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Abstract: Suansun, made from fresh bamboo shoots fermented without salt, is a traditional food
in China’s southern region and is popular for its nutritious and unique flavor. To comprehen-
sively understand the microbial species and characteristics of suansun, Illumina HiSeq metagenomic
sequencing technology was used to sequence suansun’s fermentation broth obtained from six tra-
ditional producing areas in southern China, and the microbial community structure, diversity,
and functional genes were analyzed. A total of 8 phyla, 16 classes, 30 orders, 63 families, 92 genera,
and 156 species of microorganisms were identified in the suansun samples, with Lactiplantibacil-
lus predominating, accounting for up to 81% of the species, among which 12 species, including
Lactiplantibacillus plantarum, were the main species. A total of 12,751 unigenes were annotated to
385 metabolic pathway classes, of which 2927 unigenes were involved in carbohydrate metabolism.
Lactiplantibacillus fermentum, Lactiplantibacillus plantarum, and Lactiplantibacillus brucei were involved
in the metabolism of most nutrients and flavor substances in suansun. Overall, these results provide
insights into the suansun microbiota and shed light on the fermentation processes carried out by
complex microbial communities.

Keywords: suansun; metagenomic; microbial diversity; functional gene; KEGG pathway

1. Introduction

Suansun, or sour bamboo shoot, is a traditional Chinese fermented vegetable-based
food made from fresh bamboo shoots and fermented naturally without salt. Due to its
good storage characteristics and unique flavor after soaking and fermentation, suansun
is popular with consumers. Fermented foods are an important part of the daily diet,
and fermentation is used to produce and preserve food for extended periods. Several
microorganisms and enzymes are involved in the fermentation process, resulting in physi-
ological and biochemical changes in food that are causally related to consumer health [1].

Unlike Korean salt-pickled vegetables such as kimchi, which require much salt [2],
suansun does not contain nitrites, which can be harmful to humans. Suansun is rich in
dietary fiber and essential amino acids and has been shown to lower blood cholesterol
and strengthen the immune system [3,4]. The lactic acid bacteria in suansun not only
have probiotic functions but can also produce rich volatile flavor substances, organic
acids, bacteriocins, etc., greatly improving palatability [5]. Common diseases such as
hypertension, hyperlipidemia, and diabetes, as well as cardiovascular and cerebrovascular
diseases, are attracting increasing attention as people’s living standards improve. People
are increasingly inclined to consume healthy foods that contain probiotics, and the market
for suansun is gradually expanding.

Many studies have been conducted on microorganisms, probiotics, and other sub-
stances in fermented foods such as wine [6], Siniperca chuatsi [7], soybean [8], and cheese [9].
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Researchers have sought to understand the microbiome of fermented foods and how it
might affect consumers. However, suansun is still mainly produced in small workshops in
thousands of households in China, where it is primarily produced using primitive means
of production and with varying tastes [10]. Although it is known that it contains a large
number of lactic acid bacteria and other microorganisms, the specific microbial community
and dominant core flora of unsalted suansun remain unknown; additionally, information
on how the suansun microbiome participates in metabolism is scarce.

Here, we applied high-throughput metagenomic sequencing technology to explore
the microbial community structure, diversity, and functional genes in suansun from the
main production areas in China, information critical for the industrialization of suansun.

2. Materials and Methods
2.1. Preparation of Suansun and Sampling

Suansun produced from Dendrocalamus latiflorus Munro was sampled from farmers
in six cities in Guangxi Province, China (Figure 1A). Ten milliliters of fermentation liquid
was extracted from the upper, middle, and lower layers of the fermentation vat, mixed,
and stored in liquid nitrogen. Sampling was replicated three times. The thawed fermenta-
tion liquid was centrifuged at 10,000 rpm for 10 min at 4 ◦C to harvest microorganisms in
the laboratory.
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Figure 1. Suansun sampling location and microbial diversity. (A) Suansun sampling location
distribution. The map came from the Ministry of Natural Resources of the People’s Republic of
China, and the approval number is GS (2019)3333. (B) Distribution map of diversity Shannon index
between groups. (C) Community distance heat map by Jaccard. (D) Community distance heat map
by thetaYC.
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2.2. DNA Extraction and Illumina MiSeq Sequencing

