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Abstract: With the rapid development of solar energy, the photovoltaic (PV) module fault detection
plays an important role in knowing how to enhance the reliability of the solar photovoltaic system
and knowing the fault type when a system problem occurs. Therefore, this paper proposed the
hybrid algorithm of chaos synchronization detection method (CSDM) with convolutional neural
network (CNN) for studying PV module fault detection. Four common PV module states were
discussed, including the normal PV module, module breakage, module contact defectiveness and
module bypass diode failure. First of all, the defects in 16 pieces of 20W monocrystalline silicon
PV modules were preprocessed, and there were four pieces of each fault state. When the signal
generator delivered high frequency voltage to the PV module, the original signal was measured
and captured by the NI PXI-5105 high-speed data acquisition system (DAS) and was calculated by
CSDM, to establish the chaos dynamic error map as the image feature of fault diagnosis. Finally, the
CNN was employed for diagnosing the fault state of the PV module. The findings show that after
entering 400 random fault data (100 data for each fault) into the proposed method for recognition,
the recognition accuracy rate of the proposed method was as high as 99.5%, which is better than the
traditional ENN algorithm that had a recognition rate of 86.75%. In addition, the advantage of the
proposed algorithm is that the mass original measured data can be reduced by CSDM, the subtle
changes in the output signals are captured effectively and displayed in images, and the PV module
fault state is accurately recognized by CNN.

Keywords: PV module; fault detection; convolutional neural networks; chaos synchronization
detection method; extension neural network

1. Introduction

With the development of renewable energy, solar photovoltaic (PV) has become one
of the key development projects [1]. However, photovoltaic systems are exposed for a
long time to outdoor environments with a high temperature and high humidity, which
will cause the system performance, reliability, optoelectronic and material properties of
the PV module to degrade and become faulty over time [2–4]. In ref. [2], the electrical
aging of three types of crystalline silicon PV modules with different cells, encapsulates
and back-sheets are proposed for accelerating during extended damp-heat tests at differ-
ent stress levels. The humidity dosage is utilized to evaluate the degradation of power
and the equivalent changes of solar cell circuit parameters. In ref. [3], the researchers
used the electroluminescence scanning technique to determine the degradation of the
PV modules fixed on a concrete slab. The PV modules were tested in a relatively high
humidity and damp-heat (DH) stress-testing chamber, in an accelerated condition at 85%
and 85 ◦C for 4000 h. The results showed that the retention performance of the PV modules
mounted on the concrete was 93.2% after a 2500-h exposure test, which was almost 5%
higher than the module without the concrete. The authors in ref. [4] presented an analytical
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method by using a single J–V (current density versus voltage) curve to extract the accurate
values of the diode parameters of silicon solar cells at different operating temperatures
and in different high illumination conditions. The results showed that the method was
in good agreement with the measured experimental values within a 2% discrepancy for
the values of the performance parameters. In addition, the common failure types [5–8]
of PV array include modules failures [5], a hot-spot, diode failure, PV system degrada-
tion [6], a snail trail [7], solder joint degradation [8], glass breakage, etc. Many researchers
and scholars have studied the PV module fault diagnosis by using artificial intelligence
methods [9–12]. In ref. [9], the researchers proposed a deep belief network that is optimized
by a genetic algorithm deep belief networks (GA-DBN) for PV fault diagnosis, including
normal operation, grounded short circuit, open-circuit in series, partial shadow and ab-
normal aging. Even though the overall diagnostic accuracy is 95.73%, the average training
time reaches 316.34 s, due to the complex optimization process of the initial weight and bias
of DBN by GA. In ref. [10], the authors proposed a fault detection method based on pattern
recognition, using multi-resolution signal decomposition (MSD) and a fuzzy-logic-based
decision-making system to detect line to line (LL) faults and line to ground (LG) faults. For
the LL faults, the detection accuracy is 97.69%, with a 20% mismatch. For LG faults, the
average accuracy reaches 97.22% when the mismatch percentage is 50%. The researchers
in ref. [11] presented a novel method that uses Continuous Wavelet Transform (CWT) to
generate two-dimensional (2D) images from PV system data and utilizes convolutional
neural networks (CNN) to carry out the PV fault classification. The fault detection accuracy
is 73.53% for six different cases consisting of no faults, a cross string (LL) fault, an open
circuit, partial shading, a fault in partial shading and an arc fault. However, the 2D CNN
mode takes 208 min to be fine-tuned and pre-trained. The authors in ref. [12] introduced
an unsupervised dictionary learning algorithm to detect disconnections in a PV array.
The results showed that the algorithm has a 97% accuracy for classifying faults, based on
the disconnect location. The researchers in ref. [13] proposed a novel photovoltaic (PV)
hot-spotting fault detection algorithm, based on the cumulative density function (CDF)
modeling technique, with a rate accuracy of 80%, to detect six different kinds of hot-spots,
including 1 to 4 hot-spotted solar cells, ≥5 hot-spotted solar cells and one hot-spotted
PV string.

