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Abstract: In addition to bubble number density, bubble size distribution is an important population
parameter governing the activity of acoustic cavitation bubbles. In the present paper, an iterative
numerical method for equilibrium size distribution is proposed and combined to a model for bubble
counting, in order to approach the number density within a population of acoustic cavitation bubbles
of inhomogeneous sizing, hence the sonochemical activity of the inhomogeneous population based
on discretization into homogenous groups. The composition of the inhomogeneous population is
analyzed based on cavitation dynamics and shape stability at 300 kHz and 0.761 W/cm2 within
the ambient radii interval ranging from 1 to 5 µm. Unstable oscillation is observed starting from
a radius of 2.5 µm. Results are presented in terms of number probability, number density, and
volume probability within the population of acoustic cavitation bubbles. The most probable group
having an equilibrium radius of 3 µm demonstrated a probability in terms of number density of
27%. In terms of contribution to the void, the sub-population of 4 µm plays a major role with a
fraction of 24%. Comparisons are also performed with the homogenous population case both in
terms of number density of bubbles and sonochemical production of HO•, HO2

•, and H• under an
oxygen atmosphere.

Keywords: bubble size distribution; iterative numerical model; number density; number probability;
volume probability

1. Introduction

Acoustic cavitation bubble is a complex dynamical phenomenon occurring when
the liquid phase is submitted to an acoustic field in the ultrasound range with sufficient
amplitude [1]. The phenomenon has been widely investigated for its physical [2] and
chemical consequences [3]. Hundreds of experimental works dealt with the sonochem-
ical activity [4,5] and its applications, principally in wastewater treatment [6–8], radical
synthesis pathways [9], and hydrogen production [10]. Most of the numerical works that
investigated the acoustic cavitation phenomenon were limited in scale to the single acoustic
cavitation bubble [11–14]. Some researcher attempted to numerically explore the multibub-
ble dimension by investigating parameters such as the number density of bubbles [15–17],
bubble–bubble interaction [18–20], and bubble size distribution [21]. Some examples of
multibubble approaches are found in the studies of Yasui [22], Colonius et al. [23] and
Ida [24]. Yasui [22] studied numerically the influence of ultrasonic frequency on multi-
bubble sonoluminescence occurring under the effect of high amplitude ultrasonic wave
ranging from 5 to 10 bar. The model considered, in addition to bubble dynamics and
transport phenomena, the radiation forces. Colonius et al. [23] investigated the statistical
equilibrium of bubble oscillations in dilute bubbly flows. The authors considered a distri-
bution of inviscid, oscillating bubbles reaching a stationary equilibrium, the moments of
the bubble radius proved in this case to be easily found by replacing the bubble radius with
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its period-averaged value. Ida [24] approached the multibubble cavitation inception using
numerical modelling in order to better understand the complex behavior of cavitation
bubbles in practical applications where many cavitation nuclei exist and may interact
with each other. The author used a multibubble model based on the Rayleigh–Plesset
equation with an acoustic interaction term. Ida [24] reported the suppression of cavitation
inception due to the interaction of nonidentical bubbles, and the calculations showed
that a larger number of bubbles have a stronger suppression effect. Yasui et al. [25] and
Shen et al. [26] observed the decrease of the expansion ratio as an additional effect due to
the bubble–bubble interactions.

On the other hand, literature counts several studies that attempted to characterize ex-
perimentally multibubble populations. For instance, D’Hondt et al. [27] used spectroscopic
techniques to characterize the microbubbles cloud by providing the gas volume fraction and
the bubble size distribution. The authors suggested a procedure based on L-Surface analysis
and applied to log-normal size distribution of bubbles in water. Desai et al. [28] examined the
bubble size distribution using three different techniques, namely optical detection, laser diffrac-
tion, and acoustic inferences. Their comparative study mainly demonstrated that acoustic
methods provide a real-time size distribution for a bubble cloud, whereas for other techniques,
appropriate adjustments or compromises must be made in order to achieve robust data. This
was explained by the fact that acoustic methods are able to detect smaller bubbles, as acoustic
measurements depend on an intrinsic bubble property, whereas photonics and optical methods
are unable to “see” a smaller bubble that is behind a larger bubble.

