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Abstract: Sulphuric acid (H,SOy) is one of the most produced chemicals in the world. The critical
step of the sulphuric acid production is the oxidation of sulphur dioxide (SO;) to sulphur trioxide
(SO3) which takes place in a multi catalytic bed reactor. In this study, a representative kinetic rate
equation was rigorously selected to develop a mathematical model to perform the multi-objective
optimization (MOO) of the reactor. The objectives of the MOO were the SO, conversion, SO3
productivity, and catalyst weight, whereas the decisions variables were the inlet temperature and the
length of each catalytic bed. MOO studies were performed for various design scenarios involving
a variable number of catalytic beds and different reactor configurations. The MOO process was
mainly comprised of two steps: (1) the determination of Pareto domain via the determination a
large number of non-dominated solutions, and (2) the ranking of the Pareto-optimal solutions based
on preferences of a decision maker. Results show that a reactor comprised of four catalytic beds
with an intermediate absorption column provides higher SO, conversion, marginally superior to
four catalytic beds without an intermediate SO3 absorption column. Both scenarios are close to the
ideal optimum, where the reactor temperature would be adjusted to always be at the maximum
reaction rate. Results clearly highlight the compromise existing between conversion, productivity
and catalyst weight.

Keywords: packed bed reactor; multi-objective optimization; SO, kinetic rate equations; non domi-
nated solutions; pareto domain; SO, oxidation process

1. Introduction

Sulphuric acid (H,SO;) is a chemical compound of paramount industrial importance
and used in the fabrication of a myriad of products. Sulphuric acid is a strong mineral acid.
It is a colorless and viscous liquid that is soluble in water at all concentrations [1]. Sulphuric
acid is a very important commodity chemical and a nation’s sulphuric acid production
is one of the indicators of its industrial strength [2]. To minimize the risk associated with
its transportation, sulphuric acid production plants are usually located near their point of
use, as it is a corrosive and risky chemical to transport. Indeed, it is more economical and
safer to transport elemental sulphur than sulphuric acid [2]. Sulphuric acid is an essential
chemical for numerous process industries, such as fertilizer manufacturing, oil refining,
chemical synthesis, pharmaceuticals, and lead-acid batteries [1].

Originally, sulphuric acid was produced using the “Chamber” process [3] where the
oxidation of sulphur dioxide (SO;) with moist air was oxidized using nitrogen oxides
as the catalyst [2]. The reaction took place in a series of large, lead-lined chambers [2].
Due to the small plant size and product acid strength limited to 70% sulphuric acid [4], it
has been largely supplanted in modern industrial processes by the “Contact” process [5].
The simplified flowsheet of the current industrial sulphuric acid production is shown in
Figure 1. The H,SO4 manufacturing is comprised of three main steps. In the first step,
elemental sulphur is burned in a furnace in the presence of dry air to produce SO,. In the
second step, SO is oxidized to SO3 in an adiabatic packed bed reactor using vanadium
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pentoxide catalyst. In the final step, an absorption column of concentrated H,SOy is used,
where SOj reacts with water to form H,SO,4. The chemical reactions associated with these
steps are given in Equations (1)—(3) along with their respective heat of reaction [1]. It is
important to note that the three reactions are highly exothermic, with the second reaction
being an equilibrium reaction. The conversion of SO3; to HySOy is performed using a
very concentrated sulphuric acid solution, and not directly with water, due to the highly
exothermic nature of the reaction. In this third reaction, oleum (H,S,07) will also be
formed, but upon reacting with water leads to HySO4. Most plants and smaller units of
H,S04 production use a single final absorption process, which leads to a conversion of
96-98%. Some modern large-capacity sulphuric acid production plants utilize a double
contact absorption process [6]. By adding an intermediate absorption column, the double
contact process can achieve a conversion in excess of 99%, but at the expense of a more
complex process [2].
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Figure 1. Simplified sulphuric acid production flowsheet showing the main three steps: (1) combustion of sulphur to
produce SO; in presence of dry air, (2) oxidation of SO, to SOj3 in a series of adiabatic catalytic packed beds, and (3)
absorption of sulphur trioxide in a concentrated sulphuric acid absorber and conversion to sulphuric acid.