A 30 mL sample of suansun fermentation broth was removed from the liquid nitrogen,
thawed, transferred into a 50 mL centrifuge tube, and centrifuged at 12,000 rpm for 10 min
at 4 ◦C in a high-speed centrifuge. The supernatant was discarded, the precipitate was
washed with PBS, and the microorganisms were collected in a 1.5 mL EP tube for total
DNA extraction. The total DNA of all microorganisms in the samples was extracted using
the Amgen Plant Genome Extraction Kit (Amgen, Thousand Oaks, CA, USA). The samples
were resolved using 0.8% agarose gel electrophoresis (voltage 100 V, time 40 min) to
check for degradation and impurities, and quality was determined. The total DNA mass
concentration was accurately quantified using Qubit (DNA mass concentration ≥ 30 ng/µL,
DNA mass ≥ 3 µg) to ensure that the second-generation sequencing library construction
requirements were met.

The tested DNA samples were randomly broken into 300 bp fragments using an
ultrasonic crusher, and library construction was completed by end repair, the addition
of A-tail and sequencing junction, purification using gel method, and PCR amplification.
The Illumina TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, San Diego, CA, USA)
was used for RNA fragmentation, cDNA synthesis, cDNA library construction, PCR ampli-
fication of DNA fragments with linkers, and library fragment selection and purification
according to the manufacturer’s instructions. The libraries were screened using an Agi-
lent Bioanalyzer 2100 (Agilent Technologies, Massy, France) and screened for linker-free
sequences with a single peak. The library was also initially quantified using Qubit 2.0,
diluted to 2 ng/µL, and the real-time fluorescence nucleic acid amplification detection
system (qPCR) method was used to quantify the library.

Amplicons were subjected to paired-end sequencing on the Illumina MiSeq sequenc-
ing platform using the PE300 chemical at Ori-Gene Technology Co., Ltd. (Beijing, China).
The raw reads were deposited in the NCBI Sequence Read Archive (SRA) database (Acces-
sion Number: SRP274288).

2.3. Amplicon Sequence Processing and Analysis

After demultiplexing, the resulting sequences were merged with FLASH (version
1.2.11) [11] and quality filtered using fastp (0.19.6) [12]. Afterward, the high-quality se-
quences were denoised using the DADA2 [13] plugin in the Qiime2 [14] (version 2020.2)
pipeline using the recommended parameters, obtaining single-nucleotide resolution based
on error profiles within the samples. DADA2-denoised sequences are usually referred to as
amplicon sequence variants (ASVs). To minimize the effects of sequencing depth on alpha
and beta diversity measures, the number of sequences from each sample was rarefied to
4000, which still yielded an average Good’s coverage of 97.90%.

2.4. Analysis of Alpha Diversity in Microbial Community

Alpha diversity includes community richness, community evenness, and community
diversity. The alpha diversity index was calculated using Mothur [15]. The larger the
Shannon’s index, the higher the microbial diversity.

Hshannon = −
Sobs

∑
i=1

πilnπi

Sobs: the number of species observed.
πi: relative abundance of each species.

2.5. Analysis of Beta Diversity in Microbial Community

Jaccard [16] and thetaYC [17] were used to calculate the community distance between
the samples and generate the distance matrix.
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DJaccard =
SAB

SA + SB − SAB

SAB: the number of species shared by community A + B.
SA: the number of species in community A.
SB: the number of species in community B.

DθYC = 1 − ∑ST
i=1 aibi

∑ST
i=1(ai − bi)

2 + ∑ST
i=1 aibi

ST: the number of species shared by community A + B.
ai: the relative abundance of the i-th species in community A.
bi: the relative abundance of the i-th species in community B.

3. Results and Discussion
3.1. Statistics of Sequencing Data

Compared with 16S sequencing, which has a sequence read length of approximately
200 bp and an effective data volume between 10 and 70 M [18], the metagenomic sequencing
in the present study generated a total of 58.18 G of effective data (an average of 9.69 G per
sample), which had a higher library coverage and captured more microorganisms in the
samples. The average read length of all samples sequenced was 141.2 bp, and the effective
read length was 68.75 M, accounting for 91.5% of the original reads; the effective base
number was 9.697 G, accounting for 85.9% of the original base number (Table 1).

Table 1. Metagenomic sequencing results of different regions’ suansun.

