products. For these reasons, a valid alternative is constituted by advanced oxidation processes. Good
results have been obtained using heterogeneous photocatalysis and supercritical water oxidation.
In the former method, a photocatalyst is in contact with wastewater, a suitable light activates
the catalyst, and generated reactive oxygen species that react with pollutants through oxidative
reactions to their complete mineralization; the latter involves pressurizing and heating wastewater
to supercritical conditions in a reactor vessel, adding an oxidizing agent to the supercritical water,
and allowing the mixture to react. In this review paper, works in the literature that deal with
processing wastewater containing azo dyes through photocatalysts immobilized on macroscopic
supports (structured photocatalysts) and the supercritical water oxidation technique have been
critically analyzed. In particular, advancement in the formulation of structured photocatalysts for the
degradation of azo dyes has been shown, underlying different important features, such as the type of
support for the photoactive phase, reactor configuration, and photocatalytic efficiency in terms of dye
degradation and photocatalyst stability. In the case of supercritical water oxidation, the main results
regarding COD and TOC removal from wastewater containing azo dyes have been reported, taking
into account the reactor type, operating pressure, and temperature, as well as the reaction time.

Keywords: heterogeneous photocatalysis; supercritical fluids; textile wastewater; organic pollutants

1. Introduction

Azo dyes are the class of commercial organic dyes most studied due to their wide
usage (they represent 70% of the dyes used in the textile industry [1] and are also widely
used in the food, cosmetic, and pharmaceutical industries) and their high toxicity. They
contain two nitrogen atoms linked by a double bond and two functional groups, R and
R’. Their general formula is R–N=N–R’, in which one nitrogen atom is hooked up to an
aromatic group (R), whereas the other is linked to a substituted aromatic group (R’). The
azo bond linkage may be present once (monoazo dyes), twice (diazo dyes), or three times
(triazo dyes) [2]. They are typically obtained via diazotization of a primary aromatic
amine, followed by coupling with one or more electron-rich nucleophiles, such as amino
and hydroxy [3,4]. In general, the chemical structure of an azo dye is represented by a
backbone, the auxochrome groups, the chromophoric groups, and the solubilizing groups.
The color of azo dye is determined by the azo bonds and their associated chromophores and

Separations 2023, 10, 230. https://doi.org/10.3390/separations10040230 https://www.mdpi.com/journal/separations

https://doi.org/10.3390/separations10040230
https://doi.org/10.3390/separations10040230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/separations
https://www.mdpi.com
https://orcid.org/0000-0002-2205-7871
https://orcid.org/0000-0002-8975-6861
https://doi.org/10.3390/separations10040230
https://www.mdpi.com/journal/separations
https://www.mdpi.com/article/10.3390/separations10040230?type=check_update&version=1


Separations 2023, 10, 230 2 of 24

auxochromes [5]. As schematically represented in Figure 1, they can be further classified
into acid, basic, sulfur, reactive, disperse, and vat dyes.
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Acid dyes are anionic, water-soluble salts made of sulphonic (R-SO3Na) or carboxylic
acid sodium salts (R-COONa) that can color wool, nylon, and silk fibers at an acidic
pH. Basic dyes are cationic salts of organic bases used for dyeing wool, acrylic, and silk
fibers. Sulfur dyes (amino/nitro aromatic compounds with –S=S– linkages) are the most
commonly used in cellulosic textiles for cotton. They are non-ionic and, therefore, insoluble
in water; these dyes are predominantly black, brown, and dark blue. Reactive dyes are
water-soluble anionic dyes constituted of a chromophore, one or two reactive auxophores,
and a solubilizing group. They are mainly used for coloring cellulose fibers but can also
be applied to wool and nylon. Disperse dyes are non-ionic, insoluble, or only slightly
soluble in water, synthetic, and typically used on polyester; however, they have also been
used on nylon, cellulose acetate, and acrylic fibers. They are polar molecules based on azo
compounds; nevertheless, anthraquinone derivatives are frequently used to produce violet
and blue colors. Vat dyes are insoluble dyes based on anthraquinone or indigo, classified
as such because of the method by which they are applied. They are used to color cellulosic
materials in a vat.

Several papers in the literature deal with the properties of azo dyes [7–9], evidencing
the simplicity in their synthesis procedures, high solubility, and high uptake by the sub-
strate. The properties mentioned above make using azo dyes preferable over other possible
organic dyes in textile industries [10]. The extensive use of these dyes by textile industries
is the leading cause of environmental pollution problems since they are commonly present
in discharged wastewater, releasing potential carcinogenic and toxic substances into the
aqueous phase [11,12]. The environmental problem linked to the use of azo dyes is made
more severe by the fact that wastewaters from textile industries contain mixtures of dyes
with several stable organic components having different structures. The toxic impact of
azo dyes is generally due to their high concentration, which confers a strong color on
wastewater [7,13].