The critical step in the production of H,SO; is the oxidation of SO; to SO3. As this
reaction is a highly exothermic equilibrium reaction, it takes place in a series of sequential
adiabatic catalytic beds with external intercoolers to decrease the gas mixture temperature
prior to entering the next catalytic bed in order to increase the SO, oxidation rate. Platinum
was initially the most used catalyst for this reaction [7]. However, the cost of platinum and
its susceptibility to poisoning by trace elements led to the development of the vanadium
pentoxide catalyst, which is currently widely used in industrial processes [8].

S(s)+ 02 (g — SOz () AHR = —296,810 Kj/kmol (1)
SO;3 (g) + H20 (1) — HzSO4 () AHR = —132,000 Kj/kmol 3)

The typical progression of the SO, conversion and the bed temperature for this
exothermic equilibrium reaction in a four-bed adiabatic catalytic plug flow reactor is
presented in Figure 2. The location of the equilibrium curve in Figure 2 depends on the
inlet composition and pressure of the reacting mixture. The slope of the adiabatic operating
lines is a function of the thermal capacity of the reacting mixture and the heat of reaction [9].
The horizontal operating lines represent the cooling of the reaction mixture, which takes
place between two sequential beds in external heat exchangers [10]. The curve of the
maximum rate is the locus of the conversion-temperature coordinates at which the reaction
rate is maximum [10].
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Figure 2. Typical conversion versus temperature diagram of a four catalytic bed process used to
conduct the SO, to SO3 reaction with gas cooling between catalytic beds. The equilibrium and
maximum rate curves are shown in red and blue, respectively.

Given the complexity of the SO, to SO3 reactor configuration, it is paramount to
adopt the optimal configuration and to operate the process under optimal conditions. It is
obviously desired to maximize the SO, conversion, as unreacted SO, will need to be treated
or recover at the exit of the SOz absorption column. However, a high conversion rate can
only be achieved at the expense of a lower productivity and a larger reactor volume, leading
to a set of competitive objectives; productivity needs to be maximized, whereas the reactor
volume needs to be minimized. Therefore, to resolve these conflicting objectives, a multi-
objective optimization (MOO) can be used to strike a suitable compromise between the
various objectives that would be satisfactory in the eye of a decision-maker. MOO allows
for the optimization of multiple and often conflicting objectives, which produces a set of
alternative solutions, called the Pareto domain. These solutions, obtained without any bias
as to the importance of each objective, are said to be Pareto-optimal, in the sense that no one
solution is better than any other in the domain when compared on all objectives [11]. The
experience and knowledge of the decision-maker are then used to rank the entire Pareto
domain. The application of MOO techniques in chemical engineering have demonstrated
their strength in the prediction of optimum operating conditions in the presence of multiple
conflicting objectives [12]. For example, Caceres et al. [13] and Vandervoort et al. [14]
successfully employed MOO to optimize acrylic acid production and an ethylene oxide
reactor, respectively. This work, therefore, resorts to a MOO algorithm to investigate
the impact of the number of catalytic packed beds and the addition of an intermediate
absorption column for conducting this oxidation reaction. The MOO algorithm allows
the comparison of the optimal solution of each studied strategy based on various process
objectives. In the case of the SO, to SO3 multi-bed catalytic reactor, the decision variables
could be the inlet temperature and the length of each catalytic bed, the reactor pressure,
and the configuration of the packed catalytic beds.
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To properly study, control, and optimize the multi-bed oxidation catalytic reactor for
the SO, to SOj reaction, it is paramount to identify a representative and reliable kinetic
rate equation that is able to accurately predict the fate of reacting molecules for the range
of operating conditions encountered in an industrial reactor. Such models are useful for
the optimization of the process by identifying the optimal operating conditions which lead
to the best process performance metrics. For the SO, oxidation on vanadium pentoxide
(V20s5) catalyst, a number of kinetic models have been proposed, such as the ones from
Collina et al. [15], Eklund [16], Calderbank [17], and Villadsen et al. [18], each obtained
over a limited range of operating conditions. Various model evaluation techniques can
be used to find the appropriateness of each model. The minimization of the residual sum
of squares (RSS) is used in this study to objectively evaluate the discrepancy between the
experimental data and a given kinetic model, and select the model that best predicts the
experimental data over the operating range of interest.