Samples Original
Reads (M)

Effective
Reads (M)

Original
Bases (G)

Effective
Bases (G)

Average
Length (bp)

GL 71.92 66.82 10.78 9.54 143.6
LZ 67.06 62.05 10.06 8.91 143.7
LB 78.58 69.78 11.37 10.04 143.8
BS 84.85 76.03 12.72 10.56 139.4

NN 77.59 70.72 11.63 9.79 138.2
GG 73.30 67.21 10.99 9.32 138.2

Average 75.10 68.75 11.27 9.70 141.2

The effective read lengths were iteratively spliced using SOAPdenovo2 [19] to obtain
66,157 scaffolds. The obtained scaffolds were used for gene prediction using MetaGene-
Mark [20]. The predicted gene sequences were clustered using CD-HIT [21] software (95%
similarity, 90% coverage) to obtain a set of 54,416 unigenes for subsequent bioinformat-
ics analysis.

3.2. Microbial Diversity in Suansun

A total of 156 species of microorganisms were identified from 18 suansun samples
from the six main producing areas, belonging to 8 phyla, 16 classes, 30 orders, 63 fam-
ilies, and 92 genera. Lactobacillales was the most dominant order among the suansun
microorganisms, followed by Pseudomonadales (Figure 2). Colony distribution maps for
other classification levels are provided in Supplementary Materials. More than 98.86% of
the bacterial genes in all samples were from four major phyla, namely Firmicutes, Pro-
teobacteria, Bacteroidetes, and Actinobacteria, with 86.10% from Sclerotinia. The species
with an abundance greater than 1% at the phylum level were Firmicutes, Proteobacteria,
Bacteroidetes, and Actinobacteria.

At the class level, the species with the highest abundance were Bacilli and Gammapro-
teobacteria. The orders of bacteria with more than 1% abundance included Lactiplantibacillus,
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Pseudomonadales, and Bacteroidales. Pseudomonas abundance was significantly higher in
suansun produced in Nanning than in other regions.
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Figure 2. Order and family-level colony distribution map. GL, LZ, LB, BS, NN, GG represent Guilin, Liuzhou, Laibin, Baise,
Nanning, and Guigang, respectively.

The number of microbial species observed in the samples from Guigang was as high
as 77, which significantly differed from other regions (p < 0.05) (Table 2). Alpha diversity
mainly focuses on the number of species in a local uniform habitat; therefore, it is also
called within-habitat diversity. The highest uniformity index (0.69) was obtained in the
Nanning area, indicating that the microbial matter was more uniformly distributed in the
suansun from this area. Beta diversity refers to the dissimilarity in species composition
between different habitat communities along the environmental gradient or species replace-
ment rate along the environmental gradient. This is also called between-habitat diversity
(Figure 1C,D). The microbial communities of suansun from Guilin, Liuzhou, and Laibin
were between 0.44 and 0.57. The analysis of the distribution of the relative abundance of
microorganisms showed that Lactiplantibacillus fermentum was the most abundant, indicat-
ing that the bacterial communities originating from these three areas were more similar
in structure. The microbial community distance of suansun from Baise and Nanning was
0.7, and Lactiplantibacillus plantarum was the most abundant. The community distance of
suansun originating from Guigang and the other five areas was considerable, with Lactiplan-
tibacillus brucei being the main species, indicating that the bacterial community structure of
suansun from Guigang and the other five areas differed considerably.

Table 2. Bacterial diversity index, evenness index, and abundance of different samples.

Sampling Location Number of
Microbial Species Evenness Shannon Index

GL 9.67 ± 1.06 d 0.72 ± 0.06 a 1.64 ± 0.15 a
LZ 16.33 ± 1.53 c 0.26 ± 0.00 c 0.73 ± 0.01 b
LB 25.33 ± 1.53 b 0.27 ± 0.04 c 0.88 ± 0.13 b
BS 17.00 ± 4.36 c 0.39 ± 0.06 b 1.10 ± 0.09 b

NN 9.00 ± 1.00 d 0.69 ± 0.04 a 1.52 ± 0.17 a
GG 77.00 ± 0.90 a 0.38 ± 0.12 bc 1.65 ± 0.55 a

Note: the data in the table are mean ± SE. Columns with different letters are significantly different (α = 0.05 by
Duncan’s test).