Another example is that of Brotchie et al. [29], who determined the bubble size dis-
tribution within a population of acoustic cavitation using a pulsed ultrasound method at
different ultrasound powers and frequencies. The authors demonstrated that the mean
bubble size increased with increasing acoustic power and decreased with increasing ul-
trasound frequency. Avarru and Pandit [30] proposed a technique for the estimation of
the bubble size distribution within a sonochemical reactor based on acoustic emission
spectra measurements. Information about the oscillation of each acoustic cavitation bubble
is obtained using inverse Fast Fourier Transform (FFT) reconstruction of the signal mea-
sured by the hydrophone in frequency domain of FFT. Xu et al. [31] employed an acoustic
technique as well, which relies on the use of a wide beam with low pressure to acquire
the time intensity curve of the dissolution process for the cavitation bubble population
and then determine the bubble size distribution. Besides, Reuter et al. [32] performed
bubble size measurements in different acoustic cavitation structures. The authors used high
speed imaging of the bubbles in oscillation to determine the size distribution in bubble
populations, involving a theoretical model of single bubble oscillation. Through a statistical
approach based on an experimental-numerical combination, the authors demonstrated that
their method inherently deals with processes that by other means are typically difficult or
impossible to consider, such as the variations of the size of a single bubble as it undergoes
shrinking, growing, coalescence, or splitting.

The interest of tens of researchers in the size distribution within a population of
acoustic cavitation bubbles is explained by the variety of interactions and distinguished
activities and behavior that different bubbles may show within the same population. To
illustrate, one direct result of the diversity of equilibrium radius consists of the stiffness
stability/instability of the bubble oscillation [33–39], and its subsequent impact on the
bubble lifetime, harsh conditions at collapse, and sonochemical activity [40,41]. Bubble size
distribution is also directly linked to void fraction [42] and number density [43] of acoustic
cavitation bubbles in the heterogeneous population, which consequently would completely
change the characterization approach based on the heterogeneous model, particularly in
regard to sonochemical production [44].

The present paper is presented in the perspective of improvement of a first work of
modeling the number density of bubbles within a homogenous population [16,17,44]. The
passage from a homogeneous model to a heterogeneous one in terms of the size distribution
within the bubble population at equilibrium is performed numerically using an incremental
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statistical approach. The paper suggests an iterative numerical method aiming to approach
the equilibrium size distribution within a population of acoustic cavitation bubbles, both in
terms of number density and volume. The method is applied at a frequency of 300 kHz and
an acoustic intensity of 0.761 W/cm2, considering an acoustic cavitation bubble evolving in
water medium under an oxygen atmosphere. The adopted acoustic conditions are selected
for illustration purposes. 300 kHz is particularly recognized as the optimal frequency for
the sonochemical production of hydroxyl radicals at multibubble scale [6,44–48], while
0.761 W/cm2, which is equivalent to an acoustic amplitude of 1.5 atm, is the value generally
adopted in the numerical studies of acoustic cavitation and sonochemistry [44,49–51].
However, the methodology remains applicable to all the other conditions. The paper also
examines the impact of the equilibrium size distribution on the number density of bubbles
and the sonochemical activity, in comparison with the homogeneous size model.

2. Numerical Methods

Under an excitation acoustic field of 300 kHz and 0.761 W/cm2, acoustic cavitation
bubbles of different sizes are formed. At equilibrium, their ambient radii are assumed
to follow a statistical law of distribution, namely the log-normal law [23,52–54]. The
distribution of the number density of bubbles as a function of their equilibrium size is then
governed by the well-known probability density function shown in Equation (1).

f(x) =
1

σx
√

2π
e
−(Ln(x)−µ)2

2σ2 (1)

σ represents the standard deviation, µ is the expected value, and x is the variable corre-
sponding in our case to the equilibrium radius R0. In the present work, it is suggested
to determine the parameter σ using an iterative method in order to characterize the size
distribution of the number density of bubbles.

At the first iteration k = 0, a homogeneous probability condition is assumed over the
discrete domain of n ambient radii 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 µm. The value 3 µm is the
median of this statistical population, it is considered as the representative ambient radius at
300 kHz as demonstrated by Brotchie et al. [29] and adopted by Merouani et al. [55], hence
the probability of the i-th ambient radius in the population of n values shown previously,
at the first iteration, is expressed according to Equation (2).

P0i =
1
n

(2)

Let us consider a log-normal distribution [27,56,57] of the number density of bubbles
according to their ambient radii, with an expected value of 3 µm, fairly acceptable as
the average equilibrium radius at 300 kHz frequency [29]. The following notation is
then adopted.

µ = R0 (3)

At the first iteration, the standard deviation is given in Equation (4).

σ0 =

√
n

∑
i=1

1
n
(
Ln(R0i)− Ln

(
R0
))2 (4)

Each discrete value R0i in the range from 1 to 5 µm is considered as the central value of
the interval R0i − 0.25 µm to R0i + 0.25 µm. A fixed step dR0 of 0.05 µm is then considered
for the discrete treatment of the sub-intervals of ambient radii [R0i − 0.25 µm, R0i + 0.25 µm]
in order to approach the continuous model of normalized probability. The interval ranging
from 0.75 to 5.25 µm is then discretized into 91 values of ambient radii denoted R0p used
for calculation, from which 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 µm are taken as representative
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values. The density of the probability following the log-normal distribution is given at the first
iteration, as shown in Equation (5).

f0
(
R0p
)
=

1
σ0R0p

√
2π

e
−(Ln(R0p)−µ)

2

2σ0
2 (5)

At the k-th iteration, the density of the probability is given considering the p values of
ambient radii as shown in Equation (6).

fk
(
R0p
)
=

1
σkR0p

√
2π

e
−(Ln(R0p)−µ)

2

2σk
2 (6)

Consequently, the normalized probability is expressed by Equation (7).

