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Abstract: The accuracy of the power battery model and SOC estimation directly affects the vehicle
energy management control strategy and the performance of the electric vehicle, which is of great
significance to the efficient management of the battery and the improvement of the reliability of
the vehicle. Based on the research of domestic and foreign battery models and the previous results
of SOC estimation, this paper classifies power battery models into electrochemical mechanism
models, equivalent circuit models and data-driven models. This paper analyzes the advantages and
disadvantages of various battery models and current research progress. According to the choice of
battery model, the previous research results of the power battery SOC estimation method are divided
into three categories: the direct measurement method not based on battery model, the estimation
method using black box battery model, and the battery model SOC estimation method based on
state space. This paper will summarize and analyze the principles, applicable scenarios and research
progress of the three categories of estimation algorithms aiming to provide references for future
in-depth research. Finally, in view of the shortcomings of the battery model and estimation algorithm
of the existing method, the future improvement direction is proposed.

Keywords: power battery; battery model; SOC estimation method; research review

1. Introduction

Power battery SOC estimation is one of the key technologies of electric vehicles, and
its accuracy directly affects the vehicle energy management control strategy and the perfor-
mance of the electric vehicle, which in turn affects the reliability and cost of the vehicle. It
is also an important parameter in the battery management system. On the one hand, it can
provide drivers with important information about the driving range. On the other hand,
it also provides an important basis for preventing battery overcharge and overdischarge
from reducing battery life and battery pack management and maintenance [1]. However,
due to the complex electrochemical characteristics of the battery, it exhibits a high degree
of nonlinearity during use. The battery SOC state variable cannot be directly measured.
It can only be estimated by externally measurable battery terminal voltage, charge and
discharge current, etc. In addition, the estimation process is easily affected by factors such
as temperature, cycle times, discharge rate, voltage, noise, etc., which makes it difficult to
accurately estimate the battery SOC in real time [2]. Therefore, the SOC estimation of the
power battery needs to establish an appropriate battery model for research. An accurate
and appropriate power battery model can effectively reflect the correspondence between
the external parameters of the battery and the internal state of the battery, and simplify
and specify the SOC estimation problem. It is very important for the simulation, design
and optimization of electric vehicles. The complexity of the model and the computational
cost of the processor also affects the decision making and control of the BMS system [3]. It
can be seen that the establishment of an accurate and simple battery model and accurate
battery SOC estimation directly affects the vehicle energy management control strategy
and the performance of electric vehicles.
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At present, domestic and foreign researchers have achieved some important results
in the preliminary research on battery models and battery SOC estimation. There is a lot
of related literature on power battery SOC estimation. These review documents have a
certain reference value for the research progress of SOC estimation, but there are many
defects with incomplete summary and the lack of process expression, as shown in Table 1.
Compared with other review literature, this article summarizes the latest research results,
and comprehensively and thoroughly analyzes each battery model and SOC estimation
method. The advantages and disadvantages and research progress of each model and
estimation method are described in detail. According to the different modeling methods,
the battery model is divided into three categories: the electrochemical mechanism model,
the equivalent circuit model and the data-driven model. The article specifically analyzes the
main characteristics and development trends of each type of model, and comprehensively
analyzes and compares the advantages and disadvantages of various models. According
to the choice of battery model, the preliminary research results of power battery SOC
estimation are divided into three categories: the direct measurement method not based on
battery model, the estimation method based on black box battery model, and the estimation
method based on state space battery model. The article systematically sorts out various
algorithms and compares their advantages and disadvantages. Finally, the future research
trends of power battery models and SOC estimation methods are discussed and prospected.

Table 1. Comparison chart of published reviews.

Review Article Merits Demerits

[4]

In-depth overview of battery SOC
estimation methods, focusing on

estimation errors and their
advantages and disadvantages

Mathematical expressions,
flowcharts and structural

diagrams of related algorithms
are not provided

[5]

Focus on summarizing commonly
used lithium-ion battery SOC

estimation methods, and analyzing
the advantages and disadvantages of

various methods

The analysis of SOC estimation
algorithm and research progress

is not comprehensive

[6]

The SOC estimation methods of
batteries are reviewed, and three
battery models and model-based

estimation methods are
mainly introduced

The data-driven SOC estimation
method was not

specifically introduced

[7]

The SOC estimation method based on
the equivalent circuit model is
systematically sorted out and

compared with advantages and
disadvantages. It also introduces in

detail the factors affecting the
estimation error and
its countermeasures

Only the model-based SOC
estimation methods are reviewed

[8]

It focuses on analyzing the main
characteristics of five types of

estimation algorithms and
comprehensively comparing and

discussing the advantages and
disadvantages of models

and algorithms

The introduction to the battery
model is relatively brief

[9]

Analyze the improvement of the
battery model and the refinement of

the algorithm while considering
the temperature

The analysis of the research status
is not comprehensive enough
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2. Battery Model

In terms of battery model research, the battery model required to be established has
a good consistency with the external characteristics of the battery. The internal chemical
reaction of the battery is a complex non-linear process. The battery is polarized at the
moment when the charging and discharging current changes, that is, the battery terminal
voltage does not show pure resistance characteristics, but continuously changes in a non-
linear manner. The polarization of the battery will cause the resistance of the charging and
discharging current to flow through the battery to increase [10]. After long-term use, the
battery will still have aging problems, such as battery capacity degradation and internal
resistance increase, which will cause the power battery’s state of charge to seriously deviate
from the true situation [11]. There are individual differences between the batteries of
different monomers, from the battery monomer to the battery module to the battery pack,
the power performance is significantly attenuated. These factors make it difficult for people
to build an accurate battery model to accurately describe all battery performance. People
can only use many methods to simulate the characteristics of the battery from different
angles. Currently, the commonly used battery models include electrochemical mechanism
models, equivalent circuit models, and data-driven models.