This investigation aims to perform the multi-objective optimization of the SO, to SO;3
multi-bed catalytic reactor. The first step in the optimization process is to select the most
representative dynamic model of the industrial catalytic bed reactor and rate equation.
Secondly, a multi-objective optimization for a set of decision variables and objectives is
conducted to circumscribe and rank the Pareto domain for a series of process strategies.
Finally, the performance of the various process strategies is presented and compared.

2. Kinetics of Reaction

The first step to perform the multi-objective optimization of the multi-bed catalytic
reactor was selecting a kinetic model that is representative of the SO, to SO3 reaction under
industrial operating conditions. Two approaches are normally used for this selection. The
first is to use the intrinsic reaction kinetics, which is scale independent. With this first
approach, it is required to consider the heat and mass transfer phenomena to calculate the
temperature and concentration profiles within the catalyst particles. The second approach
is to perform experiments using the industrial catalyst and operating conditions in a pilot-
scale reactor or the actual reactor, for which the kinetic model already embeds the heat and
mass transfer limitations. In this investigation, the second approach was favored as the
kinetics models have mostly been derived for experiments conducted under industrially
relevant conditions, which consider simultaneously the effect of heat and mass transfer,
the geometry of the catalyst particles, and the intrinsic kinetics of reaction.

A literature survey has led to four kinetic models, which were derived based on
experience performed with the industrial vanadium pentoxide catalyst particles under in-
dustrially relevant operating conditions. The kinetic models published by Collina et al. [15],
Eklund [16], Calderbank [17], and Villadsen et al. [18] were identified to be potentially
representative kinetic rate models for the present investigation. The equations of these
four kinetic rate models are given in Equations (4)—(7), respectively. The parameters of
the kinetic rate expressions are given in Table 1. To investigate the appropriateness of
the kinetic rate models, and assist in the selection of the most representative reaction rate
kinetic model for the SO, oxidation, the experimental data published by Doering et al. [19]
were used. A total of 135 experimental data points, obtained with the industrial vanadium
pentoxide catalyst, were available to test the models. The experimental data of Doering
et al. [19] provided the rate of reaction for conversions above 97%, pressures up to 10 atm,
and temperatures in the range of 360400 °C.

(4)

Pso
ki D - 1 — 59
1'Po, Pso, ( KP‘Psoz‘P%g> kmol
—_ rSOZ g

2 .
22.414(1 + K, pso, +K3,p503) kgcat-s

0.5 2
Pso Pso kmol >
—150,= k 2 - 2 5
e <P503> Po; (KP-PSOZ> <kgcat'5 ©)
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Table 1. Expressions of kinetic parameters and their temperature range of validity.
Parameters Rate Constant Expressions T(°O)
Model 1: Collina et al. [15]
kmol = _ 5473
k [ﬁ] kq = exp(12.16 —3473)
-1 = - 8619
ko [atmil} ky = exp(—9.953 + g2536 420-590
ks [atm™?] ks = exp(—71.745 + 252°%)
kp [atm 0] kp = exp(—10.68 + 113%0)
Model 2: Eklund [16]
kmol — _ 977822
Ky [m] ky = exp(848.14 — 97822 110.1 InT) 120554
kp [atm 0] kp = exp(—11.24 + 1181805
Model 3: Calderbank [17]
kmol — __ 15656.56
ka e k1 =exp1207 = 1) 370450
k2 | g s ky = exp(—22.75 + 279707
Model 4: Villadsen et al. [18]
- 7466.08
kq [kgcl;_ﬁggn_s} ki = exp(—1.88 — =p=2)
ka[-] ko = exp(2.10 + %) 380-520
ks [atm™] ks = exp(—1.51 + 27217
Kp [atm 0] Kp = exp(—10.73 + 113183)

The four kinetic rate models were compared with experimental data obtained at
400 °C for a feed composition of 11 mol% SO, and 10 mol% O, at a pressure of 2.5 and
10 atm, as well for a gas feed composition of 10 mol% SO; and 11 mol% O, at 1.12 atm,
representing the range of operating conditions under study [19]. Results of this comparison
are presented in Figure 3. Two important observations can be made from these results. First,
the Eklund kinetic model better represents the experimental data at a pressure near 10 atm
(Figure 3a). However, the kinetic model of Collina et al. predicts with better accuracy
the experimental data at the two lower pressures, including near atmospheric pressure
(Figure 3b,c).