Consequently, the penetration of visible light into the water is strongly reduced,
inhibiting the photosynthesis process [13]. Additionally, because of the aromatic rings
in their chemical structure, azo dyes are considered toxic, carcinogenic, and xenobiotic
compounds [13–15], which can also cause damage to human beings, including their repro-
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ductive and central nervous systems [16]. Figure 2 reports the trend of indexed papers
regarding azo dye removal from wastewater. The data were obtained from the Scopus
database. The figure shows an exponential trend in the last ten years, underlying the
increasing interest of the scientific community in this topic.
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Considering all such aspects, treatment methods to remove azo dyes through decol-
orization and detoxification should be performed before discharging textile wastewater
into natural water bodies [17,18]. Several physical, chemical, and biological treatments
are used for the removal of organic dyes contained in wastewaters, such as coagula-
tion/flocculation [19,20], adsorption [21,22], membrane technology [23,24], and enzymatic
degradation [25,26]. Although a high azo dye removal efficiency is achieved using these
treatment methods, their main drawback lies in their high operating costs, long processing
times, and complicated treatment logistics for large-scale application [27,28]. There are also
other disadvantages, such as the generation of sludge, which needs further treatment and
makes the process uneconomical, the need to regenerate the adsorbent, and the formation
of more toxic by-products [29,30]. Moreover, conventional biological treatments based on
bacteria cannot remove azo dyes effectively because of the high chemical stability of syn-
thetic dyes. Moreover, the main disadvantages of the commercial use of chemical oxidation
methods, such as electrochemical processes, are their high electrical energy requirements,
significant use of chemicals, and the design of proper equipment [31,32]. Moreover, it is
worthwhile to underline that conventional biological treatments based on bacteria cannot
remove azo dyes effectively because of the high chemical stability of synthetic dyes [14,33].

Therefore, innovative methods for removing azo dyes from water and wastewater
must be developed to overcome these drawbacks. From this perspective, advanced ox-
idation processes (AOPs) could represent an exciting alternative. AOPs are based on
generating hydroxyl radicals (OH•) in mild conditions [13,34]. OH• can completely ox-
idize various water pollutants, including azo dyes [12]. Among the different traditional
(i.e., ozonization [35], photo-Fenton [36–39], and UV/H2O2 processes [40,41]) and inno-
vative (i.e., non-thermal plasma [42,43] and photoelectrocatalysis [44,45]) AOPs, hetero-
geneous photocatalysis is still one of the most studied processes for the removal of water
pollutants [46] since it can be carried out under UV, visible, or solar light at room tem-
perature and atmospheric pressure using only oxygen as an oxidant, leading to complete
mineralization of organic pollutants into CO2 [47,48]. However, the possibility of generating
toxic reaction intermediates during the irradiation time cannot be excluded [31].

Another innovative treatment method is supercritical water oxidation (SCWO) [49].
SCWO, also known as hydrothermal oxidation, consists of the homogeneous oxidation
of chemical compounds in an aqueous medium, using oxygen or hydrogen peroxide
as the oxidizing agent, at a higher pressure and temperature than water’s critical point
(i.e., 22.06 MPa and 373.9 ◦C) [50]. The main application of SCWO is for the destruc-
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tion of wastewater and sludges, especially those containing recalcitrant, xenobiotic, and
nonbiodegradable pollutants. Compared with AOPs, SCWO technology has several ad-
vantages, such as no interphase mass and heat transfer resistance in supercritical water,
very high degradation kinetics, and short treatment time (in most cases less than 1 min);
indeed, with the appropriate reaction temperature, pressure, and residence time, almost any
pollutant can be completely destroyed [50–52]. This process is considered environmentally
friendly as it eliminates harmful pollutants, reduces the volume of waste, and produces
water and carbon dioxide as the main by-products [53].

Concerning heterogeneous photocatalysis, again, the vast majority of studies in the
literature discuss the formulation of powder photocatalysts and testing of their ability to
degrade azo dyes in slurry-type photocatalytic reactors [5,54,55]. However, using photocat-
alysts in powder form requires a further processing step to separate the photocatalyst from
the treated water and recover it for reuse [56]. This post-treatment step is a time-consuming
and expensive process [57]. To overcome such drawbacks, many efforts have been made
to immobilize photocatalysts onto solid macroscopic supports to formulate structured
photocatalysts to be used in fixed-bed photoreactors to remove azo dyes [58–60]. However,
review papers devoted explicitly to the different structured photocatalysts to be used in
the degradation of azo dyes are still scarce. Additionally, to the best of our knowledge, the
strengths and weaknesses of SCWO are worth discussing and comparing. For these reasons,
the aim of this paper is to provide a comprehensive review of the application of innovative
processes based on the use of structured catalysts, such as SCWO and heterogeneous
photocatalysis, for the removal of azo dyes in wastewater.

2. Structured Photocatalysts for Azo Dye Removal
2.1. Fundamentals of Heterogeneous Photocatalysis

The mechanism of heterogeneous photocatalysis for the oxidation of organic pollutants
is based on the use of semiconductor particles irradiated by light with a suitable amount of
energy [61,62]. In detail, when the light energy is greater or equal to the semiconductor
band gap, electron–hole (e−/h+) pairs are generated [62], and the electrons are promoted
from the valence band (VB) to the conduction band (CB) of the semiconductor, causing
positive holes in the VB. Positive holes are strongly oxidizing reactive species that can
react with H2O, leading to the formation of OH•. On the other hand, electrons in the
semiconductor CB have a strongly reducing power and can react with oxygen dissolved in
the liquid medium, generating the superoxide ion (O2−) [61]. Both OH• and O2− can react
with organic molecules through oxidative reactions to completely mineralize the target
pollutants [63]. Figure 3 reports the simplified mechanism for activating a semiconductor
by light.

However, despite the presence of light with the right energy, to achieve high degrada-
tion performances, the pollutants must be adsorbed on the photocatalyst surface.

More specifically, the mechanism of heterogeneous photocatalysis (schematized in
Figure 4) is based on five main steps: (1) transfer of reactants (A and B) from the liquid
phase to the photocatalyst surface; (2) adsorption of the reactants (A * and B *); (3) reaction
between the adsorbed reactants, producing the product (AB); (4) desorption of P from the
semiconductor surface and (5) transfer of the product into the bulk of the liquid phase [63].