2.1. Electrochemical Mechanism Model

The electrochemical mechanism model is to establish electrochemical power and trans-
mission equations according to the internal mechanism of the battery, consider the physical
and chemical properties of the positive and negative materials, the internal diffusion
process of the battery, the electrochemical reaction process, etc., and fully and accurately
describe the internal physical and chemical processes and external characteristics of the bat-
tery. Electrochemical models mainly include pseudo-two-dimensional models (P2D) [12],
single-particle models (SP) [13] and other simplified pseudo-two-dimensional models
(SP2D). The P2D model established by M. Doyle, T. F. Fuller and J. Newman based on
porous electrode theory, concentrated solution theory, and dynamic equations laid the
foundation for the development of electrochemical mechanism models. The P2D model is
rigorous and accurate, but its partial differential equations have no analytical solutions.
Generally, the finite difference method is used to solve them, which takes a long time,
and the coupling between the control equations is high, and the amount of calculation
is large, which cannot be applied to real-time SOC estimation. Reference [14] proposes a
P2D model parameter identification method based on a heuristic algorithm based on the
P2D model of lithium-ion batteries, which effectively reduces the model parameters to be
identified and reduces the calculation time. Most electrochemical models are derived and
developed on the basis of the P2D model. The SP model is the most mature simplified
model based on the P2D model to study the main performance of the electrode and the
influence of solid phase diffusion. This model replaces an electrode with a single particle,
ignoring the influence of liquid phase concentration and liquid phase potential on the
terminal voltage, and consists of only two control equations, reducing the parameters to be
identified and improving the calculation and simulation speed. However, due to ignoring
too many factors in the simplification process, the accuracy of the model is low, and it is
only suitable for small magnification and constant current conditions. Once the current
magnification increases, the electrolyte concentration changes significantly, and the model
error increases [15]. In order to adapt the SP model to large-rate constant current and
dynamic conditions, the solid-phase and liquid-phase lithium-ion diffusion equations were
simplified by the three-parameter parabolic method and Padé approximation method, and
a simplified reduced-order extended single-particle model (ESP) was established based on
the SP model [16–18]. The ESP model can not only ensure the accuracy of the SP model,
but also improve the model’s adaptability to high current conditions. In order to meet the
requirements of different discharge rates and real-time estimation of SOC, the P2D model
is reasonably simplified to obtain other SP2D models [19–21]. Reference [20] proposes a
simplified multi-particle model using predictor-correction strategy and alignment in order
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to maintain the accuracy of the SP model while reducing the complexity of the model.
The predictor-corrector strategy is used to solve the approximate value of the electrolyte
concentration to reduce the complexity of calculation, and the alignment is used to predict
the uneven effect of the electrochemical reaction, and improve the calculation efficiency
and estimation accuracy. However, there are still many SP2D model parameters obtained
after the simplification, and the sensitivity of each parameter to the output voltage is
different, and it is impossible to accurately identify all the parameters. Reference [21]
uses the non-linear least squares method combined with the Fisher information matrix to
analyze the identifiability of SP2D model parameters on the basis of SP2D model, thereby
establishing the SP2D-Iden model and improving the accuracy of SOC estimation.

2.2. Equivalent Circuit Model

The equivalent circuit model uses circuit components such as resistors, capacitors, and
constant voltage sources to form a circuit network to simulate the dynamic characteristics
of the battery. In order to accurately estimate the SOC value of the battery, the model is
required to better reflect the static and dynamic characteristics of the battery. However,
the order of the model should not be too high, which reduces the amount of processor
calculations and is easy to implement in engineering [22]. In addition, from an electro-
chemical point of view, the selected equivalent circuit model should reflect the relationship
between the battery’s electrochemical reaction process, electrode solids concentration,
electrolyte concentration, and open circuit voltage. Equivalent circuit models are divided
into integer-order models and fractional-order models. Common integer-order equivalent
circuit models include the Rint model, Thevenin model, PNGV model and multi-order
model, as shown in Figure 1.

The Rint model [23] uses an ideal voltage source Uoc and the battery DC internal
resistance R0 in the series to describe the dynamic characteristics of the power battery. R0
and Uoc are functions of SOC and temperature. This model has a simple structure and
is easy to implement, but the model has low accuracy and fails to describe the polariza-
tion phenomenon inside the power battery. It is an ideal situation and is not suitable for
applications in electric vehicles. The Thevenin model [24] is based on the Rint model,
adding a parallel RC network to simulate the polarization effect of the battery. This model
has a relatively simple structure and high simulation accuracy. It can also describe the
polarization effect inside the power battery. When the battery is charging or discharg-
ing, the change of the voltage at both ends shows both abrupt and gradual change. In
the Thevenin model, R0 is used to simulate the abrupt resistance characteristics, and RP
and CP are used to simulate the capacitance characteristics of voltage gradual changes.
Compared with the Rint model, the Thevenin model increases the research on the polar-
ization characteristics of the power battery, which can better simulate the dynamic and
static characteristics of the battery. In addition, the model parameters are relatively small,
and the curve fitting is mostly a single exponential model. The subsequent estimation
process requires less calculation, which is suitable for the SOC estimation of embedded
systems and meets the application requirements of electric vehicles [25]. On the basis
of the Thevenin model, a capacitor Cb can be connected in the series to form a PNGV
model [26]. This capacitor is used to describe the change in battery open circuit voltage
caused by current integration during the battery’s long-term charging and discharging
process. The PNGV model is a typical nonlinear equivalent circuit model, which has high
accuracy in simulating the transient response process, and is suitable for large current,
step-type, and more complex charging and discharging conditions. In theory, the model
should be more in line with the behavior of the battery in actual work, but the existing
equipment cannot detect the polarization process of the battery in detail, so it is impossible
to obtain a more accurate capacitance Cb value. In addition, the model has a relatively
high complexity, a large amount of calculation, and low real-time performance. In order
to better reflect the dynamic characteristics of the ternary lithium battery in the step-type
charging and discharging conditions, reference [27] extends the polarization circuit of the
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PNGV model and uses a dual RC circuit to replace the original single RC circuit. It more
closely characterizes the polarization characteristics of the battery and better simulates the
static circuit. Reference [28] proposed a PNGV battery model based on variable parameters,
and set R0, Rp, and Cp as variable parameters that vary with the battery SOC to reduce the
complexity of the model and reduce the amount of calculation. The model can simulate the
dynamic working characteristics of the battery in real time, which improves the accuracy
of the model. At present, most of the integer-order equivalent circuit models are based
on the Thevenin model by adding different circuit elements to obtain better performance.
Considering the electrochemical polarization reaction and concentration polarization re-
action inside the battery, adding an RC network to become a second-order RC equivalent
circuit can further improve the ability of the equivalent circuit to simulate the dynamic
characteristics of the battery, thereby improving the estimation accuracy of the battery
SOC [29–31]. The multi-level RC equivalent circuit model usually contains more than two
sets of RC polarization parameters, which are used to describe the dynamic and static
characteristics of the battery. The more RC components, the higher the estimation accuracy
of the power battery SOC, but the parameter identification will be more difficult. With
the increase in state dimensions and over-fitting problems, calculations will become more
complicated. The battery model must simultaneously meet the requirements for accurately
capturing the dynamic characteristics of the battery in terms of accuracy and adapting
to the real-time performance of the system in terms of complexity. Many researchers put
forward a third-order equivalent circuit model on the basis of taking into account accuracy,
complexity and practical value. The structure of the model is moderately complex and has
high accuracy, which can well reflect the dynamic polarization impedance of the battery
and simulate the real-time operating characteristics of the battery [32,33]. Reference [34]
combines the Thevenin model, second-order RC model and third-order RC model as a
hybrid model describing battery characteristics. The weights of the three models in the
hybrid model are calculated using the Bayesian method. However, this method requires a
large amount of calculation and is more difficult to use in engineering. If the requirements
of accuracy and system reliability are considered at the same time, it is more appropriate to
use the Thevenin model and the second-order RC circuit model as the equivalent circuit
model of the battery [35]. At present, a large number of battery modeling studies have
shown that in practical applications, generally only models below the third order are
required to meet the accuracy requirements, and current studies mostly use second-order
RC models to build SOC estimators [36–38].
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Although the research of the equivalent circuit model based on the fractional order the-
ory started late, it has developed rapidly and has obtained more research results. Figure 2
is a commonly used fractional-order model, replacing the pure capacitive element in the
Thevenin model with a constant phase EI-ement (CPE). In impedance spectrum fitting, the
CPE is often used in parallel with a pure resistance, and the CPE characteristics are difficult
to process in the time domain, which usually need to be processed by the theory of frac-
tional calculus. Commonly used fractional calculus theories have the Grünwald-Letnikov
(G-L) definition, Riemann-Liouville (R-L) definition and Caputo definition. For most func-
tions, the definitions of G-L and R-L are equivalent, and G-L provides the most direct form
and method for discretization approximation. The definition of Caputo is derived from the
definition of R-L. The difference between the two is that Caputo’s derivation of constants
is bounded, and R-L’s derivation of constants is unbounded. Caputo is mainly suitable
for the description and discussion of the initial value problems of fractional differential
equations, making it more accurate to describe the dynamic characteristics of the power
battery terminal voltage than the integer-order equivalent circuit model under the same
order. Reference [39] is based on G-L fractional calculus theory, mathematically derives the
discrete space state expression of equivalent circuit and establishes a first-order fractional
equivalent circuit model, which provides a model basis for power battery SOC estimation.
The impedance element in the fractional-order model can more accurately describe the
electrochemical process of lithium-ion batteries, such as charge transfer, electric double
layer effect, material transfer and diffusion, etc. It not only improves the accuracy, but
also effectively solves the computational complexity caused by too many modules [40].
Reference [41] uses a fractional-order model containing a CPE to simulate the voltage curve
under different conditions. The results show that its accuracy is higher than that of the
integer-order model of different orders. Compared with the traditional equivalent circuit
model, the fractional equivalent circuit model has the advantages of high accuracy and
flexible calculation. For example, the fractional-order model and fractional-order PNGV
model established based on the second-order equivalent circuit model in references [42,43]
can more realistically simulate the polarization effect and charge-discharge characteristics
of the battery. The selection of a general power battery model must not only meet certain ac-
curacy requirements, but also avoid being too complicated. Reference [44] established three
fractional high frequency equivalent circuit models based on electrochemical impedance
spectroscopy, which ensured the accuracy of the model and reduced the complexity of the
model, providing a reference for the choice of battery model.
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2.3. Data-Driven Models