3.3. Main Active Microorganisms in Suansun

Suansun contains a large number of active microorganisms (Table 3). Most of these
active microorganisms are involved in the immunomodulation and bacteriostatic functions
of the body. Lactiplantibacillus boulardii, Lactiplantibacillus casei, and Weisseria esophagus
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have antioxidant properties, and Lactiplantibacillus fermentum, Lactiplantibacillus boulardii,
Lactiplantibacillus pentosus, and Lactiplantibacillus pyocephalus have cholesterol-lowering
properties, which help alleviate hyperlipidemia; Lactiplantibacillus plantarum and Lactococ-
cus lactis are crucial in maintaining intestinal flora and protecting the intestinal mucosa.

Table 3. Major active microorganisms in suansun.

Major Strains Function

Lactiplantibacillus fermentum Antibacterial activity, cholesterol-lowering ability, immune activity [22].
Lactiplantibacillus plantarum Immunomodulating effect, inhibit pathogenic bacteria, lower serum cholesterol [23].
Lactiplantibacillus buchneri Produces mannitol, bacteriocins, de-cholesterolization, antioxidant capacity [24].

Lactiplantibacillus brevis High acid production capacity and detoxification, antibacterial, improve the immunity of the
body, and other functional characteristics [25].

Lactiplantibacillus casei paracasei Regulates the abundance and proportion of gut flora, protects the liver, and prevents liver
damage. [26].

Lactiplantibacillus pentosus Synthesis of extracellular polysaccharides, antitumor, anti-ulcer, immunomodulation, and
cholesterol-lowering [27].

Lactococcus lactis Limit intestinal damage and protect the intestinal mucosal barrier [28].
Weissella cibaria Antioxidant activity, inhibition of bacteria [29].

Leuconostoc citreum Production of bacteriocins with broad-spectrum antibacterial action [30].
Acinetobacter johnsonii Improve obesity, lower body fat, and reduce cholesterol [31].

A variety of beneficial microorganisms exist in suansun, such as Pediococcus pentosaceus,
which can improve immune function; Leuconostoc citreum, which produces bacteriocins
with broad-spectrum antibacterial effects [32,33]; Alistipes putredinis, which can regulate
human intestinal flora; and Prevotella, which can degrade starch and protein [34] while
having probiotic functions. Meanwhile, the dietary fiber in suansun is an ideal nutrient
for intestinal flora. The short-chain fatty acids generated by bacterial digestion of fiber
nourish the intestinal barrier, improve immune function, help prevent inflammation,
and lower tumor development risk [35]. The probiotic nature of suansun is demonstrated
by lactobacilli metabolism, which produces substances such as organic acids, hydrogen
peroxide, and bacteriocins that can promote nutrient absorption, inhibit pathogens, and are
potent antioxidants.

3.4. Functional Annotation and Analysis of Microbial Gene of Suansun

The prediction of genes encoding proteins and filtering out coding frame results of less
than 100 bp yielded 75,681 genes with a total length of 35.67 Mbp and an average length of
471 bp. The sample genes were de-redundant to yield 54,416 unigenes with a total length
of 31.42 Mbp and an average length of 577 bp. The unigenes were matched with common
public databases, such as NR, eggNOG, GO, and KEGG. A total of 53,265 unigenes were
matched to known protein sequences, with an annotation ratio of 97.88%, and 1151 unigenes
did not match the corresponding protein sequences, which might be unique to genes in
suansun microorganisms (Table 4).

A total of 37,746 unigenes were compared with the eggNOG database (Figure 3) and
annotated to 22 eggNOG functional categories. Information storage and processing had
the highest number of genes enriched in replication, recombination, and repair and the
lowest number of genes associated with RNA processing and modification classification.
Metabolism process classification genes are the most direct functional classification associ-
ated with the formation of suansun flavor substances. The number of genes in the eight
metabolism categories annotated reached over 10,640, and the top three genes were carbo-
hydrate and metabolism (carbohydrate metabolism, 3029 genes), amino acid transport and
metabolism (amino acid metabolism, 2781 genes), and energy production and conversion
(energy utilization, 1688 genes), indicating that carbohydrate and amino acid metabolism
are essential processes in sour bamboo shoot fermentation.
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Table 4. Unigenes annotated statistics.