A wide variety of undoped and doped semiconductors, including TiO2, ZnO, SnO2,
WO3, Fe2O3, and CdS, were studied for the purification of water/wastewater polluted
by azo dyes under UV, visible, and solar light thanks to their good photocatalytic perfor-
mances, light absorption properties, charge carries transport characteristics, and simple
preparation process [60,64–72]. However, as pointed out above, most photocatalysts are
used as suspended particles in slurry photocatalytic reactors, making separating and recov-
ering these powder photocatalysts necessary after completely removing dyes, limiting the
application of a photocatalytic process at the industrial scale. Consequently, photocatalysts
should be immobilized within the photoreactor to avoid the post-treatment separation
step [61,73,74].
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2.2. Immobilized Photocatalysts for Azo Dye Degradation

A possible solution to avoiding the photocatalyst recovery step is immobilizing the
semiconductors directly on the reactor walls in contact with the water to be treated and
exposed to the light source [75,76]. However, it must be considered that the immobilization
of photocatalysts on the reactor walls (as shown in Figure 5) or other parts of photocatalytic
reactors has some drawbacks. Indeed, in the case of photoactivity decreases, it is challenging
to remove and replace the photocatalysts [77]. Therefore, immobilizing the photocatalysts
on macroscopic supports with a defined geometry (structured photocatalysts) that may be
easily replaced in the photoreactors is the most cost-efficient method. Moreover, structured
photocatalysts are permanently retained in the photocatalytic reactors [76], thus ensuring
good contact between the liquid medium and the photocatalyst [77] and enhancing the
photodegradation rate [78].
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From a practical point of view, the chosen support for photocatalysts must have the
following features: strong adherence between the photocatalyst and support, no decrease
in photocatalytic activity upon immobilization, a high specific surface area, and strong
adsorption affinity towards the pollutants to be degraded [79–81].

The most studied support materials for immobilizing photocatalysts include glass,
activated carbon, polymers, alumina, quartz, and some biodegradable materials (i.e., cel-
lulose), among others [79]. Different techniques for preparing structured photocatalysts
were also extensively reported in the literature. Some of these included the sol–gel pro-
cess accomplished using dip coating steps [82,83], thermal treatment [84–86], chemical
vapor deposition [87], electrodeposition [88,89], sol–spray deposition [90], and hydrother-
mal processes [91]. All such preparation methods were developed to anchor photocat-
alyst particles onto the chosen support stably, minimizing as much as possible the re-
duction in photocatalytic activity with respect to the photocatalyst in powder form [61].
Table 1 reports the catalytic performances of different photocatalysts immobilized on macro-
scopic supports and specifically formulated for the degradation of azo dyes in the last
fifteen years.

Table 1. Catalytic performances of different photocatalysts immobilized on macroscopic supports.
AO = Acid Orange; AR = Acid Red; COD = chemical oxygen demand; EB-T = Eriochrome Black
T; MO = Methyl Orange; NR = Novacron Red; RO = Reactive Orange; TOC = total organic carbon;
WW = wastewater.

Azo Dye Photocatalyst Light Source Reactor Degradation (%) Treatment Time
(min) Ref.

MO TiO2/steel mesh UVA Batch Total discoloration; TOC
removal = 22% at pH = 6.8–7 180 [92]

AR 14 TiO2/GO plate UVA Batch Discoloration = 96.38% at
pH = 9 120 [93]

RO 16 TiO2:ZnO/3D
fabric UVC Batch Discoloration =96.38% in the

presence of H2O2
60 [94]

AR 88 ZnO/glass plate UVC Batch COD removal = 60% 240 [95]

MO TiO2/ceramic
templates UV Batch Discoloration of about 90% 210 [96]

MO TiO2/polyethersulfone
film UVA Batch Discoloration = 90%; TOC

removal = 38% at pH = 5.8 540 [97]
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Table 1. Cont.

Azo Dye Photocatalyst Light Source Reactor Degradation (%) Treatment Time
(min) Ref.

EB-T N-TiO2/glass
spheres

UVA
Vis Batch

Discoloration = 41% under
UV light and 31% under

visible light; TOC
removal = 35% under UV

light and 30% under
visible light

210 [83]

MO Ag@AgCl/ZnO on
glass Vis Batch Discoloration = 80.7%; TOC

removal = 38% at pH = 5.8 120 [98]

MO AgX/ZnO
on glass Vis Batch Discoloration = 84% 180 [91]

MO Carbon/
ZnO on glass UVC Batch Discoloration = 84%; TOC

removal = 56% at pH = 5 95 [99]

EB-T CdS/ZnO
on glass Vis Batch Discoloration = 45% 90 [100]

RO ZnO/carbon fabric UVA Batch Complete discoloration 100 [101]

MO g-C3N4/
GO aerogel Vis Batch Discoloration = 91.1% 40 [102]

MO BaTiO3 aerogels UVA Batch Discoloration = 92.59% at
pH = 3 120 [103]

MO TiO2/polypropylene
fabrics UV-Vis Batch Total discoloration 120 [104]

Tannery WW
polluted by azo

dyes
ZnO/glass spheres UVA Batch COD removal = 70% 120 [86]

AO 7
N-

TiO2/polystyrene
plate

Vis Batch Discoloration = 55%; TOC
removal = 54% 180 [105]

AR 73 TiO2/sackcloth
fiber UVA Batch Discoloration = 86%; COD

removal = 96% at pH = 6.5 180 [57]