By means of a review of the current literature, this study is the first to propose a hybrid
algorithm that combines CSDM [14,15] and CNN [16] for the fault diagnosis of PV modules.
Therefore, this study firstly adopted high-frequency signals to capture PV module original
voltage variation signals by using the Lorenz CSDM to obtain Chaotic Dynamic Error Maps
(CDEM) as the features of fault diagnosis. Secondly, the CNN was utilized to determine
the fault types of a PV module, including a normal PV module (Type 1), a PV module
surface rupture (Type 2), PV module contact defectiveness (Type 3) and PV module bypass
diode failure (Type 4). The advantages of the proposed method are to reduce the captured
original data and to detect the valid minimum movement of the original voltage variation
signals from PV modules, so that the states can be detected by CNN. In addition, the
chaotic dynamic error maps, as generated by the different fault types of PV modules, have
special distribution densities and positions, which is good for the recognition of CNN.
The proposed method has a detection rate of 99.5%, based on the extension theory after
verification through actual measurement, and which certifies that the method employed in
this study is applicable to PV module detection.

The rest of this paper is organized as follows: Section 2 describes the architecture of
the whole PV system, and the proposed fault diagnosis algorithm is introduced in detail
in Section 3. Section 4 presents simulation results, while Section 5 draws conclusions and
suggests directions for future work.
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2. Architecture of the System
2.1. Photovoltaic Module Fault Signal Capture

For developing an intelligent fault detection system for a PV module in an off-line state,
four different fault models were built, based on the proposed algorithm. The waveform
signals generated by the use of high-frequency voltage into a PV module were employed
as the source of the data analysis. The fault waveform signals were captured by the capture
card and imported into the chaos system to generate a CDEM. This map was used as a
characteristic sample and the fault type was recognized by CNN. The architecture is shown
in Figure 1 below:
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Figure 1. Architecture of system.

To detect the PV module fault, this study constructed a PV module testing platform.
The signal generator was used as a signal input source. A 250 kHz square wave was
imported into the anode and cathode of the test PV module power end. The signals were
captured by NI PXI-5105 data acquisition system (DAS) and an algorithmic analysis was
performed by the detection system. Figure 2 shows the signal acquisition on the PV module
fault detection testing platform.
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Figure 2. PV module fault detection testing platform.

Figure 3 displays the circuit diagram of the PV module fault detection testing platform.
The electrical measurement equipment must be isolated from each other to avoid a short
circuit. An Isolation Transformer is added to the circuit for this purpose. In order to capture
the fault signals of the PV module, the load was added to the circuit and the voltage signals
on the load were measured by PXI DAS and then stored by detection systems.
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Figure 3. The circuit diagram of the PV module fault detection testing platform.

To collect and detect PV module fault signals, this study employed PXI DAS as a
signal acquisition device and adopted the detection system for accessing waveforms. The
sampling rate was set as 60 MS/s, with 2500 sampling points. The voltage signal from
the voltage drop resulting from the current passing through the load was captured by a
probe. PXI DAS transferred the signal to a computer and then, after the filtering and feature
extraction, the PV module defect type was recognized by the fault diagnosis system.

2.2. PV Module Defect Construction

Four common PV module fault state models were built in this study, as shown in
Table 1 below. These include a normal PV module (Type 1), PV module breakage (Type 2),
PV module contact defectiveness (Type 3) and PV module bypass diode failure (Type 4).
To discuss the different signal results of the PV module measured in different fault defect
conditions, the features were extracted by the chaos system and then identified by CNN.

Table 1. PV module fault state models.

