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Abstract: Process-based numerical models developed to perform hydraulic/hydrologic/water qual-
ity analysis of watersheds and rivers have become highly sophisticated, with a corresponding
increase in their computation time. However, for incidents such as water pollution, rapid analysis
and decision-making are critical. This paper proposes an optimized parallelization scheme to reduce
the computation time of the Environmental Fluid Dynamics Code-National Institute of Environmen-
tal Research (EFDC-NIER) model, which has been continuously developed for water pollution or
algal bloom prediction in rivers. An existing source code and a parallel computational code with
open multi-processing (OpenMP) and a message passing interface (MPI) were optimized, and their
computation times compared. Subsequently, the simulation results for the existing EFDC model and
the model with the parallel computation code were compared. Furthermore, the optimal parallel
combination for hybrid parallel computation was evaluated by comparing the simulation time based
on the number of cores and threads. When code parallelization was applied, the performance im-
proved by a factor of approximately five compared to the existing source code. Thus, if the parallel
computational source code applied in this study is used, urgent decision-making will be easier for
events such as water pollution incidents.

Keywords: EFDC-NIER; parallel calculation; optimization; OpenMP; MPI

1. Introduction

In areas with monsoon climates, including South Korea, changes in hydraulic char-
acteristics throughout the year are significant because weather conditions such as pre-
cipitation and air temperature change throughout the year [1,2]. The flow rate is strong
during the flood season, but weak during the dry season. During the summer, when the
temperature is high, stratification develops and sometimes causes various environmental
problems [3]. In particular, the multi-functional weirs built as part of the Four Major
River Restoration Project increase the residence time and water depth, which deepens the
stratification phenomenon.

Changes in hydraulic characteristics also affect water quality [4]. Therefore, the vertical
layers need to be classified to precisely simulate hydraulics and water quality for these
conditions. Furthermore, cyanobacteria, which are generated in large quantities during
the summer, often have different distribution characteristics along the lateral direction of a
river, and the water quality distribution worsens downstream around basic environmental
facilities or confluences of major pollutant sources. Vertically integrated 2D or x-z 2D
models are limited in their ability to reproduce these 3D variation characteristics. Therefore,
the application of a 3D model with an appropriate vertical/horizontal resolution is required,
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but the computational requirements can increase significantly if a model is constructed
using 3D high-resolution grids [5]. In particular, the computational requirements increase
sharply if a long-term simulation is performed for an entire river, such as the Nakdong
River. To overcome this problem, it is necessary to reduce the time required to conduct the
calculations by adjusting the number of calculations or calculation intervals using certain
techniques, such as parallel calculation, independent computations of a hydraulic-water
quality model, or application of an implicit scheme.

In particular, research on parallelization is very important in the field of modeling.
With advancements in computer performance, it is possible to simulate various phenomena
on a large scale and over an extended period. However, the number of input data items
required for the model has increased. Furthermore, the number of parameters of the model
required for simulation has also increased. Most of the models currently in use are executed
serially, resulting in the simulation taking a long time to complete [6]. The evolution of
the model conversely slows down the process. To overcome this issue, the model must be
parallelized. The large-scale hydrological model simulates the water resources, changes in
water quality, and water circulation globally. Therefore, much data such as weather, climate,
runoff, and topography are required for modeling. For this reason, previous studies have
tried to reduce the simulation speed by applying a parallelization technique to a large-scale
basin model. Neal et al. [7] applied three parallelization techniques based on OpenMP,
message passing, and specialized accelerator cards to improve the simulation speed of
a 2D flood inundation model that requires various input data. Rouholahnejad et al. [8]
significantly reduced the time to calibrate parameters by parallelizing the Soil and Water
Assessment Tool (SWAT) model. Liu et al. [9] improved the simulation speed by paral-
lelizing the grid-based distributed hydrological model with OpenMP. Avesani et al. [6]
developed HYPERstreamHS, which parallelizes a large-scale river basin model to efficiently
consider various hydraulic structures. In particular, the parallel performance was better in
the large-scale model than in the small-scale model [9,10].

Parallel calculation is an efficient calculation technique that uses multiple resources
simultaneously through job allocation and data distribution via a communication method,
whereby processes with separate local memories send or receive data for sharing. A
parallel calculation should be divided into separate task fragments that can be solved
simultaneously, and should be solved in less time using multiple calculation resources
rather than a single one. For example, Barney [11] proposed a conceptual scheme for
parallel computing performed by multiple processes by subdividing a problem. Parallel
computing methods include message passing interfaces (MPIs) based on a distributed
memory system [12], open multi-processing (OpenMP) based on shared memory [13], and
a method based on manycore processors such as an Intel Xeon or a graphics processing
unit (GPU). Each parallel computing method has advantages and disadvantages. OpenMP
is simple to implement, but it has limited scalability, depending on the size of the shared
memory system. In contrast, MPI is scalable for high-dimensional problems, but its
computing efficiency tends to decrease as the number of CPU cores increases because of the
increase in communication between the CPUs. Thus, a high-performance coding technique
is required to solve this problem effectively. In the parallelization of manycore processors
such as GPUs, the device dependency is high, and the performance is improved only for
certain types of calculations. In recent years, studies have been actively conducted on
hybrid techniques that combine the OpenMP and MPI methods [14–20]. Recently, there
has been a study that applied a hybrid technique combining OpenMP and MPI to an urban
flood model. It was confirmed that the parallelization ability was better than with OpenMP
or MPI solely [21].