EB-T TiO2 pellets UVA Continuous Complete discoloration 10 (steady-state
condition) [106]

NR TiO2/glass plate UV Continuous Discoloration = 15% at
pH = 7

350 (steady-state
condition) [107]

The data reported in Table 1 show that common macroscopic support materials for the
immobilization of photocatalysts are glass spheres or glass plates [83,86,91,95,99,100,107],
confirming that glass continues to be used as a support for most photocatalytic applica-
tions [79]. Indeed, it is well known that glass is permeable to UV and visible light, allowing
high light transmission to the aqueous solutions. Therefore, no optical constraints influ-
ence the photoreactor design and operation [108]. Moreover, immobilizing photocatalysts
on macroscopic glass supports is generally reflected in structured photocatalysts having
good stability after several reuse cycles. For instance, in the paper by Vaiano et al., a N-
doped TiO2 (N-TiO2) photocatalyst was immobilized on glass spheres through the sol–gel
method and tested for its ability to degrade Eriocrome Black T under UV and visible-light
irradiation, showing good photocatalytic activity both in the decolorization and in TOC re-
moval [83]. Furthermore, the photocatalytic activity of TiO2- and ZnO-based photocatalysts
immobilized on a glass plate was also determined, and these photocatalysts were tested
for their ability to remove different azo dyes [95,98,100,107], evaluating in some cases the
stability of the catalytic systems after reuse cycles. In particular, Yu et al. [98] prepared
Ag@AgCl/ZnO on a glass plate and tested the reusability of the optimized photocatalyst
in the degradation of Methyl Orange (MO) and Methylene Blue (MB) (Figure 6).
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The photocatalytic discoloration performance of the optimized structured photocat-
alyst exhibited a negligible loss of photoactivity after four reuse cycles, highlighting its
stability and reusability. Moreover, the authors reported scanning electron microscopy
(SEM) images showing that the reused photocatalyst retained its original morphological
structure.

In addition to glass media, carbon-based materials, such as graphene oxide (GO), were
proposed as photocatalyst supports [102]. It is reported that these materials can ensure
high dye degradation performances because of their chemical inertness, stability, large pore
volume, large adsorption sites, and good thermal properties [79,109]. From this perspective,
Tang et al. prepared a g-C3N4/GO aerogel hybrid with a macroscopic 3D architecture
(Figure 7) for visible-light-driven degradation of MO [102].
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2017 Elsevier.

The stability of the aerogel was tested through five photodegradation cycle runs
(Figure 8).

It is possible to observe that MO photocatalytic degradation reached about 91% during
the fifth run, within 40 min of the visible-light irradiation treatment. Based on such
results, GO aerogel could be a suitable macroscopic support for visible-light-activated
photocatalysts to quickly achieve a high photodegradation efficiency.

However, synthesizing graphene-based compounds is expensive, and their use could
be recommended only for applications such as solar cells [108] and electronics devices [109]
requiring high electrical conductivity.
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(a different color has been used to represent the lines related to different cycles). Reprinted with
permission from [102]. Copyright © 2017 Elsevier.

It is possible to observe that MO photocatalytic degradation reached about 91% during
the fifth run, within 40 min of the visible-light irradiation treatment. Based on such
results, GO aerogel could be a suitable macroscopic support for visible-light-activated
photocatalysts to quickly achieve a high photodegradation efficiency.

However, synthesizing graphene-based compounds is expensive, and their use could
be recommended only for applications such as solar cells [108] and electronics devices [109]
requiring high electrical conductivity.

For these reasons, polymeric materials (as well as aerogels) have gained much at-
tention in recent years for their use in formulating structured photocatalysts [64,79,109].
Polymeric substances are relatively easy to prepare and inexpensive, chemically inert,
mechanically stable, and durable [79,110–113]. Moreover, because of their low density,
polymer supports can help formulate buoyant structured photocatalysts for water and
wastewater treatment [111,114–117]. Compared with rigid substrates (such as glass, steel,
and ceramic templates), polymeric materials are flexible and bendable, making them the
second most common and practical support for the immobilization of different types of
photocatalysts [109]. In this field, polyethersulfone-TiO2 film photocatalysts were prepared
using a phase inversion technique and used in the photocatalytic degradation of MO under UV
light, achieving engaging removal performances (discoloration = 90%; TOC removal = 38% at
pH = 5.8) [97].

Moreover, a buoyant photocatalyst consisting of TiO2 immobilized on polypropylene
fabrics was tested under UV-Vis light for the degradation of MO, achieving complete dye
degradation after 120 min of treatment, whereas under only Vis light, MO degradation was
about 90% after 240 min of irradiation [104]. Very recently, Sannino et al. [105] immobilized a
visible-light-activated photocatalyst (N-TiO2) in powder form on a transparent polystyrene
plate (PS) using a simple solvent-assisted procedure. The obtained structured photocatalyst
(N-TiO2/PS) was placed in a photocatalytic reactor with a flat-plate geometry, irradiated by
a matrix of 240 LEDs emitting Vis light to degrade Acid Orange 7 dye (AO7). The results
show that, after 180 min of irradiation, the AO7 discoloration efficiency was unchanged
(about 55%) after five reuse cycles (Figure 9), highlighting the stability of a structured
photocatalyst realized with a polymer macroscopic support.
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Moreover, the final values of TOC removal efficiency (about 54%) were very close to
the AO7 discoloration efficiency; thus, it could be argued that total conversion to CO2 and
water occurred thanks to a developed photocatalytic system (photoreactor with flat-plate
geometry + N-TiO2/PS structured photocatalyst).