Similar results were obtained at other experimental conditions. One can conclude that
there is no unique reaction kinetic model that represents the kinetic data over the entire
range of the experimental conditions. To better assess the representativeness of the different
reaction kinetic models for the complete experimental data set, the residual sum of squares
of the relative differences between the predicted and experimental data was calculated
(Equation (8)) and used to assess the predictive performance of each kinetic model.

N (7e50, — 750, 2
RSS =) 8)
i—1

re,SOZi

where 7. 50, is the experimental rate of i-th experimental point, rso, is the calculated
rate of the i-th experimental point according to the reaction mechanism model, and N is
the number of experimental points considered. The residual sum squares of the relative
differences for each kinetic model for different operating conditions are presented in
Figure 4. Figure 4a shows the RSS for different temperatures at a constant pressure of
2.5 atm and a feed gas composition of 10 mol% SO, and 11 mol% O,. When the temperature
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is increased, the RSS decreases significantly for all kinetic models, which indicates that
the models are more accurate if the reaction occurs above 400 °C, which is the case for the
industrial reactor. The models of Collina et al. and Eklund have the lowest RSS values
compared to other models. Figure 4b shows the performance of the four kinetic models
when the reaction is conducted at different pressures. The model proposed by Collina
et al. has the lowest RSS values at low operating pressures. When the pressure increases,
the RSS values increase. In contrast, the models of Eklund and Calderbank show better
predictions at higher pressures. By considering the entire experimental pressure range (1 to
10 atm) and the temperature range investigated, the Collina et al. kinetic model has a lower
average RSS value and, in general, shows a better fit considering all the experimental data
in comparison with other kinetic models (Table 2).

25 25
® Experimental ® Experimental
— Collina et al. — Collina et al.
—— Calderbank —— Calderbank
— Eklund — Eklund

n
S
|

— Villadsen et al. — Villadsen et al.
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(2]

1 \ I
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60
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Figure 3. Comparison of the experimental and predicted reaction rates as a function of conversion at T = 400 °C: (a)
11 mol% SO,, 10 mol% O,, and P = 10 atm; (b) 11 mol% SO,, 10 mol% O,, and P = 2.5 atm; and (c) 10 mol% SO,, 11 mol%
0O, and P =1.12 atm.
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Figure 4. Residual sum squares (RSS) of each kinetic model for feed gas compositions of 10 mol% SO, 11 mol% O, for (a)
different temperatures at a constant pressure of 2.5 atm, and (b) different pressures at the constant temperature (400 °C).

Table 2. Residual sum of squares for the four evaluated kinetic models over the entire range of the
experimental data.

Model Equation Residual Sum of Squares (RSS)
Model 1: Collina et al. [15] 0.756
Model 2: Eklund [16] 0.936
Model 3: Calderbank [17] 3.55
Model 4: Villadsen et al. [18] 2.08

Based on this analysis, this kinetic model of Collina et al. better represents the entire
experimental data than the other models. To perform a multi-objective optimization (MOO)
for SO, oxidation to SOj in the plug flow reactor, the model of Collina et al. was used
in this investigation, especially for pressure near atmospheric levels and for the feed gas
composition of 10 mol% SOy, 11 mol% O,.

3. Reactor Modeling

Industrially, the SO, to SO3 oxidation is typically conducted adiabatically in a series
of large-diameter packed catalytic reactors with inter-reactor heat exchangers. Each packed
bed reactor has a height between 0.02 and 2.0 m, and a diameter varying between 5 and
12 m. It is assumed that ideal plug flow conditions prevail with negligible axial and radial
dispersion, such that the integration of the mass and heat transfer equations is performed
only in the axial direction. In addition, it is assumed that the reactor operates under steady
state. The general molar balance equation describing the SO, conversion (X) along the axial
direction of reactor bed as a function of the reaction rate, bulk density, the bed area, and
the SO, molar flow rate, is given by Equation (9).

dX B —750, b A
dz
(Fsoz)in

As the SO, oxidation reaction is very exothermic and the reaction rate is strongly
dependent on temperature, the steady-state one-dimensional energy balance must also be
solved to determine the variation of temperature along the bed, as described in Equation (10).
It is assumed that both the axial thermal dispersion and the radial gradient are negligible.