Among various process-based numerical models, the Environmental Fluid Dynamics
Code (EFDC) was developed with the FORTRAN language by the Virginia Institute of
Marine Science (VIMS) in the United States, and the Environmental Protection Agency
(EPA) released a generalized vertical grid (GVC) version [22–25]. The numerical scheme
employed in EFDC to solve the equations of motion uses a second-order accurate spatial
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finite difference on a staggered or C grid, and the EFDC model’s internal momentum
equation solution, at the same time step as the external, is implicit with respect to vertical
diffusion [25]. See reference [25] for more information about the model concept, etc.

Dynamic Solutions International (DSI) released the EFDC_DS (20100328 version),
and has been continually updating the source code since then. The EFDC model is used
worldwide, which demonstrates its performance and applicability.

Based on the EFDC_DS (20100328 version), the National Institute of Environmental
Research (NIER) in South Korea has added more features, such as the operating function
of hydraulic structures in the major rivers of South Korea; a simulation function of multi-
algae species; a vertical migration mechanism for cyanobacteria; akinete generation and
germination mechanisms; and a mechanism for the effect of salt and toxicity on freshwater
and sea algae, wind stress, and benthic flux of inorganic nutrients according to changes in
the oxidation/reduction conditions [26].

Ahn et al. [26,27] established a method for short-term prediction of algae by using
an improved source code with an operating function of hydraulic river structures and of
mechanisms for vertical migration of cyanobacteria and akinete creation and germination.
They also proposed an optimal method for predicting algae by applying hyperspectral
remote-sensing data to the EFDC-NIER model. The model, which the NIER has named
EFDC-NIER, has improved the functions to suit the major rivers of South Korea, and it is
used to support the policies for algae and water quality control of major rivers and lakes
in South Korea. Because the number of calculations required for analysis has increased
in various fields such as hydraulics, hydrology, water quality, and aquatic ecosystems,
a parallel computational code needs to be applied to increase the utilization of policies
through fast decision-making.

In this study, we applied a hybrid parallel computational code constructed using the
OpenMP and MPI methods to the EFDC-NIER model, and compared the calculation times
required for the existing version and the parallel computational code version. We also com-
pared the simulation results for the existing EFDC model and the parallel computational
code model to check if they corresponded. Furthermore, the optimal parallel combination
was determined through a comparative evaluation of the simulation time based on the
number of cores and threads.

2. Materials and Methods
2.1. Research Trend in Parallel Calculation of EFDC Model

The EFDC is a general-purpose modeling package used for the simulation of 3D flow,
material transport, and biochemical processes in systems such as rivers, lakes, estuaries,
reservoirs, wetlands, and coasts. The EFDC model is open-source software developed
by John Hamrick at the Virginia Institute of Marine Science (VIMS, Gloucester point,
VA, USA) [28]. The EFDC is one of the models recommended by the US EPA for the
management of the total maximum daily load (TMDL), and the US EPA continues to
support its development. The EFDC has been extensively tested and used by many
researchers in several modeling studies.

DSI has developed a version of the code that streamlines the modeling process and
connects it to the pre- and post-processing tools of DSI [29]. DSI has developed and
commercialized the EFDC_DSI OpenMP code by applying the OpenMP library for parallel
computing. Figure 1 shows the comparison between the simulation times when the
EFDC_DSI OpenMP is applied [30]. The model using an octa-core processor reduced the
execution time of all subroutines by approximately 75% compared to the model that used a
single-core processor (the dotted line on the left). However, although the calculation time
of the subroutine that simulated the water quality response mechanism decreased slightly
when a dual-core processor was used, the calculation time was similar to that when using a
single-core processor. As the number of processors increased (the dotted line on the right),
the calculation time did not significantly decrease.
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Figure 1. Comparison of simulation times when the EFDC_DSI OpenMP is applied (Vert Diff: Vertical
Diffusion; PUV: Pressure, U, and V flux; QQ: Turbulent intensity; UVW: U, V, and W velocity; EXP:
Explicit momentum equation term; T/B SH: Bottom friction; V&D: Viscosity and Diffusivity; Heat:
Heat flux; SSED: Sediment transport; WQ Kin: WQ kinetic equation; WQ Trans: WQ transport;
TOX: Toxic).

IBM used the MPI library to parallelize the GVC version of the EFDC model released
by the EPA [31] and published it on GitHub [32]. For continuous management during a
parallelization operation, the setup process for parallel execution was automated (1) to limit
the changes in a large number of source files to avoid computational errors, (2) to ensure
that the results of serial calculations and parallel calculations match, and (3) to ensure that
the originally configured serial model runs properly in the parallel code. Figure 2 shows the
parallel efficiency as a function of the number of processors using IBM’s parallelized code.
When six processors were used, the parallel efficiency was 50%, and when 25 processors
were used, an efficiency of 40% was achieved. However, the rate of increase in the efficiency
fell when more than six processors were used. The parallel efficiency for the water quality
response calculation was unknown because it was calculated by parallelizing only the
hydraulic module from the tidal current model of Galway Bay.
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2.2. Development of Parallel Computational Code

As described above, DSI performed parallelization using the OpenMP method, and
IBM performed parallelization using the MPI method. IBM performed parallelization only
on the subroutines related to the hydraulic calculations. Therefore, in this study, we aimed
to apply the parallel code to all of the EFDC-NIER model based on a hybrid method of
applying both OpenMP and MPI. Because both MPI and OpenMP have advantages and
disadvantages, the hybrid method can utilize the advantages of both while minimizing
their drawbacks. In hybrid parallel programming, an intensive calculation is performed at
a single node using the OpenMP method, and a large number of calculations are performed
by executing communications between different nodes over the network based on the MPI
method. In 2019, a research team at the University of Bialystok in Poland conducted a study
on the K-means parallelization algorithm. Statistics such as the vector sum and count were
calculated using OpenMP at each MPI node, and after gathering them at the master node,
the remaining statistical calculations were completed and delivered to each processor to
continue the next calculation. Similarly, four algorithms were parallelized, and the results
of the computational experiments showed that all these algorithms were superior to the
conventional Lloyd algorithm in terms of computing time [33].