In addition to polymeric films and plates, the use of polymer aerogels as supports
for photocatalysts to be used in the degradation of water pollutants (including dyes) is
also under investigation [64,118–122]. Polymer aerogels are extensively used in various
applications, such as electrochemical and catalysis, because of their low toxicity, highly
porous structure, buoyancy, and, therefore, ease of recovery [64,118,123,124]. In addition,
photocatalyst particles can be entirely or partly embedded in the framework of polymer
aerogels to minimize the leaching phenomena of photoactive phases from the support to
the aqueous medium [118]. However, to date, most polymer aerogels have been used to
remove various organic pollutants and rarely for azo dye photodegradation. For instance,
Hasanpour et al. [125] studied the photocatalytic degradation of MO using a cellulose/ZnO
aerogel (CA/ZnO) under UV light, showing complete dye discoloration after 120 min of
irradiation. The optimized CA/ZnO system also effectively removed other types of dyes
(Methylene Blue and Rhodamine B).

Another aspect to consider is the operational mode (batch or continuous) of the
photoreactors in which the structured photocatalysts are placed. From Table 1, it can be
seen that the most used photoreactors are in batch configuration. However, since batch
treatment systems are not helpful for industrial applications of photocatalytic systems,
there is growing interest in the design and development of continuous-flow photocatalytic
reactors [106,126,127]. Indeed, photocatalytic reactors operating in the continuous mode
are preferred because of the high demand for dye degradation in wastewater from textile
industries, where a large volume of polluted water is generated by flow processes [107].
Among the continuous photoreactors, flow microreactors have received much attention,
especially for photochemical reactions. Using photocatalytic microreactors allows for the
uniform irradiation of the entire solution volume, and consequently, the photocatalytic
degradation rate is markedly enhanced [128,129]. Microreactors can also improve the mass
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transfer phenomena thanks to forming a thin film of polluted solution directly in contact
with the surface of structured photocatalysts, thus ensuring an efficient penetration of
light inside the core of the photoreactor [130]. Considering the specific case of azo dye
photodegradation, Mohammed Redha et al. [107] studied the photocatalytic degradation
of Novacron Red C-2BL in a miniaturized reactor (Figure 10) with an interchangeable
TiO2 nanofilm immobilized on a glass plate (40 × 25 × 1 mm) using the sol–gel dip
coating method.
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Reprinted from [107].

The effect of different parameters, such as the pH, liquid flow rate, light intensity,
amount of deposited TiO2, and reaction temperature, was assessed. Under the optimized
operating conditions, about 15% of the dye was degraded, but the steady-state conditions
were reached after 350 min of run time. Much better photocatalytic degradation perfor-
mances for two azo dyes were reported in the paper by Vaiano et al. [106]. Specifically,
Eriochrome Black T (EBT) and MO were photodegraded in a continuous- flow photocat-
alytic microreactor irradiated by UV-LEDs and filled with TiO2 pellets in a cylindrical shape
(size: 12.5 mm × 5.5 mm) (Figure 11).
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Figure 11. Schematic picture of the experimental apparatus based on continuous-flow photocatalytic
microreactor irradiated by UV-LEDs and filled with TiO2 pellets. Adapted with permission from [106].
Copyright © 2020 Elsevier.

The experimental results show that the best photocatalytic performances (EBT and
MeO discoloration of about 100% and 90%, respectively) were achieved with a 0.5 mL/min
liquid flow rate. It is essential to underline that with the continuous-flow photocatalytic
packed-bed reactor proposed by Vaiano et al. [106], the steady-state conditions were reached
after about 10 min of irradiation.
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3. Supercritical Water Oxidation for Azo Dye Degradation
3.1. Fluids in Supercritical Conditions

Some innovative processes based on the use of supercritical fluids have found wide
application in various research and industrial sectors [131,132]. A fluid is in the supercritical
state when its pressure and temperature are higher than the critical values, as evident in
the Pressure vs. Temperature diagram reported in Figure 12.
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Under these conditions, some properties of the substance are similar to those of a
liquid (e.g., density or solvent power), and others are similar to those of a gas (e.g., viscosity
or diffusivity) [133,134]. The substances mainly employed in the supercritical state are
carbon dioxide [135,136] and water [137,138]. The processes based on the former (whose
critical values are 31.1 ◦C for temperature and 7.38 MPa for pressure) are widely used in the
processing of thermolabile compounds, such as pharmaceuticals [139] or foods [140]; the
role of supercritical carbon dioxide is, in general, that of a co-solute, solvent, antisolvent,
and foaming agent [141–144].

Supercritical water (SCW, critical temperature = 373.9 ◦C and critical pressure = 22.06 MPa)
is mainly used as a reagent in processes such as SWG of biomass to produce hydrocarbon
fuels [145], aqueous biomass stream conversion into clean water and gases [146], and
SCW oxidation for the treatment of hazardous waste [147]. It is well known that water at
standard pressure and temperature conditions is a suitable solvent for polar compounds.
However, when it is in supercritical conditions, it behaves as an unassociated, non-polar
solvent [148,149]; therefore, it becomes a good solvent for compounds that are not very
soluble in water under ambient conditions, such as molecular oxygen, hydrogen, nitrogen,
carbon monoxide, and numerous organic compounds [150].