Pki = Pk(R0i) =
∑

p=10i+1
p=10i−9 fk

(
R0p
)
dR0p

∑
p=91
p=1 fk

(
R0p
)
dR0p

(7)

The normalized standard deviation is then calculated at the iteration k as shown in
Equation (8).

σk+1 =

√
n

∑
i=1

Pki
(
Ln(R0i)− Ln

(
R0
))2 (8)

The applied algorithm follows the structure illustrated in Figure 1. It is stopped once
the standard deviation demonstrates a stability between two successive incrementations,
with no more than 5% of relative difference. The required number of iterations is de-
noted m+1, and the considered values of standard deviation, densities of probability, and
probabilities of the occurrence of the ambient radius R0i are all identified by the index m.

The obtained distribution of the number density of bubbles according to their equilib-
rium radii is considered on a discrete basis by dividing the whole population into n groups
with n representative ambient radii of 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 µm. The probability
of occurrence of each ambient radius in terms of number densities of bubbles is known by
the resolution of the iterative algorithm. The number density related to each homogeneous
sub-population is retrieved by the application of microscopic and macroscopic energy
balances based on Equation (9) [57] and (10) [16,17,44], respectively. Equation (9) represents
the energy balance applied on a single acoustic cavitation bubble of a radius R evolving in
water under an oxygen atmosphere, within which 45 elementary chemical equations [13]
are supposed to emerge, giving rise to 9 chemical species, as shown in Table 1.

− Pgi4πRi
2

.
Rı −

1
3

45

∑
r=1

∆Hrrt4πRi
3 +

.
miCVH2OTi =

λ

ξ
4πRi

2(Ti − T∞) +
9

∑
j=1

njiCV
.

Ti (9)

Each elementary reaction in Table 1 is schematized by the general form shown in
Equation (10).

R

∑
m=1

ϑ′jrXj ⇒
P

∑
m=1

ϑ
′′
jrXj r = 1, 45 (10)

In Equation (10), ϑ′jr and ϑ′′ jr represent the stoichiometric coefficients in the reactants
and products sides, respectively, related to the j-th species. The variation of the molar yield
of the j-th species within the i-th homogeneous sub-population nji due to the chemical
mechanism that is then governed by the kinetics equation expressed in Equation (11).

.
nji =

4
3

45
∑

r=1
(ϑ′′jr − ϑ

′
jr)ArTi

br exp
(
− Er

RgTi

) 9
∏

k=1

(
nki

4
3πRi

3

)ϑ′kr

πRi
3 i = 1, 9 (11)



Processes 2021, 9, 1546 5 of 19

Within the i-th homogeneous sub-population characterized by a common ambient
radius R0i (i = 1, n), the number density of bubbles Ni is governed by Equation (12),
whose derivation is detailed in our previous research work [16]. Each bubble within the
sub-population is characterized by an instantaneous radius Ri, a pressure of gases inside
the bubble Pgi, and an internal temperature Ti.

d
dt

(
P2

2 ρL c2 +
ρL U2

2

)
+ dI

dx

= −
45
∑

r=1

4
3π∆HrrriRi

3Ni − 4
3π (Pgi − P∞ − P)

(
3

.
RıRi

2Ni + Ri
3

.
Nı

)
− 4πσL

(
3

.
RıRi

2Ni + Ri
3

.
Nı

)
−2π ρL (3Ri

2
.

Rı
3
Ni+2R3

.
Rı

..
RıNi + Ri

3
.

Rı
2 .
Nı)−

(
Ni

9
∑

j=1

.
njiuj + Ni

9
∑

j=1
nji

.
uj +

.
Nı

9
∑

j=1
njiuj

) (12)
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Table 1. Adopted scheme of the possible reactions occurring inside an O2/H2O collapsing bubble [13]. M is the third body.
A is expressed in (m3/mol·s) for two body reaction (m6/mol2·s) for a three-body reaction.

r Reaction r Ar br Er/Rg (K) ∆Hr (kJ/mol)

1 H + O2 ⇒ O + •OH 1.92 × 108 0 8270 69.17
2 O + H2 ⇒ H• + •OH 5.08 × 10−2 2.67 3166 8.23
3 •OH + H2 ⇒ H• + H2O 2.18 × 102 1.51 1726 −64.35
4 •OH + •OH⇒ H2O + O 2.1 × 102 1.4 200 −72.59
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Table 1. Cont.