MPI is a library specification containing standardized subroutines and functions for
handling communication [34], whereas OpenMP is a shared memory model and an add-on
to a compiler. One of the advantages of OpenMP is that there is no communication between
nodes, but the disadvantage is that the user’s desired calculation time cannot be secured
when large calculations are performed because a single node cannot be extended infinitely.
In contrast, in the case of MPI, calculation nodes can be added to secure the calculation
speed desired by the user.

Parallel code development was carried out in two stages: Sequential code optimization
and parallel code creation. Sequential code optimization refers to the process of maximizing
the performance of the sequential code before parallelizing the code (Table A1). The
optimization was performed by finding unnecessary statements through measuring the
precise computation time for each computational statement in the subroutines defined
earlier by hotspot analysis. A DEBUG variable was added to the CALUVW subroutine
to compose a log fine (CFL.OUT) when DEBUG was required, and the variable I/O was
reduced in EEXPOUT by reducing the loop depth to 3 (NSP, K, L) when writing the result.

Parallel codes were developed using a hybrid parallel programming method that
included both OpenMP and MPI. They were created by adding statements used by both
parallel libraries, and parallelization was performed for approximately 40 source codes.
For parallel code development, we chose the hybrid parallel programming approach and
developed a technique for dividing the computational area according to the processor
used. The MPI parallel code was composed by partitioning the LA variable (the number of
calculation grids) corresponding to the 2D index in a Do loop, and the OpenMP parallel
code was composed using a thread fork-join approach with the partitioned indices. To
aid in the understanding of how the hybrid parallel code is created, Table A2 shows an
example of a parallel code. First, we designed it such that the statements repeated from 2
to LA in the Do loop of the sequential code would be repeated from LMPI2 to LMPILA and
partitioned according to the MPI rank in the parallel code. We then parallelized each Do
loop using !$OMP PARALLEL DO, OpenMP Directive. The RS8Q variable is configured
to calculate the sum of all indices by simultaneously using OpenMP’s REDUCTION and
MPI’s ALLREDUCE.

We developed MPI functions for area partitioning and communication according
to the number of MPI nodes, and Table 1 presents the specific roles of each function.
Among them, the BROADCAST_BOUNDARY function was developed to communicate
the updated boundary values between the MPI nodes to and from adjacent nodes. The
COLLECT_IN_ZERO function transmits variables from all nodes to the master node in
order to output the results and analyze the consistency at the master node. For the data
type used in the MPI communication, a user-defined data type (MPI_TYPE_VECTOR)
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was used to reduce the frequency and amount of communication. For the topology, a
single topology without partitioning was used. MPI-only functions that handled the
communication between nodes were inserted to send and receive the boundary values for
a minimal number of times; otherwise, a communication load would occur.

Table 1. MPI-only functions of the EFDC-NIER parallel code.

Function Description

MPI_INITIALIZE Initializes MPI and sets up MPI variables (number of
nodes, rank of each node)

MPI_DECOMPOSITION Partitions the LA index

BROADCAST_BOUNDARY Performs communication of boundary values
between MPI nodes (1D variable)

BROADCAST_BOUNDARY_ARRAY Performs communication of boundary values
between MPI nodes (2D and 3D)

COLLECT_IN_ZERO Performs collective communication to send the
variables to the master node (1D)

COLLECT_IN_ZERO_ARRAY Performs collective communication to send the
variables to the master node (2D and 3D)

MPI_TIC/MPI_TOC Timestamp for hotspot analysis (MPI Walltime)

2.3. Parallel Calculation Test Model Sets

To evaluate the parallelization performance and consistency of the EFDC-NIER accord-
ing to the number of grids, we used the model sets presented in Tables 2 and 3. Measuring
the consistency of the parallel code involves evaluating whether the results for the serial
and parallel calculations match.

Table 2. Method for evaluating the parallelization performance.

Case Description Comparison Method

Case 1 Before optimization and parallel code application

Consistency of
calculation times and
results for simulations

from 1 July 2015 to
9 July 2015

Case 2
1 Sequential code optimization

2 Case 2-1 + Changed method of writing the result file

Case 3 Case 2-2 + OpenMP (6 threads)

Case 4 Case 2-2 + MPI (6 nodes)

Case 5

1 Case 2-2 + Hybrid (1 thread + 5 nodes)

2 Case 2-2 + Hybrid (2 threads + 4 nodes)

3 Case 2-2 + Hybrid (3 threads + 3 nodes)

4 Case 2-2 + Hybrid (4 threads + 2 nodes)

5 Case 2-2 + Hybrid (5 threads + 1 node)

Table 3. Model and computer specifications used for the evaluation of the parallel calculation.