3.2. Supercritical Water Oxidation

Supercritical water oxidation can convert organic substances into water and carbon
dioxide in a single-phase reaction within short residence times (1–100 s) and with very high
conversion rates (99–99.99%). The different polarity of water in supercritical conditions
compared to water in ambient conditions plays a fundamental role in the presence of
a single phase; indeed, many inorganic compounds, such as salts, are water-soluble at
ambient conditions and only slightly soluble in SCW. This means that during the SCWO
of industrial wastes, inorganics precipitate as solids for subsequent disposal [151]. The
hetero-atoms of chlorine, sulfur, or phosphorus, which can be present in organic waste,
are transformed into hydrochloric (HCl), sulfuric (H2SO4), and phosphoric (H3PO4) acids,
respectively. Organic carbon is converted to carbon dioxide (not carbon monoxide), and
organic and inorganic nitrogen mainly form N2 and small amounts of N2O. Unwanted
by-products from incineration, such as dioxins or NOx, are generally not formed [152].

SCWO has been studied since 1990 and developed at the industrial scale for treating
industrial wastewater [153,154]. SCWO is an evolution of the well-established process of
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wet air oxidation (WAO), in which the reaction process generally takes up to several hours;
moreover, the complete removal of the organic material is very rarely achieved (in general,
the efficiencies vary between 50% and 90%), with the need for subsequent treatments of the
waste [155,156]. SCWO can be schematized considering four main steps: (1) pressurization
of the reagents; (2) reaction; (3) salt separation; (4) depressurization and heat recovery. In
the last step, it is necessary to use SCWO at an industrial scale because of the massive
quantity of energy required to pressurize and preheat the reagents; indeed, the integration
of the process allows energy to be recovered from the hot pressurized product stream
for preheating or producing electricity [50]. A typical configuration of an SCWO plant is
sketched in Figure 13 [157]. It is constituted of a feed tank, a high-pressure feed pump,
a high-pressure air compressor, preheaters, a reactor, a cooling system, a back-pressure
regulator, a gas–liquid separator, and sampling ports [158]. The plant schematized in
Figure 13 is energetically self-sufficient because the reactor operates without any external
energy supply. After all, the energy released in the reactor is used for the preheating step.
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SCWO of Azo Dyes

Among its various applications, SCWO has been used to remove azo dyes from
wastewater. Indeed, oxidative decolorization techniques often have a disadvantage in
that the decomposition products are more toxic than the starting waste material; SCWO
is characterized by minimized secondary toxicity [159] and is energy-efficient if the TOC
content of the waste is higher than 10% [149].

A list of the main results obtained using SCWO in decolorizing textiles (in particular,
those containing azo dyes) is reported in Table 2, in which, for each dye, the operating
conditions and the main results obtained are indicated.



Separations 2023, 10, 230 14 of 24

Table 2. SCWO main results with H2O2 as the oxygen source. BB = Basic Blue; COD = chemi-
cal oxygen demand; CV = Crystal Violet; DO = Disperse Orange; EBB = Eriochrome Blue Black;
MB = Methylene Blue; MO = Methyl Orange; P = pressure; RB = Reactive Black; RBl = Reactive Blue;
RO = Reactive Orange; RR = Reactive Red; t = residence time; T = temperature; TOC = total organic
carbon; WW = wastewater.

Dye
P [MPa]
T [◦C]

t [s]
Reactor Main Results Ref.

BB 41
P = 25 ± 1

T = 400–650
t = 9–19

Continuous

TOC removal efficiency up to 99.87%;
complete degradation of BB41 and

transformation into CO2, H2O, and their
intermediate products

[160]

CV
P = 24

T = 275–500
t = 100–150

Batch
TOC degradation efficiency higher than 95%
at temperatures higher than 385 ◦C with a
removal efficiency up to 99.9% at 500 ◦C

[161]

DO 25
P = 25 ± 1

T = 400–600
t = 5–11

Continuous

COD conversion efficiency up to 98.5%;
complete degradation of the molecular

structure of DO25; clear and colorless water
at temperatures higher than 500 ◦C

[162]

DO 25
P = 25 ± 1

T = 400–600
t = 5–11

Continuous

TOC removal efficiency up to 99.96%;
liquid-phase products were clear and

colorless at temperatures of 500 ◦C and
above; they were clear and yellowish at

400 and 450 ◦C

[163]

EBB
P = 24

T = 275–500
t = 100–150

Batch
TOC degradation efficiency higher than 95%
at temperatures higher than 300 ◦C with a
removal efficiency up to 99.9% at 500 ◦C

[161]

MB
P = 24

T = 275–500
t = 100–150

Batch TOC degradation efficiency higher than 95%
at all the tested temperatures, with a

removal efficiency up to 98% at 500 ◦C
[161]

MO
P = 24

T = 275–500
t = 100–150

Batch
TOC degradation efficiency higher than 95%
at temperatures higher than 385 ◦C with a

removal efficiency up to 99% at 500 ◦C
[161]

RB 5
RBl 49
RR 3

P = 30
T = 400
t = 600

Batch

Total decolorization of the dye was
achieved at each dye concentration (TOC
from 1 to 15%); an optimum 5–10% excess

concentration is recommended for
cost-effective SCWO of the reactive dyes
studied; 99.9% TOC removal efficiency

[149]

RO 7
P = 25 ± 1

T = 400–550
t = 60–1200

Batch COD conversion up to 98%; TOC removal
efficiency up to 88% [30]

RO 7
P = 25

T = 450–600
t = 600

Batch COD and TOC decomposition efficiencies
reached 99.6% and 93.9%, respectively [164]

Textile WW
P = 25

T = 520–600
t = 120–600

Batch
COD removal efficiency up to 99.8%;

catalytic SCWO strongly enhances the
removal efficiency of COD and NH3-N

[165]

Textile WW
P = 25

T = 400–600
t = 8–16

Continuous

TOC removal efficiency up to 100% and
hydrothermal decomposition up to 93.8%;
color of the WW removed completely at

temperatures of 450 ◦C and above

[166]
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Table 2. Cont.