Work Style PV Module Defect Construction

(Off-line)

normal PV module (Type1)
PV module breakage (Type2)

PV module contact defectiveness (Type3)
PV module bypass diode failure (Type4)

2.2.1. Normal PV Module (Type 1)

This study employed a 20W monocrystalline silicon PV module. The I-V curve mea-
sured by the I-V curve testing instrument in our photovoltaic laboratory is shown in
Figure 4. The maximum voltage of 19.49 V, the maximum current of 1.0686 A and the maxi-
mum power of 20.827 W were measured at an ambient temperature of 25.699 ◦C and were
close to the original manufacturer’s values. The normal PV module was built accordingly,
and the whole entity is shown in Figure 5a. To guarantee the normal functioning of the PV
module, the solar cell inside the module was checked for any damage. EL instrument was
adopted for measurement and the shooting was performed in a dark area. The EL imaging
is shown in Figure 5b. The EL image is free of apparent breakages and the research model
was built according to this process.



Processes 2021, 9, 1635 5 of 17

Processes 2021, 9, x FOR PEER REVIEW 5 of 17 
 

 

is shown in Figure 5b. The EL image is free of apparent breakages and the research model 
was built according to this process. 

 
Figure 4. PV module I-V curve. 

  
(a) PV module entity (b) PV module EL imaging 

Figure 5. Built-in normal PV module. 

2.2.2. PV Module Breakage (Type2) 
To build the ruptured PV module model, severe damage and light damage were per-

formed. In terms of the establishment of severe damage, a sharp object applied an external 
force to knock the normal PV module, in order to simulate the severe damage. This simu-
lated man-induced trampling and foreign object damage. Figure 6a shows the extensively 
damaged entity and Figure 6b shows the EL image. According to the EL image, under the 
effect of severe damage, the knocking point extends to the periphery and the other silicon 
wafers lose their normal function. 

  

Figure 4. PV module I-V curve.

Processes 2021, 9, x FOR PEER REVIEW 5 of 17 
 

 

is shown in Figure 5b. The EL image is free of apparent breakages and the research model 
was built according to this process. 

 
Figure 4. PV module I-V curve. 

  
(a) PV module entity (b) PV module EL imaging 

Figure 5. Built-in normal PV module. 

2.2.2. PV Module Breakage (Type2) 
To build the ruptured PV module model, severe damage and light damage were per-

formed. In terms of the establishment of severe damage, a sharp object applied an external 
force to knock the normal PV module, in order to simulate the severe damage. This simu-
lated man-induced trampling and foreign object damage. Figure 6a shows the extensively 
damaged entity and Figure 6b shows the EL image. According to the EL image, under the 
effect of severe damage, the knocking point extends to the periphery and the other silicon 
wafers lose their normal function. 

  

Figure 5. Built-in normal PV module.

2.2.2. PV Module Breakage (Type 2)

To build the ruptured PV module model, severe damage and light damage were
performed. In terms of the establishment of severe damage, a sharp object applied an
external force to knock the normal PV module, in order to simulate the severe damage.
This simulated man-induced trampling and foreign object damage. Figure 6a shows the
extensively damaged entity and Figure 6b shows the EL image. According to the EL image,
under the effect of severe damage, the knocking point extends to the periphery and the
other silicon wafers lose their normal function.

In terms of the partial failure of the PV module, the partial surface of the normal
PV module was burnt at a high temperature by a blast burner. The module surface was
ruptured by the physical phenomenon of thermal expansion and contraction, to simulate
the hot-spot effect. Figure 7a shows the entity after partial failure, and Figure 7b shows
the EL image. According to the EL image, the position burnt by the blast burner is black,
which means that the solar cell is severely damaged and the other luminous part is normal.
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2.2.3. PV Module Contact Defectiveness (Type 3)

The power circuit screws or pressure connection terminal may become loose in the
long-term operation of electrical equipment, or due to ambient temperature changes. The
contact area is reduced, which leads to excessive contact resistance. It influences the safety
of the system in the long term. Therefore, in order to construct the PV module with contact
defectiveness, this paper performed improvements according to the method presented
in [17]. Series resistance was added to the PV module and 2 Ω and 10 Ω impedances were
added to study the contact defectiveness. The resistance was equally divided into 10 parts,
ranging from 1 Ω to 10 Ω, to establish the aging fault type. Figure 8a shows that the
additional impedance of the PV module is adjusted by an impedor. A variable resistor in
series was connected to the PV module for this study. Figure 8b shows the circuit diagram.
Ra is changed to a variable resistor to adjust 1 Ω to 10 Ω for the experiment, which aims at
the overall loop of regional line and contact point aging detection, not just the PV module
aging fault.
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2.2.4. PV Module Diode Failure (Type 4)