Category Description

Model Number of grids Horizontal: 6998 units, vertical: 11 layers

Windows PC

CPU Inter Core i7-8700 3.20 GHz, 6 cores

Memory 32 GB

OS Microsoft Windows 10 Pro 64-bit

Compiler Intel parallel studio XE 2020, 19.1.2.254 20200623
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3. Results and Discussion
3.1. Source Code Analysis for the EFDC-NIER Model

In models such as EFDC-NIER, which rely on data-intensive calculations, it is impor-
tant to identify the time-consuming calculation codes in the program before creating the
parallelization code. Such a time-consuming function or section is called a hotspot, and it is
crucial to clearly identify hotspots to perform optimization and parallelization for overall
performance improvement.

In this study, we identified 20 subroutines and calculation statements as hotspots among
approximately 250 subroutines executed in the source code of EFDC-NIER. Table 4 presents the
names of the subroutines identified as hotspots, their execution times, and the proportions of the
total execution time for each subroutine. The HDMT2T subroutine is the main execution compo-
nent of the numerical operations, and for the 20 hotspots, the proportions are calculated by com-
paring their execution time to the execution time of HDMT2T. Twelve subroutines accounted for
more than 1% of the total execution time: Water quality component simulation (WQ3D) > flow
rate/direction component simulation (CALUVW) > concentration (water temperature, sedi-
ment) simulation (CALCONC) > subroutine description (CALQQ2T) > subroutine description
(CALEXP2T). The proportions of these subroutines were high because they simulated
3D variables.

Table 4. Hotspot analysis results for the EFDC-NIER model.

Function Name Description Proportion of Execution
Time (%)

HDMT2T Main code of numerical simulation 100.00

WQ3D Water quality component simulation 38.03

CALUVW Flow rate/direction component simulation 18.45

CALCONC Concentration (water temperature, sediment)
simulation 10.65

CALQQ2T Turbulence intensity simulation 7.33

CALEXP2T Explicit momentum equation calculation 6.17

CALHDMF Simulation of horizontal viscosity and
spreading momentum 4.66

CALPUV2C Simulation of surface P, UHDYE, and
VHDXE

4.12

EEXPOUT Writing a result file 3.15

CALAVB Simulation of vertical viscosity and
dispersion 3.12

ADVANCE Updating the next timestep value 0.98

CALBUOY Buoyancy simulation 0.98

CALTBXY Bottom friction factor calculation 0.60

QQSQR Updating the turbulence intensity value 0.56

CALCSER Updating the boundary data 0.35

CALTSXY Updating the surface wind stress 0.28

SEDIMENT Sediment simulation 0.25

NLEVEL Distribution of variables for each timestep 0.11

SALPTH Writing the salinity result 0.09

DUMP Recording the model variable dump 0.06
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3.2. Parallel Performance Evaluation

For the parallel performance evaluation, we compared the execution times of the
model for the cases presented in Table 2 and examined the execution times and performance
improvement rates of the major subroutines for each parallel combination.

When the simulation times for each case were compared, the source code optimization
and parallel code application resulted in a performance improvement by a factor of ap-
proximately five compared to Case 1 (Table 5). When the optimization was performed for
EEXPOUT (shown in Table A1), the time decreased by approximately 1.5 h, indicating that
a significant amount of time was spent in the writing method. A comparison of OpenMP
and MPI showed that the MPI method required 0.05 h less in the simulation time. However,
in the case of personal computers, it would be sufficient to use OpenMP because the core
resource is limited.

Table 5. Parallelization performance evaluation method results.

Case Simulation Time (h)

Case 1 3.22

Case 2
1 2.68

2 1.69

Case 3 0.74

Case 4 0.69

Case 5

1 0.66

2 0.73

3 0.68

4 0.65

5 0.79

For the combination of OpenMP and MPI, we compared the simulation times by
increasing the number of OpenMP threads from one to six and decreasing the number of
MPI nodes from five to one in each case. When four threads of OpenMP and two nodes of
MPI were applied, the fastest simulation was executed in 0.65 h. It is difficult to determine
whether a certain combination of OpenMP thread count and MPI node count is sufficient,
and an appropriate combination that accounts for the specifications of the user’s computer
should be determined.

We conducted this study using a Windows PC, which offers versatility. OpenMP can
use only the cores corresponding to one computer, whereas MPI can utilize all cores of
multiple computers. Therefore, the performance improvement will increase further if the
software is applied to a Linux-based supercomputer. Appendix B describes the evaluation
results for the parallel computing performance in a Linux-based cluster, and Appendix C
describes the evaluation results for the parallel computing performance of the OpenMP
and MPI methods.

3.3. Consistency Evaluation

In the process of parallelizing the sequential code, two categories can be considered
for the factors that violate the consistency of the parallelization code. A complete under-
standing of the code is required before developing the parallelization code. If parallel
programming directives are added without sufficient understanding of the algorithm, the
variables that need to be communicated may not be communicated, resulting in improper
synchronization. Additionally, subroutines that are calculated at a certain period may not
be recognized, resulting in the omission of their parallelization. These cases imply that
the parallel code has not been written properly, and a sufficient understanding of the code
should be gained before proceeding.
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In the second case, because a difference occurs in the order of calculations in the
process of parallelizing the sequential code, a rounding error may occur owing to the limita-
tions of floating-point arithmetic operations. Rounding errors occurred in the CONGRAD
subroutine in the development process of the parallelization code for EFDC-NIER. To
resolve this problem, we changed the types of variables (RPCG, PAPCG, RPCGN, ALPHA,
and BETA) used for the calculations from the REAL 4-byte type to the REAL 8-byte type.
The consistency of the parallel code means that the parallel execution results in the simula-
tion are the same as the results of the sequential model for the simulation domains and
the simulation options that the user can use. We considered the errors of the floating-point
arithmetic operations when determining whether the simulation produced the same results.
The consistency was evaluated by comparing the sum of the absolute values of all matrix
values of the variables simulated up to a certain prediction period based on the variables
that were written to the results file. As shown in Tables 6 and 7, the consistency evaluation
results confirm that the results exactly match the sequential execution of the parallel code,
execution of the OpenMP, and execution of the MPI.