Data-driven models have received widespread attention due to their flexibility and
model-free advantages. It avoids the modeling and parameter identification problems
based on model estimation methods, and can directly analyze the hidden information
and evolution rules from the external characteristic parameters of the battery. The data-
driven method is widely used in battery modeling, has a high degree of non-linearity
and self-learning characteristics, and has a good generalization ability for estimating
battery SOC in a non-linear system. Data-driven models mainly include neural network
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models, autoregressive models, and support vector machine models. In the modeling
process of the data-driven model, since there is no clear model structure to simulate the
internal reaction of the battery, only sufficient test data can be used to train the data
model. It can be applied to various types of batteries regardless of the type of battery [45].
Reference [46] constructed a random forest regression model for SOC estimation, which
effectively avoided the problem of over-fitting, improved the estimation accuracy, and
provided a reference for future estimation model research. Due to the frequent changes in
operating conditions and large differences in energy consumption under different operating
conditions, it is difficult to measure electrochemical parameters in the actual driving process
of the vehicle. Reference [47] analyzes vehicle energy consumption and extracts energy
consumption factors. Based on the collected vehicle operation data, machine learning
algorithms such as Lasso, Ridge, LGBoost, XGBoost are used to train the data, and the
energy consumption of temperature stratification is proposed. The model has high accuracy
and good prediction effect. Reference [48] proposed a radial basis function neural network
model to eliminate the impact of battery degradation on the accuracy of the original training
model. Although the data-driven model has many advantages, it requires a large amount
of battery experimental data as a drive. In the case of a small number of data samples,
the estimation accuracy is relatively general and the versatility is poor. Moreover, the
implementation of the algorithm takes a long time, and the real-time performance of the
application is difficult to guarantee. For the real-time performance of electric vehicles, it is
a greater challenge.

3. Research on SOC Estimation Algorithm

At present, there is much domestic and foreign research on battery SOC estimation.
According to the selection of models in battery SOC estimation, battery SOC estimation
algorithms are roughly divided into three categories: direct measurement method not
based on battery model, the SOC estimation method using the black box battery model,
and the SOC estimation method based on the state space battery model.

3.1. Direct Measurement Method Not Based on Battery Model

The direct measurement method that is not based on the battery model is to estimate
the battery SOC based on the battery’s voltage, current, internal resistance, impedance and
other reproducible battery parameter variables that have a significant correlation with the
battery. These battery parameter variables should be relatively easy to measure in actual
use. Direct measurement methods that are not based on battery models mainly include
the ampere-hour integration method, open circuit voltage method, internal resistance
method, impedance spectroscopy method, load voltage method, and special methods
suitable for specific objects. The ampere-hour integration method is also known as the
coulomb measurement method or the ampere-hour measurement method. Its essence is to
estimate the battery SOC by accumulating the amount of electricity charged or discharged
when the battery is charged and discharged. This method is simple and straightforward,
and has low requirements for controller hardware and storage. It is the basis of many
estimation algorithms and is currently the most used method. However, the ampere-
hour integral method also has some defects in estimating battery SOC [49]. This method
requires high accuracy of current sensors, and the accuracy of current sensors in practical
applications will be affected by noise, temperature drift and other random disturbances.
Furthermore, with the increase of time, the cumulative error of the battery SOC becomes
larger and larger. This method does not have the initial convergence and has a strong
dependence on the initial state value, so the accuracy of the initial battery SOC has a greater
impact on the estimation accuracy. This method also considers the battery charging and
discharging efficiency. In the case of high temperature and severe current fluctuations, the
estimation error is relatively large. At the same time, the battery static capacity decline
caused by the decline of the power battery performance will also affect the accuracy of
the SOC estimation. In order to avoid the constraints of the above factors and improve
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the calculation accuracy, the reference [50] proposed ampere-hour integration method
with capacity correction. The initial SOC value of the battery pack is obtained through
the open circuit voltage method. On the basis of the traditional ampere-hour integration
method, the correction factors of the charge and discharge rate, temperature and charge-
discharge coulomb efficiency are obtained through experiments to modify the ampere-hour
integration method capacity. This method effectively eliminates the capacity error of the
traditional ampere-hour integration method, but it does not give a specific model, and
it is difficult to realize engineering applications. In order to facilitate the engineering
application, the reference [51] determines the model parameters according to the battery
discharge data of different ambient temperature and current changes, and thus proposes a
new capacity correction model. The ampere-hour integration method using the new model
for capacity correction can effectively eliminate the cumulative error in the ampere-hour
integration method. At present, the ampere-hour integration method is often used in
combination with other algorithms in practical engineering applications, such as the open
circuit voltage method [52–54].