The PV module is inevitably influenced by external factors in the course of the PV
module conversions. Some external factors, such as tree shade, contaminants and bird
droppings reduce the amount of generated electricity. The damaged or shielded solar cell
region begins to heat up and the bypass diode exerts a significant effect. The current can
pass by the shaded PV module to decrease the hot-spot effect. The bypass diode of the
normal PV module is removed, as shown in Figure 9a. A conductor is soldered, to open
the bypass diode, as shown in Figure 9b.
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3. Proposed Fault Diagnosis Algorithm

In terms of the PV module fault recognition method of this study, the output signals
are captured by adding high-frequency signals. The features are extracted by CSDM
and the fault category is recognized by CNN. These are then compared with ENN. The
algorithmic procedure is shown in Figure 10 below:
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3.1. Chaos Synchronization Detection Method

Edward Norton Lorenz proposed the chaos theory to discuss the instability of the non-
linear system. The non-periodic result is obtained by a simple chaos theory mathematical
model. The signal generates a strange attractor through the chaos theory, so that the signal
forms an orderly, but aperiodic, motion trajectory. This trajectory induces huge changes
from subtle changes. There is a severely sensitive response to the micro-initial phenomenon
and it is very applicable to the data with small original signal variation ranges. It is utilized
in many aspects of science, such as economics, biology, engineering and physics. The
general chaos theory includes the Lorenz chaos theory, the Sprott chaos theory and the
Chen-Lee chaos theory. The chaos theory has a Master System (MS) and a Slave System
(SS), which are represented as Equations (1) and (2). When the two systems obtain different
signals, the signal values are diminished to acquire a chaos dynamic error. The master and
slave systems generate the movement trajectory of different dynamic errors for the domain
of engineering. The SS is provided with a controller to follow the MS, so that the MS and
SS are adjusted to the same movement trajectory by the controller. This is known as the
chaotic synchronization action [18].

The PV module voltage signal was put in the master-slave synchronization system.
The dynamic error amounts of the intrinsic chase of SS and MS were reduced by the master
and slave chaotic systems to gain the chaos dynamic error status.

Smaster =


.

x1 = f1(x1, x2, . . . , xn).
x2 = f2(x1, x2, . . . , xn)

...
.

xn = fn(x1, x2, . . . , xn)

(1)

Sslave =


.

y1 = f1(y1, y2, . . . , yn).
y2 = f2(y1, y2, . . . , yn)

...
.

yn = fn(y1, y2, . . . , yn)

(2)
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wherein, fi (i = 1, 2, . . . , n) is the nonlinear function. Equations (1) and (2) are subtracted
to form master-slave dynamic error definitions and are represented as Equation (3). The
calculated dynamic error equation is displayed in Equation (4).

e1 = y1 − x1
e2 = y2 − x2

...
en = yn − xn

(3)


.

e1 = f1(y1, y2, . . . , yn)− f1(x1, x2, . . . , xn).
e2 = f2(y1, y2, . . . , yn)− f2(x1, x2, . . . , xn)

...
.

en = fn(y1, y2, . . . , yn)− fn(x1, x2, . . . , xn)

(4)

The Lorenz master and slave chaotic systems are chaos theory-designed mathematical
models. Infinite models can be achieved. This study adopted the Lorenz equation and two
Lorenz chaotic systems, which are Lorenz Lmaster and Lslave chaotic systems, respectively,
and are expressed as Equations (5) and (6).

Lmaster =


.

x1 = α(x2 − x1).
x2 = βx1 − x1x3 − x2.

x3 = x1x2 − γx3

(5)

Lslave =


.

y1 = α(y2 − y1).
y2 = βy1 − y1y3 − y2.

y3 = y1y2 − γy3

(6)

The chaos dynamic error is defined as e1 = y1 − x1, e2 = y2 − x2 and e3 = y3 − x3,
the dynamic error vector is e = [e1, e2, e3]

T . The dynamic error equation of Lorenz chaotic
systems is indicated in a matrix that is expressed as Equation (7) [19]. .

e1.
e2.
e3

 =

 −α α 0
β −1 0
0 0 −γ

 e1
e2
e3

+

 0
−e1e3

e1e2

 (7)

The x stands for MS and its initial value is zero, y stands for SS and its value is the PV
module voltage value. The coefficients of adjustment error, α, β and γ, have the values of 10,
28 and (8/3), respectively. The Lorenz master and slave chaotic systems are generated by
this group of error parameters [20]. The distance of chaos eye coordinates in the CDEM is
computed by the largest root-mean-square deviation, and the chaos eye coordinate values
are utilized as the eigenvalues of the PV module diagnosis system.