Table 6. Consistency analysis results for each evaluation subject.

Variable Case 1 Case 3 Case 4

TSX 6.173959 × 10−4 6.173959 × 10−4 6.173959 × 10−4

TSY 6.763723 × 10−4 6.763723 × 10−4 6.763723 × 10−4

TBX 2.715987 × 10−2 2.715987 × 10−2 2.715987 × 10−2

TBY 3.796839 × 10−1 3.796839 × 10−1 3.796839 × 10−1

AV 6.224335 6.224335 6.224335

AB 7.667015 7.667015 7.667015

AQ 2.551961 2.551961 2.551961

HP 3.046219 × 104 3.046219 × 104 3.046219 × 104

HU 3.080725 × 104 3.080725 × 104 3.080725 × 104

HV 3.018550 × 104 3.018550 × 104 3.018550 × 104

P 1.726112 × 106 1.726112 × 106 1.726112 × 106

U 1.927491 × 102 1.927491 × 102 1.927491 × 102

V 1.632354 × 103 1.632354 × 103 1.632354 × 103

W 8.197821 × 10−1 8.197821 × 10−1 8.197821 × 10−1

TEM 1.677452 × 105 1.677452 × 105 1.677452 × 105

SEDT 4.259870 × 105 4.259870 × 105 4.259870 × 105

QQ 1.507725 × 10 1.507725 × 10 1.507725 × 10

QQL 1.070996 1.070996 1.070996

WQV 2.552020 × 105 2.552020 × 105 2.552020 × 105

WQVX 5.815869 × 104 5.815869 × 104 5.815869 × 104
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Table 7. Consistency results of major water quality factors.

Date
Case 1 Case 3 Case 4 Case 5-4

BOD T-N T-P BOD T-N T-P BOD T-N T-P BOD T-N T-P

01-07-2015 1.453 3.590 0.080 1.453 3.590 0.080 1.453 3.590 0.080 1.453 3.590 0.080

02-07-2015 1.481 3.609 0.079 1.481 3.609 0.079 1.481 3.609 0.079 1.481 3.609 0.079

03-07-2015 1.521 3.658 0.080 1.521 3.658 0.080 1.521 3.658 0.080 1.521 3.658 0.080

04-07-2015 1.547 3.700 0.081 1.547 3.700 0.081 1.547 3.700 0.081 1.547 3.700 0.081

05-07-2015 1.520 3.712 0.079 1.520 3.712 0.079 1.520 3.712 0.079 1.520 3.712 0.079

06-07-2015 1.596 3.672 0.081 1.596 3.672 0.081 1.596 3.672 0.081 1.596 3.672 0.081

07-07-2015 1.637 3.612 0.080 1.637 3.612 0.080 1.637 3.612 0.080 1.637 3.612 0.080

08-07-2015 1.563 3.568 0.081 1.563 3.568 0.081 1.563 3.568 0.081 1.563 3.568 0.081

09-07-2015 1.634 3.493 0.081 1.634 3.493 0.081 1.634 3.493 0.081 1.634 3.493 0.081

4. Conclusions

In this study, we optimized the source code of the EFDC-NIER model, which has
been enhanced by the National Institute of Environmental Research (NIER) since 2010,
and applied a parallel computational code. Then, we examined the consistency of the
results between the existing EFDC model and the parallel computational code simulations
and compared their calculation times. Furthermore, we determined an optimal parallel
combination through a comparative evaluation of the simulation times between the number
of cores and threads. The major findings of this study are as follows.

(1) The source code optimization and parallel code application resulted in a performance
improvement by a factor of approximately five compared to the existing source code
(Case 1). In the case of the existing EFDC, a large amount of time was consumed by a
subroutine that wrote the results, and when this was improved, it took approximately
half as much time for the calculation. As shown in Appendix B, the parallel calculation
performance of the OpenMP and MPI methods applied in this study showed a similar
level of performance as the results of the version developed and released by DSI.
Therefore, the parallel calculation of the EFDC-NIER is better than or on par with that
of the EFDC+ MPI, especially considering that its improvement values include the
simulation results of the water quality factors.

(2) For a Windows PC, there is no difference in the reduction of the calculation speed
between the OpenMP and MPI methods because the core and thread resources are
limited. However, as shown in Appendix C, when using a Linux server, the simulation
is performed more ideally when the MPI method is used compared to the OpenMP
method. In the case of the hybrid method that uses both the OpenMP and MPI
methods, the optimal computing combination should be applied according to the
performance and computing resources of the computer on which the simulation will
be performed.

(3) In the case of South Korea, algae prediction information for the water supply source
sections of large rivers is sent to the water quality managers at eight-day intervals.
When predicting the algae eight days into the future, all prediction work must be
completed within 8 h. The fastest simulation’s calculation time (0.65 h) is a very
important factor; if the optimization and the parallel computational source code
applied in this study are used, quick calculation will be facilitated when urgent
decision-making is required for an event such as a water pollution incident.
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Appendix A

Table A1. Examples of source code optimization.