r Reaction r Ar br Er/Rg (K) ∆Hr (kJ/mol)

5 H2 + M⇒ H• + H• + M; Coef. H2: 2.5, H2O: 16.0 4.58 × 1013 −1.4 52,500 444.47
6 O + O + M⇒ O2 + M; Coef. H2: 2.5, H2O: 16.0 6.17 × 103 −0.5 0 −505.4
7 O + H• + M⇒ •OH + M; Coef. H2O: 5.0 4.72 × 105 −1.0 0 −436.23
8 H• + •OH + M⇒ H2O + M; Coef. H2: 2.5, H2O: 16.0 2.25 × 1010 −2.0 0 −508.82
9 H• + O2 + M⇒ HO2

• + M; Coef. H2: 2.5, H2O: 16.0 2.00 × 103 0 −500 −204.8
10 H• + HO2

• ⇒ O2 + H2 6.63 × 107 0 1070 −239.67
11 H• + HO2

• ⇒ •OH + •OH 1.69 × 108 0 440 −162.26
12 O + HO2

• ⇒ O2 + •OH 1.81 × 107 0 −200 −231.85
13 •OH + HO2

• ⇒ O2 + H2O 1.45 × 1010 −1.0 0 −304.44
14 HO2

• + HO2
• ⇒ O2 + H2O2 3.0 × 106 0 700 −175.35

15 H2O2 + M⇒ •OH + •OH + M; Coef. H2: 2.5, H2O: 16.0 1.2 × 1011 0 22,900 217.89
16 H2O2 + H• ⇒ H2O + •OH 3.2 × 108 0 4510 −290.93
17 H2O2 + H• ⇒ H2 + HO2

• 4.82 × 107 0 4000 −64.32
18 H2O2 + O⇒ •OH + HO2

• 9.55 2 2000 −56.08
19 H2O2 + •OH⇒ H2O + HO2

• 1.00 × 107 0 900 −128.67
20 O3 + M⇒ O2 + O + M; Coef. O2: 1.64; Coef. O2: 1.63, H2O: 15 2.48 × 108 0 11,430 109.27
21 O3 + O⇒ O2 + O2 5.2 × 106 0 2090 −396.14
22 O3 + •OH⇒ O2 + HO2

• 7.8 × 105 0 960 −164.92
23 O3 + HO2

• ⇒ O2 + O2 + •OH 1 × 105 0 1410 −121.92
24 O3 + H• ⇒ HO2

• + O 9 × 106 0.5 2010 −135.65
25 O3 + H• ⇒ O2 + •OH 1.6 × 107 0 0 −96.2
26 O + •OH⇒ H + O2 7.18 × 105 0.36 −342 −69.17
27 H• + •OH⇒ O + H2 2.64 × 10−2 2.65 2245 −8.23
28 H• + H2O⇒ •OH + H2 1.02 × 103 1.51 9370 64.35
29 H2O + O⇒•OH + •OH 2.21 × 103 1.4 8368 72.59
30 H• + H• + M⇒ H2 + M; Coef. H2: 2.5, H2O: 16.0 2.45 × 108 −1.78 480 −444.47
31 O2 + M⇒ O + O + M; Coef. H2: 2.5, H2O: 16.0 1.58 × 1011 −0.5 59,472 505.4
32 •OH + M⇒ O + H• + M; Coef. H2O: 5.0 4.66 × 1011 −0.65 51,200 436.23
33 H2O + M⇒ H• + •OH + M; Coef. H2: 2.5, H2O: 16.0 1.96 × 1016 −1.62 59,700 508.82
34 HO2

• + M⇒ H• + O2 + M; Coef. H2: 2.5, H2O: 16.0 2.46 × 109 0 24,300 204.8
35 O2 + H2 ⇒ H• + HO2

• 2.19 × 107 0.28 28,390 239.67
36 •OH + •OH⇒ H• + HO2

• 1.08 × 105 0.61 18,230 162.26
37 O2 + •OH⇒ O + HO2

• 3.1 × 106 0.26 26,083 231.85
38 O2 + H2O⇒ •OH + HO2

• 2.18 × 1010 −0.72 34,813 304.44
39 O2 + H2O2 ⇒ HO2

• + HO2
• 4.53 × 108 −0.39 19,700 175.35

40 •OH + •OH + M⇒ H2O2 + M; Coef. H2: 2.5, H2O: 16.0 9.0 × 10−1 0.90 −3050 −217.89
41 H2O + •OH⇒ H2O2 + H• 1.14 × 103 1.36 38,180 290.93
42 H2 + HO2