3.2. Convolutional Neural Networks

To diagnose the PV module fault type by images, this study employed the CDEM
image (containing information of the fault state) based on the features generated by the
Lorenz master and slave chaotic systems [21] in CSDM for fault recognition by the CNN.
The CNN is a part that is defined in a deep learning network in modern times, e.g., facial
feature recognition [22], biometric recognition embedded in an FPGA system [23] and
high-tension cable fault diagnosis [24]. It is extensively used in signal processing and
image classification. It has an excellent accuracy for image classification. The architecture
of the model design of CNN varies with the test image. The main architecture is comprised
of several convolution layers, pooling layers, fully-connected layers and activation layers.
This study adopted CNN to diagnose the CDEM image of features of the PV module
fault state. The image format was 64 × 64 × 3, where 64 × 64 was the image size and
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3 represented the three primary colors (Red Green Blue, RGB). The designed CNN model
architecture is shown in Figure 11 and the hierarchies are described below:
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3.2.1. Convolution Layer

The main job of the convolution layer in the network is to extract image features. The
layer performs a convolution operation through filters of different sizes. The image feature
extraction or feature enhancement is performed by spatial filtering. A 3 × 3 filter is used
for convolution and one stride is moved each time (Stride = 1). After all the pixels of the
original input image are finished by the inner product of the filter, the feature map can be
obtained. The operation process is shown in Figure 12.
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3.2.2. Pooling Layer

The image feature was obtained through the convolution layer. To reduce the feature
size of the image and to minimize the influence on eigenvalue, the convolution extracted
feature was added to the pooling layer. The computation complexity of the overall network
could be reduced. The information after pooling further concentrated on whether there
were accordant features in the image. The pooling layer was divided into Max Pooling
and average pooling. Two strides were moved each time (Stride = 2) for pooling. The
maximum value in the Feature Map 2 × 2 range was taken as Max Pooling, and the values
in the Feature Map 2 × 2 range were added up and divided by 4 to obtain the average
pooling. Figure 13 shows how the pooling layer works.
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3.2.3. Fully-Connected Layer

The architecture of a fully connected layer is the traditional neural network model
composed of flattening, a hidden layer and an output layer. The results of convolution
and the pooling processes obtained in the CNN architecture were flattened into a one-
dimensional vector. The image was predicted and classified by a fully connected layer.
The neurons of the previous layer and of the next layer were connected and classified. Its
structure is shown in Figure 14.
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3.2.4. Activation Layer

The major function of the activation layer is to improve the ability of the network for
solving nonlinear separability. The general activation functions contain the Sigmoid, ReLu,
TanHyperbolic (tanh) and Leaky ReLU functions [25]. This study uses the ReLU function
as the activation function of CNN. The training speed of CNN is increased effectively,
compared with the other functions [26], and the generalization accuracy of the model is not
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influenced. The ReLU function is expressed as Equation (8), wherein x is the last neuron
output. The ReLU function is shown in Figure 15.

f (x) =
{

x, x > 0
0, x ≤ 0

(8)
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4. Results

This study employed 16 PV modules to construct four states, including three common
fault defects and a normal module. Each state was tested by four modules connected in
series. In the experimental detection phase, the signal generator was adopted as the signal
input source. The PV module power end impressed frequency was 250 kHz and the voltage
was 10 Vp-p high-frequency square wave signal for data acquisition. The data sampling
time was 40 µs equivalent to 10 cycles. The sampling rate was 60 MS/s and the failure data
of 2500 points were sampled. Four state models were built and 200 elements of data were
extracted from each model. There were 800 pieces of data extracted for the experiment. The
normal or defective signals of the PV module were captured and the CDEM was generated
by the chaotic system for feature extraction.