Functional Database Number of Unigenes Percentage

NR 39,294 72.21%
eggNOG 37,746 69.37%

KEGG 19,051 35.01%
KEGG pathway 12,751 23.43%

KO 14,075 25.87%
GO 29,889 54.93%

Total number of genes 53,265 97.88%
Total number of unigenes 54,415 100%
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Figure 3. Functional classification of the microbial functional gene eggNOG in suansun.

A total of 384 pathways were annotated in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database. The highest number of genes were related to metabolism,
followed by genetic information processing, while the lowest number of genes related
to cellular processes indicated the high metabolic activity of microorganisms during the
suansun fermentation process (Figure 4). The bacteria annotated to the KEGG metabolic
pathway in suansun mainly included Lactiplantibacillus plantarum, Lactiplantibacillus pen-
tosus, Lactococcus lactis, Lactococcus pentosus, and Lactococcus weissella. Lactiplantibacillus
plantarum was annotated to the KEGG pathway the most, in several pathways, including
the tricarboxylic acid cycle (ko00020), pentose phosphate pathway (ko00030), amino acid
and nucleotide sugar metabolism (ko00520), and folate synthesis (ko00790). It can be seen
that Lactiplantibacillus plantarum was one of the more metabolically active microorganisms
in suansun.

Based on the GO database, functional annotations indicated 58 GO function categories
(Figure 5). The biological process included 22 branches, and the number of genes annotated
in single-organism process, cellular process, and metabolic process ranked in the top three,
with 16,737 (29.12%), 16,325 (28.41%), and 15,682 (27.29%), respectively. This is consistent
with the large number of metabolism-related genes annotated in the eggNOG and KEGG
databases. The cellular component included 21 functional categories, and 24,714 genes
(54.00%) were annotated to cell and cell parts. Catalytic activity had the highest number of
annotated genes in the molecular function. Interestingly, we also identified a number of
genes associated with human diseases. As suansun is artificially salted, associated bacterial
contamination may be introduced during the preparation process.
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3.5. Metabolic Pathways of Nutrients and Flavor Substances in Suansun

Suansun has a unique flavor that exhibits acidity, freshness, and excitement char-
acteristics. The proteins and carbohydrates in suansun are naturally fermented by mi-
croorganisms, producing organic acids, volatile odors, and bioactive components that
affect the sensory qualities, nutrition, and safety of suansun. At present, the metabolic
relationship between microorganisms and flavor substances is still unclear, and the screen-
ing of core functional strains for suansun fermentation remains a major challenge. Based
on the functional annotation of non-redundant genes, the primary nutrients’ and flavor
substances’ metabolic pathways can be constructed by reference to the KEGG analysis
results. The genes, enzymes, and microorganisms in the key metabolic pathways were ana-
lyzed in detail to reveal the association between microorganisms and flavor at the genetic
level, providing an important reference for the formation of the main flavor substances
of suansun.

A total of 13 pathways related to amino acid metabolism were annotated to microbial
functional genes in suansun, covering 15 major microbial species (Table 5). Among them,
Lactiplantibacillus plantarum was annotated to the highest number of KEGG amino acid
metabolic pathways, with 13. Lactiplantibacillus fermentum, Lactiplantibacillus plantarum,
Lactiplantibacillus brucei, and Lactiplantibacillus plantarum were involved in the metabolic
processes of most of the nutrients and flavor substances of suansun, which were the key
strains screened in this study and could provide some reference for the preparation of food
fermentation bacteria.

Table 5. Microorganisms associated with amino acid metabolism and their KEGG annotation pathway in suansun.

Ko Number KEGG Pathway Gene Number Major Microorganisms Annotated to KEGG Pathway

ko00250 Alanine, aspartate,
and glutamate metabolism 320 Lactiplantibacillus plantarum, Lactiplantibacillus pentosus, Pediococcus pentosaceus,

Lactiplantibacillus, Lactococcus Lactis, Lactiplantibacillus buchneri

ko00270 Cysteine and methionine
metabolism 230 Lactiplantibacillus plantarum, Lactiplantibacillus parafarraginis, Lactiplantibacillus

fermentum, Lactiplantibacillus mucosae, Acinetobacter

ko00260 Glycine, serine,
and threonine metabolism 220

Lactiplantibacillus amylolyticus, Lactiplantibacillus casei, Lactiplantibacillus buchneri,
Lactiplantibacillus plantarum, Lactiplantibacillus fermentum,