• ⇒ H2O2 + H• 1.41 × 105 0.66 12,320 64.32
43 •OH + HO2

• ⇒ H2O2 + O 4.62 × 10−3 2.75 9277 56.08
44 H2O + HO2

• ⇒ H2O2 + •OH 2.8 × 107 0 16,500 128.67
45 O2 + O + M⇒ O3 + M; Coef. O2: 1.64; Coef. O2: 1.63, H2O: 15 4.1 0 −1057 −109.27

In each sub-population, the bubble is supposed to grow starting from the corre-
sponding ambient radius R0i to a maximum size achieved at the end of the expansion
phase, and then contracts to a minimum size characterizing the instant of the strong col-
lapse. The instantaneous radius related to the i-th sub-population Ri is governed by the
modified Keller-Miksis equation [13,58] shown in Equation (13), which accounts for the
non-equilibrium of evaporation and condensation of water molecules at the bubble–liquid
interface, as expressed in Equation (14).

..
Rı −

(
c+

.
Rı

)
ρL

(
cRi−

.
RıRi+

.
miRi
ρL

)
+4µ

(
Pgi − 2σL

Ri
− 4µL

.
Rı
Ri
− P∞ − PA sin

(
ω
(

t + Ri
c

)))

= Ri

ρL

(
cRi−

.
RıRi+

.
m Ri
ρL

)
+4µL

(
dPgi

dt + 2σL
.

Rı
Ri

2 + 4µL

.
Rı

2

Ri
2

)
−

ρL

((
3c−

.
Rı

)
+ 2

.
mı
ρL

) .
Rı

2

2
(
ρL

(
cRi−Ri

.
Rı+

.
mRi
ρL

)
+4µL

)

+

..
mi

(
cRi−Ri

.
Rı+

.
miRi
ρL

)
ρL

(
cRi−Ri

.
Rı+

.
mıRi
ρL

)
+4µL

+

.
mı

(
c

.
Rı+

.
mı

2ρL

(
c+

.
Rı

))
ρL

(
cRi−Ri

.
Rı+

.
mıRi
ρL

)
+4µL

(13)
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In Equation (13),
.

mi represents the rate of evaporation and condensation of water
molecules at the bubble interfaces within the i-th sub-population.

.
mi is positive in the direction

of evaporation, it is given by the Hertz Knudsen law [59], as indicated in Equation (14).

.
mi =

4πRi
2M√

2πMRg
αi

1√
Ti

(Pv − P∗i) (14)

In Equation (14), P∗i represents the partial pressure of water vapor inside the bubble
volume within the i-th sub-population, while αi constitutes the accommodation coefficient
corresponding to bubbles within the same sub-population. αi is a function of Ti as indicated
by Yasui [13] and Fuster et al. [59].

The system of nonlinear differential Equations (9), (11)–(14) is resolved through the
modified Rosenbrock algorithm using MATLAB. The whole algorithm of the characteriza-
tion of the acoustic cavitation bubbles within the heterogeneous population is schematized
in Figure 2. The volume probability Pvi within the i-th sub-population and the overall
number density of bubbles N within the heterogeneous population are calculated following
Equations (15) and (16).

Pvi =
4
3πRi

3Pgi

∑9
i=1

4
3πRi

3Pgi
(15)

N =
∑9

i=1 Ni Vi

∑9
i=1 Vi

(16)

Vi is the portion of the liquid volume, hypothetically taken as 1 m3, related to the i-th
sub-population, and through which the number of bubbles Ni belonging to this sub-
population is calculated by the resolution for Vi of the system of linear equations described
in Equation (17).

Pgi

9

∑
k=1

NkVk = NiVi = Ni i = 1, 9 (17)
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The rate of the sonochemical production of free radicals within the heterogeneous
population is estimated based on the production of a single acoustic cavitation bubble of a
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given equilibrium radius over 4 acoustic cycles. It is expressed for HO•, HO2
•, and H•, as

shown in Equation (18).

.
n =

9

∑
i=1

nij Ni j = HO•, HO2
•, H• (18)

These rates are compared to those obtained with the assumption of homogeneous
population with equilibrium radii of 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 µm, calculated as
shown in Equation (19).

.
n(R0i) = nijNi j = HO•, HO2

•, H• (19)

3. Results and Discussion

Before dealing with the statistical approach of the equilibrium size distribution within
the heterogeneous population, it is important to inspect the individual response of the
representative sub-populations composing the considered sample, ranging from an equilib-
rium radius of 1 µm to an equilibrium radius of 5 µm, with a conventional step of 0.5 µm.
A single acoustic cavitation bubble from each sub-population is dynamically studied under
the effect of an acoustic field of 300 kHz and 0.761 W/cm2. The dynamics of oscillation of
each acoustic cavitation bubble is simulated over four acoustic cycles, and the results are
shown in Figure 3.