4.1. Original Signal Captured

Seven images of the original signals of four fault models were overlapped and drawn.
Figure 16 shows the integration of the original signals, normal, partial rupture, severe
rupture, contact defectiveness, bypass diode open circuit and short circuit in different
colors, from left to right. It was observed that partial rupture and diode failure were the
most apparent. The rest was close to the waveform of a normal PV module. As a result,
this paper used the proposed chaotic system to extract the differences in fault features.

4.2. Convolutional Neural Network Recognition Results

A total of 800 pieces of data were employed to build four PV module states, and each
state adopted 200 pieces of data for calculation, via the chaotic system, to obtain the CDEM.
Among the 200 data, 100 images were classified for training and 100 images for recognition.
The fault classification accuracy of CDEM e1e2, e1e3 and e2e3 was analyzed by CNN.

The computer hardware used for this study is the Intel Core (TM) i7-9700 CPU@3.0
GHz processor and NVIDIA GeForce RTX 3060. The software configuration is a Windows
10 operating system with MATLAB 2021a for CNN. The CNN recognition model adjusts the
convolution kernel size to 3 × 3 and uses ReLu as an activation function with Max Pooling,
two pooling layers, two convolution layers and one fully connected layer. The dynamic
errors CDEM e1e2, e1e3 and e2e3 are recognized by this network model for diagnosis.
After the calculation by the Lorenz CSDM, the drawn normalized CDEM e1e2 is shown in
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Figure 17a–d. The drawn normalized CDEM e1e3 is shown in Figure 18a–d. The drawn
normalized CDEM e2e3 is shown in Figure 19a–d.
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The simulation result is shown in Table 2. The CNN with Lorenz e1e2 has the highest
recognition accuracy, namely, 99.5%. The accuracy of CNN with Lorenz e2e3 is 98%, that of
ENN + dynamic error chaos eye coordinates is 80.25–86.75%. CNN with Lorenz e1e3 has
the lowest recognition accuracy of 74%. As the chaotic scatter diagrams of Lorenz e1e2 and
Lorenz e2e3 have large differences for different fault types, favorable for image recognition
analysis with CNN, the CNN with Lorenz e1e2 and CNN with Lorenz e2e3 have a higher
recognition rate than the other four detection methods, and are higher than the ENN, using
numerical data for recognition.

Table 2. Simulation results with different algorithms.

Algorithm Epoch Training
Rate (%)

Accuracy
Rate (%)

Training Time
(s) Ranking

CNN + Lorenz e1e2 50 100 99.5 9 1
CNN + Lorenz e2e3 50 100 98 9 2
ENN + Lorenz e2e3 100 97.2 86.75 0.154 3
ENN + Lorenz e1e3 100 95.5 83.25 0.146 4
ENN + Lorenz e1e2 100 95.25 80.25 0.143 5
CNN + Lorenz e1e3 50 100 74 9 6

Regarding the training time, while traditional ENN with Lorenz can complete the
training in a shorter time (less than 1 s), CNN requires 9 s to finish the training. The CNN
takes much more training time than ENN, as the CNN performs an image analysis, whereas
the ENN uses a numerical analysis.

In addition, the recognition result of PV modules is displayed in a confusion matrix,
as shown in Figure 20a–c, where the x-axis is the actual fault type, and the y-axis is the
predicted fault type. The green and red grids of the confusion matrix represent the number
of accurate recognitions and the number of misrecognitions, respectively. The recognition
accuracy rate and misrecognition rate of the individual fault types are the green and red
values in the whitish gray grids in the x-axis, respectively. The overall recognition accuracy
rate and misrecognition rate are the green and red values in the lowest right gray grid of
the confusion matrix, respectively. The overall recognition accuracy rate is the total value
of green and red grids in the total value of green grids. As shown in Figure 20b, among
the 100 test data of Type 1, the proposed method identified 90 data as Type 2, 1 data as
Type 3, 1 data as Type 4 and 8 data as Type 1, so the recognition rate of Type 1 was only
8%. Similarly, the recognition of Type 2 of the proposed method was 90%, and that of
Type 3 was 98%. Finally, the value of green grids divided by the sum of the green and red
grid values, and the total recognition accuracy rate was 74%. Therefore, the CNN with
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Lorenz e1e3 has a higher misrecognition rate of Types 1 and 2 than the other five detection
methods, which means that Types 1 and 2 have similar CDEM (e1e3), which are unlikely to
be recognized by CNN.
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