Variables Code Description

1. CALUVW Improved

IF (ISCFL.GE.1.AND.DEBUG) THEN
IF (MYRANK.EQ.0) THEN
OPEN (1, FILE = ‘CFL.OUT’, STATUS = ‘UNKNOWN’, POSITION = ‘APPEND’)
ENDIF
IF (MYRANK.EQ.0) THEN
IF (ISCFL.EQ.1) WRITE (1,1212) DTCFL, N, ICFL, JCFL, KCFL
IF (ISCFL.GE.2.AND.IVAL.EQ.0) WRITE (1,1213) IDTCFL
ENDIF
ENDIF

2. EEXPOUT

Conventional

DO NSP = 1, NXSP
DO K = 1, KC; DO L = 2, LA
WQ = WQVX(L, K, NSP)
WRITE (95) WQ
ENDDO; ENDDO
ENDDO

Improved
DO NSP = 1, NXSP
WRITE (95) WQVX (:,:,NSP)
ENDDO
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Table A2. Example of hybrid parallel code application.

Category Description

Sequential code

DO L = 2,LA
RCG_R8(L) = CCC(L)*P(L) + CCS(L)*PSOUTH(L) + CCN(L)*PNORTH(L)
& + CCW(L)*P(L-1) + CCE(L)*P(L + 1)-FPTMP(L)
ENDDO
DO L = 2,LA
RS8Q = RS8Q + RCG_R8(L)*RCG_R8(L)
ENDDO

Parallel code

!$OMP PARALLEL DO
DO L = LMPI2,LMPILA
RCG_R8(L) = CCC(L)*P(L) + CCS(L)*PSOUTH(L) + CCN(L)*PNORTH(L)
& +CCW(L)*P(L-1) + CCE(L)*P(L + 1)-FPTMP(L)
ENDDO
!$OMP PARALLEL DO REDUCTION(+:RS8Q)
DO L = LMPI2,LMPILA
RS8Q = RS8Q + RCG_R8(L)*RCG_R8(L)
ENDDO
CALL MPI_ALLREDUCE(RS8Q,MPI_R8,1,MPI_DOUBLE,
& MPI_SUM,MPI_COMM_WORLD,IERR)
RS8Q = MPI_R8

Appendix B

DSI, the development and distribution organization of the EFDC model and the
EFDC-Explorer, presented the results of the development and performance of the MPI-
based EFDC+ in July 2020 [35]. The previous EFDC+ performed parallelization using
OpenMP, and at the time, the calculation speed improvement was a factor of 2.5. This is
similar to the performance improvement factor of the OpenMP performed in this study,
which is approximately a factor of two to three. In the case of OpenMP, improvement
in speed is impossible without the improvement of the CPU because it is affected by
the performance of the computing resources. However, MPI is more favorable for speed
calculation improvement than OpenMP because it is possible to use distributed computing
resources, although the improvement varies depending on the constructed model. As
a result of applying the source code optimization and the OpenMP and MPI methods
in this study, the calculation speed improved by a factor of approximately five. In the
case of OpenMP, the calculation speed improvement was similar for different numbers of
calculation grids, but in the case of MPI, the calculation speed improved as the number of
grids increased.

In addition, we compared the results of using similar processors to evaluate the MPI
parallel code of EFDC+, developed by DSI. Table A3 presents an overview of the model
and specifications of the hardware used. The number of horizontal grids is approximately
120,000 in EFDC-NIER and approximately 200,000 in EFDC+. However, the number of
vertical layers was 11 in EFDC-NIER and four in EFDC+. DSI’s EFDC+ provides the
simulation results for only the hydraulic factors, and the EFDC-NIER produces the results
by performing parallelization of the hydraulics and the water quality. Table A4 presents
the performance improvement in the calculation speed for each MPI processor. Because
numerical results are not provided in the report for EFDC+, we compared the results
digitized from the speed improvement graph.

The speed improvement comparison results of the same MPI processor for EFDC-
NIER and EFDC+ were similar, showing a speed improvement of a factor of four in four
processors. When 16 processors were used, the improvement was a factor of 11.77 and 11
for EFDC-NIER and EFDC+, respectively, indicating that EFDC-NIER was slightly superior.
When 32 processors were used, the improvement was a factor of 15 and 17 times for EFDC-
NIER and EFDC+, respectively, demonstrating that EFDC+ was superior. In the case of
EFDC+ MPI, the performance improvement effect increased as the number of processors
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increased. However, the speed improvement varied according to the model configuration
and hardware specifications. We determined that EFDC-NIER is better than or similar to
EFDC+ MPI, especially considering that its improvement values include the simulation
results of the water quality factors.

Table A3. Overview of EFDC-NIER and EFDC+ models and the hardware used.

Category EFDC-NIER EFDC+

Study area

Nakdong River
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Number of horizontal grids 116,473 204,000

Vertical layers 11 4

Simulation factors Hydraulics, water temperature, salinity,
water quality, suspended sediments Hydraulics, water temperature, salinity

CPU Xeon E5-2650 v3 ×2 Xeon Platinum 8000 Series

Number of cores 10 (×2) 36

Number of nodes 10 4

Table A4. Performance improvement in calculation speed by MPI processor.

Category
MPI Processor (Unit for Speed Improvement: Times)

4 8 16 32

EFDC-NIER 3.97 7.29 11.77 15.01

EFDC+ 4 7 11 17

Appendix C

For the performance evaluation of the parallel code, we performed OpenMP, MPI,
and hybrid parallel performance evaluation for the model sets displayed in Table A3.
The performance evaluation test was conducted using up to four nodes and 48 CPUs,
considering the size of the model area. It was performed based on a 1-h computation, after
which the calculation times were compared. Here, the combinations of the processors used
in the OpenMP, MPI, and hybrid parallel performance evaluations were determined by
considering the number of model grids and the hardware used in the experiment.