From Figure 3, it is observed that the period-1 orbit stability is gradually lost as the
ambient radius increases from 1 to 5 µm. The sub-population having a representative
ambient radius of 1 µm is composed of stable acoustic cavitation bubbles, the oscillation
of the bubble wall is integrally repeated from one acoustic cycle to the other. This is also
almost the case with an ambient radius of 1.5 µm. A slight variation is observable starting
from 2 µm, as we can notice a difference in the maximum radius attained by the end
of the expansion phase during each cycle, with respective values of 6.15, 7.02, 6.17, and
6.86 µm. The oscillation of the bubble wall becomes gradually unstable by moving to
sub-populations with a higher equilibrium radius [60]. For instance, with ambient radii
comprised between 2.5 and 5 µm, it is remarkable that the variation of the bubble radius as
a function of time is completely different from one acoustic cycle to another. It is important
to note that the present work considers four acoustic cycles as the simulation time, and
this duration may be not enough to characterize the stiffness stability of the oscillator
during the steady state period. Thus, the above observations are deemed to apply to the
simulated period.

In order to deeply analyze the nature of the bubble dynamics, we suggest reporting
the velocity of the bubble wall in function of the dimensionless bubble radius defined
as the ratio of the instantaneous radius to the ambient radius. The projection of bubble
wall trajectory in the state space [36,61] presented in Figure 4 reveals that starting from
an ambient radius of 2.5 µm, the trajectory becomes clearly divergent from the central
initial point, demonstrating an unstable behavior. The projection also reveals the extent
of variation between the lowest and the highest radius during bubble oscillation, also
expressed through the compression ratio. Figure 4 demonstrates that the sub-populations
with ambient radii of 2.5 and 3.5 µm know the harshest dynamics of oscillation, with
maximum radii of the order of 3.68 and 3.71 folds the ambient radii, and minimum radii of
the order of 0.145 and 0.128 folds the ambient radii, respectively. This results in respective
compression ratios of 25 and 29. However, owing the unstable oscillation, these ratios are
only applicable in both cases to one cycle out of the four, and do not necessarily reflect the
severity of the average conditions of temperature and pressure attained during the bubbles’
oscillation within each sub-population.
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Figure 3. Simulated bubble radius (vertical axis in µm) over four acoustic cycles (horizontal axis) for acoustic bubbles of
ambient radii varying in the range 1–5 µm under an exciting wave of 300 kHz and 1.5 atm. The bubbles are supposed to
oscillate in water under oxygen–atmosphere.

In terms of composition, most of the sub-populations of the heterogeneous population
are characterized by an unstable oscillation. The oscillation would then be chaotic if the
observed projections are verified for longer simulation times attaining the steady state.
However, the “most” here only refers to 6 sub-populations out of 9, the predominant
nature of the bubbles can be deduced only after figuring out the number-based equilibrium
size distribution. It is worth noting that with higher acoustic amplitude, most of the
sub-population would tend to show unstable oscillation since the zone of stable acoustic
cavitation bubbles will become narrow, as shown by Yasui et al. [62].

At present, we suggest examining the probability density of occurrence of each equi-
librium size based on the number of bubbles. Considering a log-normal distribution, the
iterative algorithm described in the “Computational methodology” section results in the
values of standard deviation and probability density reported in Figure 5a,b, respectively.
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Figure 4. Bubble wall velocity (vertical axis in m/s) in function of reduced radius R
R0

(horizontal axis) for acoustic bubbles
of ambient radii varying in the range 1–5 µm under an exciting wave of 300 kHz and 1.5 atm.

Figure 5a shows that starting from an initial value of standard deviation of 0.538,
the successive iterations converge at the 9th incrementation by achieving less than 5%
difference between the 8th and the 9th iterations, with respective values of 0.252 and 0.246.
The convergence of the iterative method is linear, the convergence order is 1, and the
convergence rate equals 0.4. The conventional convergence condition being attained, the
value of the standard deviation is fixed at 0.246. The evolution of the probability density
throughout the 9 iterations is reported in Figure 5b. The figure demonstrates that at the
first iteration, the highest probability density is observed between 2 and 2.5 µm. With the
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successive incrementations, the ambient radius corresponding to the highest probability
density is gradually shifted to 3 µm.
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Figure 5. Standard deviation (a) and probability density (b) of equilibrium radii distribution at
successive iteration until convergence.

The 9th curve of log-normal probability density corresponds to the value of standard
deviation verifying convergence. It is then considered for the calculation of the number-
based equilibrium size distribution, or in other words the probability of occurrence of each
sub-population within the heterogeneous cloud expressed in terms of number of bubbles.
The probability is retrieved by the integration of the probability density, the retrieved
results at each iteration are reported in Figure 6a, and the final considered distribution is
presented in Figure 6b.
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Figure 6. Normalized probability of equilibrium radii at successive iteration until convergence (a), final number distribution
(b), and final volume distribution (c).