Lactiplantibacillus vaginalis

ko00300 Lysine biosynthesis 212
Lactiplantibacillus amylolyticus, Lactiplantibacillus casei, Lactiplantibacillus buchneri,

Lactiplantibacillus plantarum, Lactiplantibacillus fermentum, Lactiplantibacillus
vaginalis, Acinetobacter, Flavobacterium, Acinetobacter johnsonii

ko00400
Phenylalanine, tyrosine,

and tryptophan
biosynthesis

139
Lactiplantibacillus buchneri, Lactiplantibacillus amylolyticus, Lactiplantibacillus

plantarum, Lactiplantibacillus pentosus, Acinetobacter guillouia,
Lactiplantibacillus mucosae

ko00350 Tyrosine metabolism 110
Lactiplantibacillus buchneri, Lactiplantibacillus amylolyticus, Lactiplantibacillus

plantarum, Lactiplantibacillus pentosus, Lactiplantibacillus mucosae,
Lactiplantibacillus hilgardii,

ko00340 Histidine metabolism 93
Lactiplantibacillus buchneri, Lactiplantibacillus plantarum, Lactiplantibacillus

parafarraginis, Lactiplantibacillus fermentum, Lactiplantibacillus mucosae,
Acinetobacter

ko00330 Arginine and proline
metabolism 77 Pediococcus pentosaceus, Lactiplantibacillus plantarum, Lactiplantibacillus brevis,

Lactococcus lactis

ko00280 Valine, leucine,
and isoleucine degradation 70 Lactiplantibacillus pentosus, Lactiplantibacillus casei, Lactiplantibacillus buchneri,

Lactiplantibacillus plantarum

ko00471 D-glutamine and
D-glutamine metabolism 55 Lactococcus lactis, Lactiplantibacillus buchneri, Acinetobacter parvus,

Lactiplantibacillus plantarum, Lactiplantibacillus pentosus

ko00473 D-alanine metabolism 51 Lactococcus weissella, Lactiplantibacillus, Lactiplantibacillus fermentum, Lactococcus
lactis, Lactiplantibacillus plantarum, Lactiplantibacillus pentosus

ko00380 Tryptophan metabolism 45
Lactiplantibacillus buchneri, Lactiplantibacillus amylolyticus, Lactiplantibacillus

plantarum, Lactiplantibacillus pentosus, Acinetobacter guillouia,
Lactiplantibacillus mucosae

ko00290 Valine, leucine,
and isoleucine biosynthesis 38 Lactiplantibacillus buchneri, Lactiplantibacillus amylolyticus, Lactiplantibacillus

plantarum, Lactiplantibacillus pentosus
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4. Conclusions

Here, high-throughput sequencing technology was used to investigate the metage-
nomics of suansun, a traditional fermented food from Guangxi, the main production area
of China. The community structure, functional genes, and metabolic pathways of mi-
croorganisms in suansun were revealed, and the association between microorganisms and
amino acids in suansun was explored to clarify the connection between microorganisms
and suansun flavor at the genetic level.

A total of 156 microorganisms belonging to 8 phyla, 16 classes, 30 orders, 63 families,
and 92 genera were detected in suansun. Lactiplantibacillus fermentum, Lactiplantibacil-
lus plantarum, Lactiplantibacillus amyloliquefaciens, Lactiplantibacillus brucei, and Lactiplan-
tibacillus brevis were the dominant species in suansun. A total of 75,681 genes, 54,416 uni-
genes, and 19,051 functional genes were annotated to 384 metabolic pathways among suan-
sun microorganisms, of which 72 pathways were involved in metabolism. Lactiplantibacil-
lus fermentum, Lactiplantibacillus plantarum, Lactiplantibacillus brucei, and Lactiplantibacillus
plantarum play crucial roles in suansun fermentation. This study provides a theoretical
basis for understanding the discovery and utilization of suansun as a health food.

However, the sour bamboo shoot fermentation process is complex, and many aspects
of the changes occurring are likely not caused by microorganisms. It is necessary to conduct
in-depth studies on the changes in its quality and flavor caused by non-microbial factors
using metabolomics and proteomics techniques in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pr9091669/s1, Figure S1: Class level colony distribution map, Figure S2: Genus level colony
distribution map, Figure S3: Phylum level colony distribution map.
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