Table A5 shows the cluster for the parallel performance evaluation. The cluster consists
of one login node and ten calculation nodes. Each calculation node is equipped with two
units of the Intel Xeon CPU E5-2650 in the CentOS 6.7 operating system, and the data
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communication is based on the Fourteen Data Rate (FDR) InfiniBand. Intel Parallel Studio
2017.1.043 was used for the creation and execution of the hybrid parallel program, and
the combination of Intel OpenMP and Intel MPI 2017.1.132 was used for the OpenMP and
MPI libraries, respectively. In the case of OpenMP, up to 20 processors can be used because
20 cores are configured at the maximum per node. However, the test was conducted
using only up to 16 processors because the basic process of the operating system was
running. In the case of MPI and the hybrid method, the processors were configured with a
combination based on the number of nodes and the number of cores per node, and the test
was conducted using 32 or 40 processors depending on the number of model grids.

Figures A1 and A2 show the ideal and actual values of the calculation times when
the execution times of the model are compared. Here, the ideal value is the theoretical
calculation time based on the increase in the number of calculation processors. For the ideal
value, we applied the performance improvement–time ratio equation, which is known as
Amdahl’s law [36] and is expressed as

S =
1

(1 − f ) + f /n
(A1)

where S is the improvement ratio of the calculation speed, f is the proportion of the total
calculation time that the improved part occupies, and n is the number of processors. For
convenience of comparison, we assumed that f was 1. Furthermore, we applied Equation
(A1) by expressing Equation (A2) as the reduction ratio of the execution time:

TCT =

(
(1 − f ) +

f
n

)
× ACT =

1
n
× ACT, (A2)

where TCT is the theoretical calculation time and ACT is the actual calculation time.

Table A5. Specification of the parallel performance evaluation system.

Category Cluster

CPU

Product Intel Xeon CPU E5-2650 v3 * 2 ea

#Cores 10 (Total 20)

Frequency 2.30 GHz

Cache 25 MB

Instruction 64-bit

Extension Intel AVX2

Memory 64 GB

OS CentOS release 6.7

Network InfiniBand ConnectX-3 VPI FDR, IB (56 Gb/s)

Compiler Intel Parallel Studio 2017.1.043

OpenMP Intel OpenMP

MPI Intel MPI 2017.1.132

(1) OpenMP Parallel Performance Evaluation.

In the OpenMP parallel computation evaluation, the performance was analyzed based
on the number of OpenMP threads. Because OpenMP was scalable on a single node, eight
experimental combinations of OpenMP threads were configured from 1 to 16. Table A6 and
Figure A1 present the execution time for each function based on the number of OpenMP
threads. As the number of threads increased, the OpenMP parallel calculation did not
exhibit a calculation speed improvement close to the ideal value.
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When examined based on the total time (HDMT2T), two threads showed a perfor-
mance improvement of a factor of 1.7, and 12 threads showed an increase by a factor of 3.1.
For most functions, the execution time decreased as the number of threads increased, but
the increase was significantly lower.

Table A6. Execution time for each function based on the number of OpenMP threads.

Category
Number of OpenMP Threads

01 02 03 04 06 08 12 16

HDMT2T 656,953 385,124 308,917 259,871 231,408 221,675 215,195 210,575

CALAVB 21,823 11,475 8013 6445 5056 4282 3425 3083

CALTSXY 1722 1053 802 746 726 743 751 752

CALEXP2T 52,024 29,061 21,940 18,948 17,606 17,201 16,832 16,910

CALCSER 1006 1013 1148 1022 1059 1091 1088 1085

CALPUV2C 19,746 13,194 10,790 9814 9245 8976 8742 8842

ADVANCE 9040 7050 6393 6352 6367 6323 6266 6228

CALUVW 54,457 32,161 25,360 22,692 20,167 18,573 17,323 16,409

CALCONC 92,621 53,055 42,789 36,727 32,873 31,405 30,168 29,506

SEDIMENT 1931 1001 712 557 425 360 294 278

WQ3D 283,800 169,636 141,214 114,729 101,733 98,847 98,500 96,071

CALBUOY 6102 4293 3823 3716 3672 3619 3637 3691

NLEVEL 1781 971 678 549 486 489 491 505

CALHDMF 37,468 19,858 14,267 11,580 9188 8022 6687 6335

CALTBXY 10,391 5492 3768 2973 2278 1857 1446 1257

QQSQR 3063 1667 1199 997 786 673 559 555

CALQQ2T 55,889 29,635 21,593 17,561 15,242 14,577 14,262 14,231

SURFPLT 16 17 17 17 18 20 21 24

VELPLTH 38 37 38 37 39 43 48 55

SALPTH 726 824 827 861 864 878 862 883

EEXPOUT 3184 3499 3416 3423 3444 3448 3483 3536
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(2) MPI Parallel Performance Evaluation.

In the MPI parallel computation evaluation, the performance was analyzed based on
the number of MPI nodes. Because MPI was scalable on multiple nodes, four calculation
nodes were used to configure seven experimental combinations for the number of MPI
nodes from 1 to 40. Table A7 and Figure A2 present the execution times for each function
based on the number of MPI nodes. The MPI parallel computation showed that the calcula-
tion speed improvement approached the ideal value as the number of nodes increased.