Figure 6a demonstrates that starting from a homogeneous probability assumption
of 1/9, the log-normal distribution results at the first iteration in close probabilities of
sub-populations having ambient radii of 2 and 2.5 µm with a value of 16%, followed by the
sub-population of 3 µm with a probability of 14.62%. With the successive incrementation,
it is observed that the probability of the sub-population of 1 µm is gradually decreased
until becoming almost null at convergence. Simultaneously, the probabilities of the sub-
populations of 3 and 3.5 µm are increased at the extent of 2 and 2.5 µm. At convergence,
the highest probability is that of the 3 µm sub-population, with a value of 27%, followed by
2.5 µm with a value of 24%, and then 3.5 µm with a value of 19%. This distribution being
number based, this means that 27% of the bubbles within the heterogeneous cloud are
expected to have an equilibrium radius of 3 µm, while 24% and 19% are expected to have
equilibrium radii of 2.5 and 3.5 µm, respectively. In a gas–volume basis, it is interesting
to know which portion of void fraction would be attributed to each sub-population, in
function of the equilibrium radius, at the equilibrium state. The calculations performed
based on Equation (15) return the results reported in Figure 6c. This figure reveals that
24% of the void created by the acoustic cavitation bubbles at equilibrium within the cloud
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would be attributed to bubbles having an ambient radius of 3.5 µm. Twenty-one percent
of this void would result from the bubbles having an ambient radius of 3 µm, while 20%
is related to 4 µm bubbles. It is remarkable here that although 4 µm bubbles are not
predominant in terms of number, owing to the volume of the single acoustic cavitation
bubble at equilibrium, this sub-population represents a major part of the gas volume created
by the bubbles at equilibrium within the cloud. It is important to notice that although the
size distribution generally refers to number-based probabilities considered at equilibrium,
in some cases, it is difficult to figure out whether the distribution is presented based on the
number of bubbles or the occupied volume by the gas phase. This specification should be
carefully mentioned when dealing with the size distribution of cavitation bubbles, as major
differences may result from the volume of the single bubble at a given ambient radius.

In the present section, each sub-population is characterized by a number density of
bubbles, calculated using a combination of microscopic and macroscopic energy balances
presented in Equations (9) and (10), respectively. The average number density is estimated
assuming that each sub-population of index i acts as a homogeneous cloud of an ambient
radius R0i. The obtained average number densities of bubbles for the 9 sub-populations are
presented in Figure 7a. It is observed that the homogeneous sub-population of 1 µm of ambient
radius is characterized by the highest number density of 8.8 × 1012 bubbles·m−3. This value
is followed by 1.3× 1012 bubbles·m−3 related to the homogeneous sub-population of 2 µm.
Overall, the retrieved number densities range from 6.9× 109 to 8.8× 1012 bubbles·m−3, and
the lowest value corresponds to the homogeneous sub-population of 4 µm.

Based on the previous results, the heterogeneous cloud of acoustic cavitation bubbles
evolving within one unit volume of liquid, let us consider it 1 m3, is assumed as a combina-
tion of 9 sub-populations of known homogeneous number densities. Each sub-population
is then supposed to hypothetically occupy a volume Vi of the liquid, to which the homo-
geneous number density is applied. The resolution of the system of 9 linear equations
described in Equation (17) results in the fractions of liquid volume hypothetically occupied
by the 9 sub-populations, presented in Figure 7b. This figure shows that the presence of
the sub-population of 4 µm is equivalent to an occupied liquid volume of 29.9%, against
23.3% and 20.3% for 3 and 3.5 µm, respectively. The sub-populations of 1, 1.5, and 2 µm
occupy minor fractions that do not exceed 0.15%. According to these fractions, the number
of bubbles Ni belonging to each sub-population i at equilibrium can be deduced using
Equation (17). The results are shown in Figure 7c.

The log-normal distribution of the number of bubbles per equilibrium radius demon-
strates that a liquid unit volume of 1 m3 contains a total number of 1.9 × 1010 bubbles of
different equilibrium radii. The 3 µm sub-population being the most probable, as shown in
Figure 6b, counts 5.03 × 109 bubbles. It is directly followed by the sub-population of 2.5 µm,
with 4.49 × 109 bubbles, and then 3.5 µm with 3.69 × 109 bubbles. The lowest number of
bubbles corresponds to the sub-population of 1 µm, with a value of 3.79 × 106 bubbles.