The open circuit voltage (OCV) of a battery is the voltage when the battery is in a steady
state in an open circuit condition, which is close to but smaller than the electromotive
force of the battery in value. The relatively fixed functional relationship between the
battery’s OCV and the SOC is used to estimate the battery SOC value. The corresponding
relationship can be obtained by looking up a table or curve fitting. Generally, the SOC-OCV
curves measured at different standing times are slightly different. The longer the standing
time, the more accurate the measurement of the OCV. Considering the test efficiency, the
OCV can be measured by standing for 1 h in accordance with the requirements of the
national standard, which can meet the requirements of the project. The current battery
SOC-OCV relationship curve is usually obtained based on experiments using polynomial
fitting methods [55,56]. The fitting accuracy becomes higher as the order of the polynomial
increases, but the increase of the order will also increase the degree of non-linearity and
increase the amount of calculation. Therefore, some scholars use logarithm to fit the
SOC-OCV curve. The logarithmic fitting method is applied to the ternary lithium battery
with higher fitting accuracy, but the fitting accuracy is lower when applied to the open
circuit voltage of the lithium-iron phosphate battery when the SOC is higher or lower [57].
Reference [58] uses a double exponential fitting method in SOC-OCV curve fitting, and
adds a square term on the basis of the double exponential function. This fitting method has
fewer equation coefficients and higher fitting accuracy. However, there are problems with
highly non-linear characteristics and difficult to use in real vehicles. Reference [59] proposes
a linear SOC-OCV curve fitting method that can be used in real vehicles. According to
the characteristics of the SOC-OCV curve, a piecewise straight-line fitting is performed
to reduce the amount of calculation, but the fitting accuracy is reduced. The open circuit
voltage method is relatively simple in structure, and has a good SOC estimation effect in the
initial and final stages of charging, but it requires a long time for the battery to stand still to
achieve voltage stability. Therefore, it is only suitable for electric vehicles in the parking
state when used alone. In engineering, the open circuit voltage is often combined with
the ampere-hour integration method to correct the cumulative error of the ampere-hour
integration method. Its fitting method is used in the controllable voltage source of the
equivalent circuit.

The internal resistance method uses the monotonic relationship between the internal
resistance of the battery and the SOC to estimate the SOC value of the battery under the
condition of knowing the internal resistance of the battery. The internal resistance of the
battery is divided into AC internal resistance and DC internal resistance, respectively
expressed as the resistance of the current to AC and DC. The AC internal resistance is
greatly affected by temperature, so it must be measured with an AC impedance meter.
The principle and application of the AC impedance method are detailed in reference [60].
The DC internal resistance is the ratio of the battery voltage change to the current change
in the same short period of time. Normally, the battery is charged or discharged with
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constant current from the open circuit state, and the difference between the load voltage
and the open circuit voltage in the same time divided by the current value is the DC
internal resistance. It should be noted that if the time period is shorter than 10 ms, only the
ohmic internal resistance can be detected; if the time period is longer, the battery internal
resistance will become complicated. So, it will be difficult to accurately measure the battery
internal resistance. The battery internal resistance measuring device is expensive and large
in size, and the internal resistance of the battery is generally on the order of milliohms,
which is easily affected by factors such as temperature and cycle times. Especially in the
driving of the car, there is a large electromagnetic interference, which makes it difficult
to accurately measure the internal resistance of the battery in the conventional circuit.
Therefore, the internal resistance method is not suitable for online estimation of power
battery SOC [61]. In engineering applications, the internal resistance method is often used
in combination with other algorithms [61–63].

The discharge test method is the most accurate and reliable method for determining
the SOC of a power battery. It is suitable for any battery. The current remaining capacity
can be obtained by the discharge test method. The discharge test method is an experimental
method in which the power battery is continuously discharged at a certain discharge rate
(usually 0.3C or 1C) at a constant current until the battery terminal voltage reaches the
discharge cut-off voltage. The integral of the discharged current value over time is used as
the SOC value of the battery [64]. The discharge test method is often used in the laboratory
as a reference standard for battery capacity testing. It is the most reliable SOC estimation
method and is applicable to all types of batteries. However, it also has shortcomings: the
test takes a long time, only after the entire discharge test is over, the SOC value at each
time can be calculated, and real-time estimation of SOC cannot be achieved; strict test
conditions are required, constant current and accurate measurement are required; during
the test, the battery in operation must be terminated and switched to a constant current
discharge state. Therefore, the discharge test method is not suitable for driving electric
vehicles, and can be used for the maintenance of power batteries and the identification of
battery model parameters.

Electrochemical impedance spectroscopy (EIS) is an important method for studying
the interface reaction mechanism and electrode process of the electrode and the electrolyte.
It plays an important role in establishing the electrochemical mechanism model of lithium-
ion batteries for the study of the electrode process. By testing the EIS when the battery
is discharged to different SOC values, parameters such as the charge transfer internal
resistance, total ohmic internal resistance and Warburg impedance of the battery are
obtained. According to the relationship between the obtained parameter and the SOC value,
find the parameter that has a monotonous relationship with the SOC, and the SOC value
of the battery can be estimated according to the parameter during use [65]. The accuracy
of estimating battery SOC based on EIS is high, and it can quickly and non-destructively
directly reflect the dynamic characteristics of batteries. However, the battery impedance is
costly, greatly affected by battery life, and is sensitive to temperature. When the battery
temperature changes greatly, it is difficult to accurately estimate the SOC value. In order to
explore the influence of temperature on battery impedance, reference [66] measured the
EIS of lithium-iron phosphate batteries at different SOCs and different temperatures. Using
the information of the whole frequency band, the change of battery EIS was explored from
both the amplitude and phase. It was found that the battery impedance phase at a certain
frequency has a strong linear relationship with the SOC at a certain temperature, which
can be used as a parameter for estimating SOC. Reference [67] research on lithium-iron
phosphate battery EIS found that when the temperature of the environment where the
battery is fixed, the current SOC value of the battery can be obtained by only measuring
the impedance of the battery at a single frequency.

At the moment when the battery starts to discharge, the battery voltage quickly
changes from the open circuit voltage state to the load voltage state. If the current is
constant, the change rule of the load voltage is similar to the open circuit voltage [68].
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Compared with the open circuit voltage method, the load voltage method has a better
estimation effect in constant current discharge. However, in practical applications, due
to the large changes in the demand current, the load voltage method cannot be used to
estimate the battery SOC during driving. It is usually only used to determine whether the
discharge is cut off.

A special method is proposed for a certain type of battery. For example, the stable
internal pressure method is used to measure the SOC of a nickel-hydrogen battery in
reference [69]. After the nickel-hydrogen battery is left standing, its internal stable pressure
has a corresponding relationship with the battery SOC. However, this method requires an
internal pressure sensor, and whether it can be applied to other types of batteries remains
to be studied.