Dye
P [MPa]
T [◦C]

t [s]
Reactor Main Results Ref.

Textile WW
P = 22–30

T = 320–430
t = 13–34

Continuous COD removal efficiency of more than 98.4%
at the optimal reaction conditions [29]

Textile WW
P = 25

T = 400–600
t = 15–45

Continuous
TOC conversions of the effluents after

SCWO equal to 99.79% at the best
reaction conditions

[167]

Observing the results reported in Table 2, it is evident that the pressure is, generally, in
the range of 22–30 MPa, and the temperature is in the range of 400–600 ◦C; the reaction time
depends on the type of reactor used: it is of the order of minutes in the case of batch reactors,
and of the order of a few seconds in continuous reactors. The experiments are generally
performed with an excess of oxygen (300–500%); this choice is commonly made because,
due to the complexity of the wastewater dye, the amount of oxygen necessary to oxidize
completely organic compounds in wastewater cannot be calculated using established
chemical reaction equations. Indeed, some authors verified that the amount of intermediate
products, such as methane, ethane, ethylene, propane, and propylene, decreased with
excess oxygen [166]. The oxygen source is almost always hydrogen peroxide (H2O2)
because of its aromatic ring-opening capability, which makes it more effective than other
low-cost oxidants [168]. However, in some cases not reported in Table 2, oxygen [169] and
air [157] have been used as oxidant agents.

In some studies, whose main results are reported in Table 2, one (or a few) azo com-
pounds were removed from the water; in other cases, a mixture of compounds contained
in the wastewater of the textile industry were considered. For example, Yang et al. [170]
analyzed the SCWO of 14 N-containing compounds. Some azo dyes, such as Eriochrome
Blue Black R (EBBR) and Methyl Orange (MO), have been studied. The reaction conditions
were a residence time of 150 s, a stable pressure of 24 MPa, temperatures of 350–500 ◦C, and
500% excess oxygen, achieving a total nitrogen (TN) removal of up to 96%. Subsequently,
the same group [171] investigated the SCWO of 41 organic compounds classified according
to the different N-groups contained in the molecules. Among them, Crystal Violet (CV) and
Basic Green (BG) were included in the -NH2 group; EBBR, Orange G (OG), Acid Chrome
Blue K (ACBK), and Solvent Red 23 (SR23) in the -N=N- group; and MO, Eriochrome Black
T (EBT), Azure B, Acid Orange 74 (AO74), and alizarin yellow GG (AYGG) in the mixed
group. SCWO was performed in a continuous reactor at 24 MPa and 450 ◦C with reaction
times ranging from 30 s to 360 s and 500% excess oxygen; the TOC removal efficiencies
were above 80% and even reached 100%, indicating that azo compounds were successfully
decomposed through SCWO.

The evidence of color removal has often been documented in the literature by com-
paring the wastewater containing the dye and the treated water [160,164]. For example,
Figure 14 shows the color change of water containing Basic Blue 41 dye (BB41) after SCWO
at two different temperatures. In the experiment, which was performed at 450 ◦C, partial
degradation of the dye was achieved (TOC decomposition equal to 77.76%), whereas when
operating at 600 ◦C, the TOC decomposition rate was equal to 99.08% [160]. Correspond-
ingly, the wastewater processed at 450 ◦C still showed residual color (Figure 14, vial in
the middle), while the one from which the dye had been wholly removed appeared clear
(Figure 14, vial on the right).

The complete removal of color is always achieved at relatively high temperatures.
Söǧüt and Akgün [166] observed that the color of a dyehouse wastewater containing several
organic pollutants could be wholly removed at temperatures of at least 450 ◦C.



Separations 2023, 10, 230 16 of 24

Separations 2023, 10, x FOR PEER REVIEW 17 of 27 
 

 

whereas when operating at 600 °C, the TOC decomposition rate was equal to 99.08% [160]. 
Correspondingly, the wastewater processed at 450 °C still showed residual color (Figure 
14, vial in the middle), while the one from which the dye had been wholly removed 
appeared clear (Figure 14, vial on the right). 

 
Figure 14. Basic Blue 41 solution (left) after oxidation at 450 °C (middle) and 600 °C (right). 
Reprinted with permission from [160]. Copyright © 2009 Elsevier. 

The complete removal of color is always achieved at relatively high temperatures. 
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An interesting finding was highlighted by Zhang et al. [30], who studied the reaction
pathway of the azo group in the molecular structure of Reactive Orange 7 (RO 7) through
theoretical analyses followed by experimental verification. These authors observed that
nitrogen was mainly converted to gases and discharged, as opposed to ammonia, which
was dissolved in liquid. This result seems to be in contrast with previously obtained
results from the literature [172,173]; indeed, it has been frequently observed that nitrogen-
containing compounds subjected to SCWO give as a final product nitrogen gas, which is
refractory to SCWO, with ammonia as the primary reaction intermediate. In one study, in
the case of aromatic azo compounds, which are characterized by high thermal stability, the
azo group contained in RO7 was attacked by OH• and oxidized to the diazo group; the
diazo compound, in the presence of water at high temperature and high pressure, promptly
gave rise to a hydrolysis reaction:

Ar
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OH + N2 + H

in which a hydroxyl group replaced the diazo groups with the formation of nitrogen and
H+ [30]. For this reason, ammonia nitrogen was scarcely produced during the SCWO of
the azo dye under consideration.