Compared to the heterogeneous population model, and considering 3 µm as the
representative equilibrium radius, it appears that under such assumption, the number
density of bubbles would be slightly overestimated, with 2.15 × 1010 bubbles·m−3 versus
1.9 × 1010 bubbles·m−3 with the heterogeneous population model. The difference is
estimated at 11.63%. However, in most of the applications of ultrasound in processes,
particularly sonochemistry, the accumulated effects generated within the heterogeneous
population are more important than the average number density itself. Thus, we suggest
approaching the sonochemical production of free radicals, namely HO•, HO2

•, and H•,
under an oxygen atmosphere using both homogeneous model for different ambient radii,
and heterogeneous model with the distribution retrieved in Figure 7c. The obtained results
are reported in Figure 8.
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Figure 7. Number density within homogeneous population (a), distribution of liquid volume (b),
and distribution of the number of bubbles (c), in function of the ambient radii.
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Figure 8. Sonochemical production rates of HO• (a), HO2
• (b), and H• (c) per unit volume of liquid within homogeneous

populations of different equilibrium radii and a heterogeneous population.

The rates of the sonochemical production of HO•, HO2
•, and H• have been first

estimated at the single bubble scale, considering the 9 different equilibrium radii ranging
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from 1 to 5 µm, and using Equation (11). The production rates within a homogeneous
population of a given ambient radius are calculated using Equation (19), while Equation (18)
is used to estimate the rates of production within the heterogeneous population. The results
are reported for the three free radicals in Figure 8a–c.

Figure 8a demonstrates that the production of hydroxyl radical HO• attains within
the heterogeneous population 12.67 µmol·m−3·s−1. This order of magnitude is 4 folds
higher than that reported for a homogeneous population of 3 µm of ambient radius.
Although this value is representative of the heterogeneous population, the estimation of
the sonochemical production of the most significant radical in the oxidation process reveals
an important difference between both models of 8.84 µmol·m−3·s−1, i.e., 231% higher than
the homogeneous model result.

Figure 8b presents the rates of production of hydroperoxyl radical HO2
•, and the

heterogeneous model returns a value of 4.93 µmol·m−3·s−1. In this case, the homoge-
neous model considering the representative ambient radius of 3 µm results in a rate of
0.015 nmol·m−3·s−1. The difference between both models reaches a ratio of 3.3 × 105. The
production rate of hydroperoxyl radical within the heterogeneous population is clearly
influenced by the production of the 3.5 µm-bubbles, characterized by a homogeneous rate
of 96.5 µmol·m−3·s−1.

In Figure 8c, the production rate of hydrogen radical H• attains 3.37 nmol·m−3·s−1

according to the heterogeneous model. The homogeneous model considering an ambient
radius of 3 µm results in 0.64 nmol·m−3·s−1, which is 5.3 folds lower. It appears that the
production of hydrogen radical within the heterogeneous population is highly influenced
by the 2.5 µm sub-population, showing a rate of 6.89 nmol·m−3·s−1.

Among the three free radicals inspected in the present study, it appears that under the
considered conditions, the estimation of the sonochemical production rate of hydroperoxyl
radical using the homogeneous model at the representative ambient radius is seriously
underestimated as compared to the heterogeneous model.

4. Conclusions

A heterogeneous population of acoustic cavitation bubbles with equilibrium radii
ranging from 1 to 5 µm has been divided into sub-populations, considering a step of 0.5 µm.
The study of the nature of the oscillation dynamics of each sub-population, particularly
through the projection of bubble wall trajectory in the state space, revealed that starting
from an equilibrium radius of 2.5 µm, the oscillation becomes unstable, tending to chaotic.

The distribution of the number of bubbles as a function of the equilibrium radii has
been studied based on a statistical algorithm using the log-normal law. The algorithm
converged after 9 iterations, revealing that 3 µm is the most predominant population in
number of bubbles, with a probability of 27%. The expression of the distribution based
on the gas phase volume demonstrated that the highest probability is attained by the
sub-population of 4 µm, with a value of 24%.

The number density of bubbles within the heterogeneous population has been es-
timated through the calculation of the homogeneous number densities and the volume
fractions of the liquid related to each sub-population. A value of 1.9 × 1010 bubbles·m−3

has been retrieved using the heterogeneous approach, which is 11.63% higher than the
value given by the homogeneous model considering 3 µm as a representative ambient
radius. Considering only the representative ambient radius (the most probable) can result
in an acceptable order of magnitude of average number density of bubbles within the
heterogeneous population, the study of the accumulated effects resulting from all the
sub-populations composing the heterogeneous cloud is important when it comes to the
sonochemical production of the heterogeneous population.

The simulation of the sonochemical production of free radicals under oxygen at-
mosphere using the homogeneous and the heterogeneous approach demonstrated that
a difference ranging from 5 to 3.3 × 105 folds could be noticed when comparing the
productions of HO•, HO2

•, and H• using both models.
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