3.2. SOC Estimation Method Based on the Black Box Battery Model

The black box battery model regards the battery as an unknown system, takes the
online measurable battery current, voltage, temperature, etc., as the input of the model, and
the battery SOC as the output of the model. It trains input and output data through some
intelligent algorithms, and establishes the relationship between input and output, as shown
in Figure 3. The black box battery model usually uses neural networks, support vector
machines, fuzzy algorithms, deep learning and other methods to obtain the estimation
method of the battery SOC value according to the input battery state parameters.

Processes 2021, 9, x FOR PEER REVIEW 10 of 23 
 

 

constant, the change rule of the load voltage is similar to the open circuit voltage [68]. 

Compared with the open circuit voltage method, the load voltage method has a better 

estimation effect in constant current discharge. However, in practical applications, due to 

the large changes in the demand current, the load voltage method cannot be used to esti-

mate the battery SOC during driving. It is usually only used to determine whether the 

discharge is cut off. 

A special method is proposed for a certain type of battery. For example, the stable 

internal pressure method is used to measure the SOC of a nickel-hydrogen battery in ref-

erence [69]. After the nickel-hydrogen battery is left standing, its internal stable pressure 

has a corresponding relationship with the battery SOC. However, this method requires an 

internal pressure sensor, and whether it can be applied to other types of batteries remains 

to be studied. 

3.2. SOC Estimation Method Based on the Black Box Battery Model  

The black box battery model regards the battery as an unknown system, takes the 

online measurable battery current, voltage, temperature, etc., as the input of the model, 

and the battery SOC as the output of the model. It trains input and output data through 

some intelligent algorithms, and establishes the relationship between input and output, 

as shown in Figure 3. The black box battery model usually uses neural networks, support 

vector machines, fuzzy algorithms, deep learning and other methods to obtain the estima-

tion method of the battery SOC value according to the input battery state parameters. 

Battery 

Neural Networks
Support Vector 

Machines

Deep learningFuzzy algorithm

Intelligent Algorithm

  

SOC

Non-linear mapping

Genetic algorithm

 

Figure 3. SOC estimation method based on black box battery model. 

The neural network model is obtained by simulating the network structure of the 

animal nervous system, and has good adaptability to nonlinear systems. A typical neural 

network model consists of an input layer, a hidden layer and an output layer, as shown 

in Figure 4. According to the number of inputs and outputs, the number of nodes in dif-

ferent layers can be defined, and the information can be processed in parallel. It has the 

characteristics of multiple input and multiple output, fault tolerance, self-learning and 

wide range of use. It is suitable for various batteries. However, the use of this model re-

quires a lot of reference data for training, and only has good results when processing data 

within the range of training samples. The battery SOC estimation error is affected by the 

training data and training methods, which limits its application. Usually, this algorithm 

does not perform SOC estimation alone. It is often combined with some data clustering 

algorithms. In the previous research results, research scholars combined neural networks 

and fuzzy logic, so that they have the ability to imitate the fuzzy reasoning of human 

thinking. The fuzzy c-means clustering (FCM) algorithm is usually used to divide the 

Figure 3. SOC estimation method based on black box battery model.

The neural network model is obtained by simulating the network structure of the
animal nervous system, and has good adaptability to nonlinear systems. A typical neural
network model consists of an input layer, a hidden layer and an output layer, as shown
in Figure 4. According to the number of inputs and outputs, the number of nodes in
different layers can be defined, and the information can be processed in parallel. It has
the characteristics of multiple input and multiple output, fault tolerance, self-learning and
wide range of use. It is suitable for various batteries. However, the use of this model
requires a lot of reference data for training, and only has good results when processing
data within the range of training samples. The battery SOC estimation error is affected by
the training data and training methods, which limits its application. Usually, this algorithm
does not perform SOC estimation alone. It is often combined with some data clustering
algorithms. In the previous research results, research scholars combined neural networks
and fuzzy logic, so that they have the ability to imitate the fuzzy reasoning of human
thinking. The fuzzy c-means clustering (FCM) algorithm is usually used to divide the input
nonlinearly to reduce the number of fuzzy rules and the complexity of the system [70,71],
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or an improved method based on this [72]. Some researchers also use neural network
algorithms in series with various improved Kalman filters, and use BP neural networks to
establish an error compensation model for the extended Kalman filter estimation process to
solve the insufficient accuracy of the extended Kalman filter algorithm alone [73–75]. The
combination of the neural network and Kalman filter can quickly and accurately estimate
the battery SOC value while improving the robustness of random noise and error peaks [76].
Aiming at the difficulty of neural network modeling and optimization, the particle swarm
optimization (PSO) algorithm is used to optimize the number of nodes in the hidden layer
of the neural network. It can not only avoid local solving problems of the algorithm and
reduce the prediction error of the algorithm, but can also improve the generalization ability
and practical application ability [77]. Finally, the optimized neural network is used to
estimate the battery SOC to solve the difficult problem of neural network modeling. In
order to solve the problem of inconsistent estimated values caused by the instability of the
initial value of the neural network and network parameter settings, the use of dual neural
networks for real-time battery parameter identification and battery SOC estimation can
improve the estimation accuracy while reducing the calculation pressure [78]. The neural
network algorithm is suitable for various power batteries, but requires a lot of data for
training. The result is greatly affected by the size of the sample and the training method,
which reduces the practical application ability of the model.
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Support vector machine (SVM) is a more commonly used and mature machine learn-
ing algorithm. It seeks to minimize the structured risk to improve the generalization ability
of the learning machine, so as to minimize the experience risk and confidence range. Thus,
a good statistical law can be obtained even when the number of statistical samples is small.
SVM is divided into support vector classification (SVC) for classification problems and sup-
port vector regression (SVR) for fitting regression. SVM has good effects in nonlinear and
high-dimensional battery modeling. It can accurately estimate the SOC of the battery, but
increases the computational complexity. In order to adapt to the non-linear characteristics
of lithium-ion batteries, it is necessary to use the kernel function to map the input into high
dimensions, and use the quadratic programming method to find the optimal support vector.
Aiming at the problem of battery SOC estimation, both training samples and verification
samples are a collection of sample points composed of battery state parameters such as
voltage, current, temperature, and SOC at a certain moment. By selecting the appropriate
kernel function, training the support vector machine model, and obtaining the optimal
hyperplane, and using the new sample set to verify the model, it can be judged whether
the support vector machine meets the requirements of accuracy and real-time performance.
Reference [79] combines the extended Kalman filter with the support vector machine and
obtains the SOC estimation value initially from the EKF algorithm, and trains the filtered
output data of the EKF algorithm to obtain the SVM model. The regression prediction
ability of the obtained SVM model is used to compensate the error of the preliminary SOC
estimation value, thereby improving the accuracy of the SOC estimation.
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Fuzzy algorithms use computers to imitate human reasoning and decision-making
processes, and use fuzzy sentences to operate during the reasoning process. When using
the fuzzy algorithm to estimate the battery SOC, the voltage, current, and temperature of
the battery need to be fuzzy. The precise value is converted into fuzzy variables that can be
identified by the fuzzy control system. Then, based on experience, fuzzy language is used to
establish fuzzy rules for fuzzy reasoning. Finally, decision and de-fuzzy processing on the
inference result to get the battery SOC value and output it [80]. In the application process,
the selection of different variables, membership functions, fuzzy rules, inference algorithms,
etc., will have a certain impact on the output results. At present, fuzzy algorithms are often
combined with other intelligent algorithms to obtain higher performance. For example,
reference [81] proposed a nonlinear correlation fuzzy support vector machine algorithm,
and carried out real-vehicle SOC estimation on pure electric vehicles. The experimental
results show that the proposed algorithm can enhance the anti-noise ability of the system
and improve the measurement accuracy. Another example is the combination of the neural
network method mentioned above, both of which adopt a parallel processing structure
to obtain the input and output relationship from the input and output samples of the
system. Therefore, for the highly nonlinear power battery, the parallel structure and
learning ability of the two can be used to estimate the power battery SOC [82]. In order to
reduce the impact of current and SOC value on the accuracy of the first-order RC model,
reference [83] proposed a fuzzy dual Kalman filter (FDKF) algorithm that dynamically
corrects the covariance of the observed noise. The Kalman filter algorithm is used to update
the transformed model parameters, the fuzzy control system is established to adjust the
covariance value of the observed noise to offset the model error, and finally, the battery
SOC value is estimated by the extended Kalman filter.