Despite its very high performance in terms of conversion, SCWO has some drawbacks.
Indeed, supercritical water causes corrosion, salt deposition, management of biphasic
wastes, and plugging caused by the insolubility of mineral salts above the critical point; this
aspect reduces the efficiency of the chemical reaction and sometimes blocks the process.

Several attempts have been made to overcome these limits by following different
approaches. For example, Zhang et al. [30] used a lining made of stainless steel 316 to
cover the inner surface of the reactor to avoid body corrosion. Bermejo et al. [174] designed
different transpiring wall reactors in which the reaction chamber was limited by a porous
sintered AISI 316 wall. Clean and cold water, flowing continuously through the wall,
creates a thin layer that protects the wall against corrosion and salt deposition. They
compared the performance of different configurations, such as a fully porous wall and two
partially porous walls made of a porous sintered alloy and a nonporous alloy. The best
results in terms of temperature resistance and protection of the wall were obtained with the
latter design.

For these reasons, in recent years, catalytic subcritical water oxidation (CSCWO) has
been catching on [6]. Indeed, using a catalyst can decrease the experimental temperature
and pressure conditions and the reaction time, thereby decreasing the size of the reactor
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and heat exchanger, and ultimately reducing the total cost of the process. However,
CSCWO involves using a catalyst to accelerate the oxidation of organic compounds with the
consequent introduction of additional costs and the need for regeneration and replacement
of the catalyst itself. From the point of view of applicability, SCWO is most effective method
for waste streams with a high organic content, while CSCWO is more suitable for waste
streams with a lower organic content.

SCWO is underdeveloped on an industrial scale because of some technical aspects [51]
related to:

• The high amount of energy required for the start-up of the process, which can be
overcome by running the process for extended periods;

• The stringent thermal control necessary to retain safe conditions and carry out optimal
energy recovery, which can be achieved using cooling water injections in various
positions along the reactor;

• The possible erosion of the internal parts of the back-pressure regulator valves due to
suspended solid particles contained in the wastewater that can create problems during
the depressurization step.

4. Conclusions and Perspectives

Regarding heterogeneous photocatalysis, this review paper summarizes the advance-
ments in photocatalysts immobilized on macroscopic supports (structured photocatalysts)
for the degradation of azo dyes. Various important features of structured photocatalysts
and their photocatalytic efficiency have been discussed.

Based on the literature analysis, some aspects of possible future research are reported
in the following:

1. Due to their high light transmission and chemical stability, glass materials (such as
glass spheres and glass plates) are still the most commonly reported supports for pho-
tocatalysts. Still, they have been used for the degradation of azo dyes mainly at the lab-
oratory scale, and their effectiveness at the industrial scale still has
to be proven.

2. Besides glass substrates, polymeric materials (in the form of films or plates) are
effective supports for structured photocatalysts utilized for azo dye degradation.
However, in recent years, monolithic polymer aerogels with photocatalytic properties
have been shown to be promising materials for wastewater treatment since these
materials present exciting features, such as a high porosity, high specific surface area,
low density, and easy separation from the treated water. Despite such advantages,
to date, most polymer aerogels have been used to remove a wide variety of organic
pollutants and rarely for azo dye photodegradation. Therefore, specific research
studies on using these materials for colored wastewater are recommended.

3. Studies on structured photocatalysts have been carried out to enhance their photocat-
alytic performances in dye degradation, achieving, in most cases, high removal only
after prolonged irradiation time. Therefore, it is necessary to investigate the possibility
of coupling photocatalytic processes based on structured photocatalysts with other
treatment technologies (e.g., adsorption) to maximize the removal efficiency at a very
low treatment time.

4. Previous works are mainly based on the use of batch photocatalytic reactors. However,
since batch treatment systems are not recommended for industrial applications of
photocatalytic systems in actual practice, developing continuous-flow photocatalytic
reactors with a high efficiency in degrading azo dyes is desirable. From this perspec-
tive, it was reported that using microreactors allows the entire solution volume to be
irradiated uniformly, substantially enhancing the photodegradation performances.
However, photocatalytic microreactors only work with meager liquid flow rates,
typically 3–6 mL/min. These values are far from the typical values for wastewater
coming from textile industries. Therefore, future research papers should focus on the
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design, scaling up, and feasibility demonstrations of photocatalytic microreactors for
industrial applications, specifically for treating wastewater polluted by azo dyes.

Supercritical water oxidation has been used to remove azo dyes from wastewater
using batch and continuous reactors. Different authors have observed that, with respect to
water at ambient conditions, supercritical water allows the dissolution of many organic
compounds because of their differing polarities in supercritical conditions. SCWO can
convert the organic substances in wastewater into water and carbon dioxide in a single-
phase reaction and with an almost complete (99–99.99%) conversion rate. The operating
conditions tested by the various authors processing different azo dyes are not very different
from each other: indeed, the pressure is, generally, in the range of 22–30 MPa, and the
temperature in the range of 400–600 ◦C. The reaction time depends on the reactor type: it is
of the order of minutes (1–20 min) in the case of batch reactors and of the order of a few
seconds (5–45 s) in continuous reactors. The experiments are generally performed with
an excess of oxygen (300–500%) to ensure the conversion is as complete as possible. In
this review paper, the limits of SCWO and the possible strategies contrived by researchers
to overcome them (such as using reactors with transpiring walls to avoid corrosion of
equipment and pipes) have also been highlighted.
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