When examined based on the total time (HDMT2T), a performance improvement
of a factor of 4.0 was exhibited with four MPI nodes, 11.8 with 16 MPI nodes, and
16.8 with 40 MPI nodes, reaching the maximum improvement. The MPI communication
time (COMMUNICATION) did not increase as the number of MPI nodes increased; the
elapsed time was 6605 s, which was the maximum when the number of MPI nodes was
12. In the MPI parallel performance, the parallel scalability of CALTSXY and CALPUV2C
was not high. In contrast, CALAVB, CALUVW, CALCONC, and WQ3D, which have
extensive calculations, showed larger performance improvements as the number of MPI
nodes increased.

Table A7. Execution time for each function based on the number of MPI nodes (detailed grid #2 of Nakdong River).

Category
Number of MPI Nodes

1 2 4 8 16 32 40

HDMT2T 656,953 323,191 165,614 90,132 55,814 43,759 40,212

CALAVB 21,823 10,987 5606 2816 1435 857 703

CALTSXY 1722 860 487 290 179 124 108

CALEXP2T 52,024 25,490 12,655 6546 3541 2365 2006

CALCSER 1006 1018 995 1015 1122 1996 1936

CALPUV2C 19,746 9959 5517 3125 2020 1628 1733

ADVANCE 9040 4205 2126 1107 656 592 456

CALUVW 54,457 26,806 13,885 6912 3739 2350 1879

CALCONC 92,621 46,994 23,973 13,098 7977 7168 6571

SEDIMENT 1931 954 477 239 124 72 57

WQ3D 283,800 130,926 63,214 30,843 15,659 9898 8316

CALBUOY 6102 3123 1623 765 404 321 252

NLEVEL 1781 293 146 76 41 30 23

CALHDMF 37,468 17,835 12,250 9587 10,347 9145 9478

CALTBXY 10,391 4420 2206 1105 577 332 274

QQSQR 3063 1444 732 375 197 122 99

CALQQ2T 55,889 27,152 13,673 7129 3762 2349 1920

SURFPLT 16 18 17 17 17 19 19

VELPLTH 38 39 37 38 37 42 46

SALPTH 726 376 183 88 55 55 40

EEXPOUT 3184 3641 3474 3438 3481 3980 3988

COMMUNICATION 0 6606 2291 1497 413 278 272
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WQ3D  283,800    130,926    63,214    30,843    15,659    9898    8316   

CALBUOY  6102    3123    1623    765    404    321    252   

NLEVEL  1781    293    146    76    41    30    23   

CALHDMF  37,468    17,835    12,250    9587    10,347    9145    9478   

CALTBXY  10,391    4420    2206    1105    577    332    274   

QQSQR  3063    1444    732    375    197    122    99   

CALQQ2T  55,889    27,152    13,673    7129    3762    2349    1920   

SURFPLT  16    18    17    17    17    19    19   

VELPLTH  38    39    37    38    37    42    46   

SALPTH  726    376    183    88    55    55    40   

EEXPOUT  3184    3641    3474    3438    3481    3980    3988   

COMMUNICATION    0    6606    2291    1497    413    278    272 

 
Figure A2. Execution time as a function of the number of MPI nodes.

(3) Hybrid Parallel Performance Evaluation.

In the evaluation of the hybrid parallel computation, the performance was analyzed
based on the combinations of MPI and OpenMP threads. For quantitative evaluation, we
composed four experimental hybrid combinations by fixing the number of utilizable CPUs
to 40. In each case, the number of MPI nodes was increased from 4 to 8, 20, and 40. At
the same time, the number of OpenMP threads was reduced from 10 to 5, 2, and 1. These
particular numbers were chosen so that if the number of MPI nodes was multiplied by the
number of OpenMP threads, the result would be 40.

As shown in Table A8, the best performance was achieved when the number of MPI
nodes was eight and the number of OpenMP threads was five. When the computational
time was examined for each function, no particular combination was superior. No consis-
tency was observed in terms of time. For example, CALEXP2T and CALPUV2C showed
the shortest execution time when the number of MPI nodes was eight and the number of
OpenMP threads was five. However, in a combination of 40 MPI nodes and one OpenMP
thread, the functions that require long computational times, such as CALUVW, SEDIMENT,
and WQ3D, exhibited the best performance.

Table A8. Execution time for each function based on the hybrid combination.

Category
Hybrid (MPI + OpenMP) Combination (40 cpu)

MPI OMP MPI OMP MPI OMP MPI OMP

4 10 8 5 20 2 40 1

HDMT2T 54,457 39,300 41,800 40,212

CALAVB 975 752 765 703

CALTSXY 213 122 135 108

CALEXP2T 3411 1921 2126 2006

CALCSER 1078 1079 1307 1936

CALPUV2C 3224 1724 2128 1733

ADVANCE 1350 515 436 456

CALUVW 3293 2283 2213 1879

CALCONC 8102 5851 5816 6571
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Table A8. Cont.

Category
Hybrid (MPI + OpenMP) Combination (40 cpu)

MPI OMP MPI OMP MPI OMP MPI OMP

4 10 8 5 20 2 40 1

SEDIMENT 155 88 73 57

WQ3D 17,240 11,109 10,090 8316

CALBUOY 1016 357 245 252

NLEVEL 122 42 27 23

CALHDMF 4039 5794 8882 9478

CALTBXY 324 279 263 274

QQSQR 152 104 100 98

CALQQ2T 3738 2065 2295 1920

SURFPLT 20 19 19 19

VELPLTH 43 45 43 46

SALPTH 178 57 32 40

EEXPOUT 3625 3584 3516 3988

COMMUNICATION 2101 1477 1256 272
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