Deep learning is essentially a neural network with more layers, which can automati-
cally extract more abstract and expressive features from samples, thereby realizing complex
nonlinear mapping between input and output data. Deep learning organizes multiple
neurons with simple processing capabilities, so that complex nonlinear networks have
strong generalization capabilities and parallel processing capabilities. Then the battery
voltage, current, temperature and other information are input into the deep learning net-
work input layer, and through the calculation of hidden layer nodes, the output result
of the battery SOC is finally obtained. Its training model is more complex, can achieve
higher estimation accuracy, and has higher requirements on computing resources and
computing time. The algorithms that implement the deep learning theory include the deep
belief network (DBN), convolutional neural network (CNN), and recurrent neural network
(RNN). DBN consists of n-layer restricted Boltzmann machine network (RBM) and a BP
network, as shown in Figure 5a. It can realize the organic combination of unsupervised
learning and supervised learning, effectively reduce the training error of the prediction
model, and improve the prediction accuracy [84]. A typical CNN structure consists of
an input layer, a convolutional layer, a pooling layer, a fully connected layer, and an out-
put layer, as shown in Figure 5b. After multiple filter operations, CNN can extract data
features through layer-by-layer convolution and pooling operations. However, there is
no interconnection between neurons in each layer of CNN and DBN networks, and the
structure of one input corresponding to one output cannot solve the time series problem.
RNN is composed of input layer X, hidden layer Y and output layer H. Different from
CNN and RNN networks is the delayer that RNN retains historical information [85], as
shown in Figure 5c. The RNN is widely used to solve time series data problems. However,
RNN has the problem of gradient explosion and gradient disappearance, so it can only
deal with shorter timing problems. It is greatly restricted in practical applications. The
research of gated recurrent unit (GRU) and long-short term memory (LSTM) networks
can effectively improve the hidden nodes of RNN and provide a new direction for solving
the problem of time series prediction. As a variant of the RNN network model, the LSTM
network model can well solve the defects of the original RNN by introducing the unit
state. It is more suitable for dealing with and predicting relatively long intervals and
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delays in time series. Combining LSTM and CNN can make full use of the input data
features while saving and saving historical input information, which has a more accurate
and stable prediction effect establishment [86]. GRU is a variant of LSTM, which is used to
overcome the short-term dependency problem of simple RNN. It has strong robustness
when the initial SoC value is uncertain, and can adapt to changes in ambient temperature
well [87]. The GRU-RNN can self-learn network parameters by adaptive gradient descent
algorithms. Compared with electrochemical models and equivalent circuit models that
contain differential equations, the GRU-RNN is free from requiring a large amount of work
to hand-engineer and parameterize [88]. Compared with LSTM-RNN, GRU-RNN uses
a simpler structure and fewer parameters, and is better than LSTM-RNN on a smaller
data set.
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Genetic algorithm (GA) is an intelligent optimization method for solving constrained
and unconstrained, stochastic and nonlinear problems with the continuous development
of optimization theory. In terms of computational operations, the GA has a high degree of
parallelism, which can be used in parallel in generating offspring and calculating individual
fitness values. It has the ability to self-organize, self-adapt, self-learn, and group evolution.
Additionally, it has the characteristics of implicit parallelism and searchability of the global
solution space [89]. The most important part of the GA is the selection and establishment of
fitness function. The fitness function can be any function, and there is no special standard
restriction. Because the evaluation of the individual’s pros and cons in the algorithm
depends only on the fitness function. Therefore, the choice of the fitness function has a
profound impact on the process and results of the genetic algorithm. Compared with the
traditional identification method, the GA is more robust. It only needs the value of the
objective function to randomly select the optimal parameters that meet the conditions. It
has certain feasibility and efficiency for finding the optimal EKF noise matrix. Reference [90]
introduces GA to online optimization of the covariance of the system noise matrix and
measurement matrix in EKF, so as to realize the online estimation of battery SOC when the
model error is the smallest. The GA has high complexity and slow global search speed,
but when encountering multiple extreme values, it is easy to fall into the local optimum. It
can better jump out of the local optimum through selection, crossover, mutation, etc., so as
to perform a global search to find the global optimum. The multi-algorithm collaborative
optimization intelligent identification method that combines the PSO algorithm that is
easy to fall into the local optimum and the GA can quickly capture the search range of
the feasible solution space, realize the fast search for the optimal solution of the battery
model parameter identification problem, and the identification accuracy is high [91]. The
optimization method of the lithium-ion equivalent circuit model based on the GA algorithm
can accurately characterize the high dynamics of the lithium-ion battery [92]. The GA
is also often combined with the neural network algorithm to estimate the power battery
SOC. Reference [93] proposed a novel immune genetic algorithm (IGA) and BP neural
network combined power battery SOC estimation method. The IGA is used to optimize the
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parameters of the BP neural network, and the feasibility and effectiveness of this algorithm
are verified through simulation and experiments under battery conditions.

At present, domestic and foreign research on neural networks, support vector ma-
chines, deep learning, genetic algorithms, etc., were conducted, and the accuracy of SOC
estimation methods was also improved. However, the SOC estimation method based on
the black box battery model usually requires the establishment of an offline database, and
the sample training process has a large amount of calculation, which is prone to phenom-
ena such as over-fitting and falling into local optimum. It is currently difficult to apply
in engineering.

3.3. SOC Estimation Method Based on the State Space Battery Model

The state space model is based on the battery model to establish the system state
space expression, and the battery SOC is used as one of the state variables, and then the
battery SOC is estimated through the filter or observer [94]. The main idea is to link the
measured current, voltage, temperature and other variables with the battery SOC. Taking
these measurables as the input of the model, the error between the predicted value of
the terminal voltage output by the model and the actual sampled value of the terminal
voltage is obtained. Then multiply the error by the estimated value of the gain feedback
to adjust the state quantity, so that the estimated value of the state quantity follows the
true value. Finally, the current battery SOC value is obtained through the filter or the
observer, as shown in Figure 6. The current research on the SOC estimation method based
on the state space battery model mainly focuses on three aspects: the research on the
battery equivalent circuit model structure, the research on the identification method of
battery model parameters, and the research on the battery SOC estimation observer. The
research on the structure of the equivalent circuit model was introduced in the summary of
Section 2.2. The accuracy of the equivalent circuit model directly affects the accuracy of the
SOC estimation based on the state-space battery model. Therefore, designing an equivalent
circuit model with a simple structure and high accuracy will be the focus of research.
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3.3.1. Research on the Identification Method of Battery Model Parameters

The battery SOC estimation method based on the state space relies heavily on the ac-
curacy of the battery model. The accuracy of model parameter identification directly affects
the accuracy of the model output, thereby further affecting the accuracy of battery SOC
estimation. At present, offline parameter identification and online parameter identification
are the main research directions of battery model parameter identification methods.

The most commonly used parameter identification method is offline identification.
This method first conducts a pulse test on the power battery. When the battery is switched
from the charging or discharging state to the zero current output state, the voltage will
have an instantaneous faster and a steady-state slow process. The instantaneous change
is due to the ohmic internal resistance of the battery, while the slow change is due to the
polarization characteristics of the battery. According to this feature, the parameters in
the equivalent circuit model can be obtained by fitting the obtained experimental data
using the least square method [95]. However, this method is easier to use for integer-order
identification, while for fractional-order parameter identification, optimization algorithms
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such as the particle swarm optimization algorithm and genetic algorithm need to be
used for identification. The optimal solution is sought through iterative methods to
reduce the offline identification error of model parameters [96,97]. However, since the
operating conditions of the battery will change during actual use, if the offline parameter
identification considers fewer external influence factors, it will cause a large identification
error. Therefore, some scholars use the online parameter identification method. It is
based on offline parameter identification, combines theoretical models and experimental
data to increases the prediction technology of the consistency between the model output
and the actual output. The recursive least squares method is the most widely used in
the online identification of integer-order model parameters [98]. But the recursive least
squares method has filter saturation problems in the actual use process, some scholars have
proposed a recursive least squares method with forgetting factor and a decoupled weighted
recursive least squares method [99]. However, this method ignores the influence of data
with colored noise. Therefore, some scholars proposed the bias compensation recursive
least squares (BCRLS) algorithm based on the recursive least squares with forgetting
factor [100]. This method solves the identification problem of data with color noise by
means of deviation compensation, and realizes unbiased identification of parameters.
However, the input is required to have various states, which is difficult to achieve in the
actual operation of the car. For the fractional model, it is a less computationally intensive
and more accurate way to use the combined Kalman filter to identify the fractional order
as a hidden variable. In summary, at present, further improving the real-time and accuracy
of battery model parameter identification is the focus of research.

3.3.2. Research Status of SOC Estimation Observer

The working conditions of the car during the driving process are more complicated,
the current changes more drastically, and the battery terminal voltage has strong non-
linearity, which puts forward higher requirements on the battery SOC estimation observer.
At present, most domestic and foreign experts and scholars have used various filtering
methods based on Kalman filtering (KF) when performing SOC estimation. One of the most
widely used is the use of extended Kalman filtering (EKF) to estimate the non-linear part
of the battery [101–103]. EKF adopts the idea of minimum error to transform the nonlinear
system into an approximate linear system, which has the advantage of overcoming the
lack of sensor accuracy and correcting the initial value of SOC. But in the actual calculation
process, the measurement noise and observation noise of the system change in real time.
Therefore, some scholars have proposed adaptive extended Kalman filtering (AEKF) to
estimate and iteratively update the noise covariance to reduce the impact of initial noise
error on battery SOC estimation [104–106]. In addition to noise errors, when the current
changes drastically, the observed voltage lag will cause a corresponding lag in the battery
SOC estimation, which will also lead to a large deviation in the battery SOC estimation [95].
In order to solve this problem, reference [107] added a dynamic correction gain coefficient
K to the EKF, and the gain coefficient can be dynamically adjusted when the current
changes drastically to strengthen the algorithm convergence effect. Reference [108] uses
the Levenberg-Marquardt method to modify the covariance matrix of EKF to ensure
the convergence of the estimation process. In response to this situation, some scholars
combine EKF with PID, robust control and other methods to reduce the estimation error
when working conditions change drastically [109,110]. In order to solve the problem of
linearization error caused by the use of EKF to estimate the battery SOC, the nonlinear
function of the battery needs to be expanded into a Taylor series and the second-order and
above terms are omitted. Reference [111] uses a proportional-integral correction method
to compensate for the error generated in the EKF linearization model. Since this error
cannot be completely eliminated, some scholars have used an improved form based on
Kalman filtering without a linearized model, such as cubature Kalman filtering (CKF) [112],
and unscented Kalman filtering (UKF) [73,74] to estimate the battery SOC. In addition
to Kalman filtering, other forms of observers were also extensively studied by domestic
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and foreign experts, such as the statistical filter algorithm [113], improved particle filter
algorithm [114–116], linear inequality estimation method based on H∞ [117], sliding mode
observer [118,119], proportional integral observer [120], Luenberger observation [121,122],
and so on. They have achieved good estimation accuracy and convergence in battery
SOC estimation. Both the observer algorithm and the Kalman filter algorithm mentioned
above need to establish a battery model, and then estimate the power battery SOC as a
state quantity. However, the amount of calculation is smaller than that of Kalman filter,
and it has strong robustness to nonlinear systems, which improves the adaptability of
the algorithm.

4. Summary

The second chapter of the article gives a comprehensive overview of the electrochem-
ical mechanism model, equivalent circuit model and data-driven model. According to
research and analysis, each battery model has its own advantages and disadvantages,
as shown in Table 2. The accuracy of SOC estimation depends on the accuracy of the
model. With higher model accuracy, the model will become relatively complicated. The
electrochemical mechanism model can better reflect the internal chemical reaction principle
of the battery, and the estimation accuracy is higher. However, the amount of calculation is
large, the calculation is complicated, and dimensionality reduction processing is required,
which takes a long time. In current research, the improved P2D and SP2D models are often
used in conjunction with other intelligent algorithms to estimate the battery SOC, which
can maintain the accuracy of the estimation while reducing the amount of calculation. The
equivalent circuit model simulates the external characteristics of the battery with ideal
electrical components. Its estimation accuracy is worse than that of the electrochemical
mechanism model, but its structure is simple, and the parameters are easy to obtain, which
is suitable for battery management systems. The data-driven model eliminates the tedious
modeling process due to its model-free advantage and can quickly evaluate and analyze
the internal state of the battery. However, it has a high dependence on the number of
samples and a slower convergence speed.

According to the choice of battery model, the third chapter of the article systematically
sorts out the direct detection method that is not based on the battery model, the estimation
method based on the black box battery model, and the estimation method based on the
shape space. The pros and cons of the respective estimation methods are shown in Table 3.
For direct detection methods that are not based on the battery model, the open circuit
voltage method has the highest estimation accuracy, but because it requires a long time to
stand, it is difficult to apply to actual vehicle use. The ampere-hour integration method
is also widely used because of its simplicity and reliability, and its low requirements for
equipment. However, it depends very much on the accuracy of the initial value and
the accuracy of the sensor measurement value. After a long time of current integration,
there will be accumulated errors. Internal resistance method, discharge test method, and
electrochemical impedance method estimation method all have high estimation accuracy,
but the requirements for equipment and test conditions are high. The load voltage method
is greatly affected by the circuit and is not suitable for practical applications. The SOC
estimation method based on the black box battery model has strong learning ability and
high estimation accuracy. The neural network is based on the existing data. The more
data there is, the higher the estimation accuracy. Support vector machines have good
generalization ability and nonlinear approximation ability, which can effectively avoid the
shortcomings of neural networks. And deep learning has higher estimation accuracy and
stability. As it can only deal with short timing problems, it can be improved through LSTM
and GRU.
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Table 2. Battery model comparison.

Type of model Electrochemical mechanism
model Equivalent circuit model Data-driven models

Accuracy Very high Medium Medium

Computational Complexity Very high Medium to low Medium

Configuration Effort high Medium Medium to high

Time Solving control equations
consumes a lot of time

Simple and easily understood,
so medium time consuming

Less time consuming as prior
battery knowledge is

not required

Interpret Ability Low High Low

Merits

The mathematical model
established by the knowledge
of electrochemical theory can

better reflect the
characteristics of the battery
and have Very high accuracy

Simple structure. Easy access
to model parameters

Do not rely on the battery
model, eliminating the

tedious process of physical
modeling. Can quickly

evaluate and analyze the
internal state of the battery

Demerits
Poor adaptability to some

working conditions, leading
to poor estimation results

Can not reflect the internal
characteristics of the

battery well

The estimation accuracy
depends heavily on the

number of samples, and the
convergence speed is slow.

When the sample size is small
and the numerical error rate is

high, the model will be
over-fitted and under-fitted

Table 3. Comparison of SOC estimation methods.

Estimation Method Merit Demerit

Direct measurement method not
based on battery model

Ampere-hour integral method

Simple and reliable, fast
estimation speed, low

requirements for controller
hardware and storage

The sensor has high requirements
for accuracy, which is heavily

dependent on the accuracy of the
initial SOC value, and there is a

cumulative error

Open circuit voltage method
Simple structure, convenient

operation and high
estimation accuracy

Long standing time and
hysteresis effect

Internal resistance method The principle is simple, and the
estimation accuracy is high

The resistance test device is
expensive, the internal resistance
value is small, the range of change

is small, and the resistance is
easily affected by the temperature

and the number of cycles

Discharge test method High estimation accuracy and
strong reliability

It takes a long time and requires
high test conditions, and it is

impossible to estimate the battery
SOC value in real time

Electrochemical impedance
spectroscopy

High estimation accuracy, which
can better reflect the dynamic
characteristics of the battery

High battery impedance cost,
susceptible to battery temperature

and life

Load voltage method Good estimation accuracy under
constant current conditions

Affected by current changes, it is
not suitable for

practical applications
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Table 3. Cont.

Estimation Method Merit Demerit

Estimation method based on black
box model

Neural Networks

No battery model is required,
with strong variable processing
ability and self-learning ability,

real-time detection of SOC status

Severely depends on the number
of samples, and samples have a
greater impact on the training

results, long learning time, and
heavy sampling workload

Support Vector Machines

It has strong generalization ability,
does not rely on the battery

model, and has high estimation
accuracy and fast convergence

speed in the case of small samples

The estimation accuracy depends
heavily on a large number of

sample data and
weight parameters

Deep learning

It has strong generalization ability
and parallel processing ability,

and the estimation result has high
accuracy and stability

Model training is complex,
requires high computing

resources and configuration, and
has over-fitting problems

Genetic algorithm

Highly parallel operation,
self-organization, self-adaptation,
self-learning and group evolution

capabilities, high robustness

The algorithm is complex and the
global search speed is slow, and it

is easy to fall into the
local optimum

State space-based
estimation method

Kalman filter

The estimation accuracy is high in
the case of considering the error,
does not depend on the initial
SOC value, and has a strong

anti-interference ability

The estimation accuracy depends
on the accuracy of the model, is
easily affected by temperature,
and is limited to linear systems

Extended Kalman filter
Suitable for non-linear systems,
suitable for working conditions
with severe current fluctuations

Ignoring high-order terms in the
linearization process produces a

large error value and
poor robustness

Double Kalman filter
High estimation accuracy, which
can effectively eliminate noise in

the system and model

The amount of calculation is large,
and the calculation takes a

long time

Unscented Kalman Filtering
Method

Suitable for nonlinear systems,
reducing errors caused by

linear systems

Factors such as abnormal
disturbance and initial value

uncertainty cause the system to
diverge, and its robustness is poor

Adaptive Kalman filter
Able to continuously estimate the

system status in real time and
correct the influence of noise

Need noise zero mean hypothesis
and noise variance is known, and
the measured value may diverge

Particle filter

It is not restricted by the linear
and Gaussian conditions of the

system model, and has few
constraints on the probability
distribution of state variables

The estimation accuracy is not
stable, and the phenomenon of

particle depletion is prone
to occur

5. Future Development

The choice of model mainly depends on environmental conditions, operating temper-
ature, battery aging, application scenarios and different SOC operating ranges. According
to the analysis of selection factors for battery model selection, the accuracy of model perfor-
mance can be improved through the following aspects: OCV and hysteresis are modeled as
a function of temperature and SOC; the model should have good accuracy and adaptability
to accurately describe the battery characteristics under multiple conditions and multiple
states; the model can better reflect the dynamic and static characteristics of the battery,
and the number of model components should be reduced to reduce the amount of model
calculations and improve the application of model engineering; aging effects are included
in the model.

The research hotspots and development trends of future battery SOC estimation meth-
ods need to focus on the following aspects: an accurate battery model is a prerequisite for
achieving high-precision estimation, so a battery model with excellent accuracy and com-
plexity should be further developed; multi-constrained SOC estimation of battery internal
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resistance, ambient temperature, battery aging state, and discharge rate can be considered
to improve the accuracy of algorithm estimation; because SOC estimation methods have
their own unique advantages, a variety of methods are used to comprehensively comple-
ment each other to further improve the estimation accuracy; considering the problem of
cost estimation, the algorithm development cycle should be shortened as much as possible
while achieving low cost.
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