©)

dr o _YSOQ'Pb'A'AHR

—_ 10
dz Cpumii 10)
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The rate of reaction depends on the partial pressure of the two reactants and the
product. To determine the pressure drop through the packed beds, the Ergun equation [20],
giving the change in pressure as a function of the bed length, is used (Equation (11)).

dp wu(1—¢)? pru*(1l— )
o5 x R E s L
dz 50 % D%-s?‘ +L75 X Dp-¢3

(11)
where Cp, pix, AHR, and p are mixture heat capacity, heat of reaction and gas viscosity, re-
spectively. Their temperature dependencies are discussed in Appendices A-C, respectively.

To determine the conversion, temperature, and pressure as a function of position
along the packed bed, the packed bed is discretized in a number of thin slices. For each
slice, the heat of reaction, heat capacity, viscosity, and reaction rate coefficients with their
respective temperature dependencies are determined, and the operating conditions are
therefore set to carry out the calculations for the next slice of the catalytic bed reactor. The
mass and energy balance equations, and the Ergun equation is numerically integrated,
starting with the inlet conditions of the gas mixture until the end of the last catalytic bed.
The SO, conversion, SOz productivity, and catalyst weight are then evaluated as described
in Equations (12)—(14), respectively.

(Fsoz) - (Fsoz)

Conversion (X) = in out » 100 (%) (12)
(Fsoz)in
- Fso ( mol )
Productivity (Pro) = 2 13
Y( ) A X pp X Y Li \kgcat's 13)
Catalyst weight (W)= A x p, x Y _L; (kg) (14)
Operating Conditions

In this study, the pressure of the inlet gas mixture to the sulphur dioxide converter
was set slightly higher than atmospheric pressure, namely at 1.4 atm, in the validity range
of the selected kinetic model. A 12 m diameter adiabatic catalytic reactor was selected with
a feed gas flow rate of 800 mol/s. The inlet temperature and the length of each catalytic
bed are decision variables, and will be adjusted with the optimization algorithm in order
to determine all Pareto-optimal solutions, each solution being comprised of the conversion,
productivity, and catalyst weight. All simulation parameters, such as the bed porosity, bed
bulk density, and gas mixture density, etc., were chosen according to the literature and are
given in Table 3.

Table 3. Reactor system simulation parameters.

Parameter Description Value

€ Bed porosity 0.303

Ob Bed density 256 (kg/m3)

pr (T =460 °C) Inlet gas density 0.781 (kg/m?)
A Reactor area 113 (m?)
Dpeg Bed diameter 12 (m)

Dy Equivalent particle diameter 6.35 x 1073 (m)
Fin Inlet flow rate 800 (mol/s)
P, Inlet pressure 1.4 (atm)

R Gas constant 8.314 (Pa-m®/mol K)
YN2,in Inlet mole fraction of N, 0.79
Y02,in Inlet mole fraction of O, 0.11
Ys502,in Inlet mole fraction of SO, 0.1

Ys03,in Inlet mole fraction of SO3 0
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4. Multi-Objective Optimization Methodology

A multi-objective optimization approach is used to optimize the oxidation of SO, to
SO;3. The optimization methodology comprises four main steps as illustrated in Figure 5 [21].
The optimization problem is first established by defining the set of objective functions to be
maximized or minimized, and the set of decision variables with their respective allowable
ranges. The next step is determining a representative process model to perform the
optimization study. In this investigation, the process model is comprised of the integration
along the axial direction of the steady-state heat and mass balances and the pressure
drop equations (Equations (9)—(11)), which allows us to determine the three objective
functions: conversion (X), productivity (Pro), and catalyst weight (W). Once the packed-
bed catalytic reactor model is available, it is used to circumscribe the Pareto domain using
a MOO algorithm. In this investigation, the Non-Sorting Genetic Algorithm II (NSGA 1II)
has been used [22]. Finally, all Pareto-optimal solutions are ranked using the Net Flow
Method (NEM) [11], where the preferences of a decision-maker are embedded in a set of
relative weights and three threshold criteria of each objective to assist in the ranking of all
Pareto-optimal solutions.

Define multi-objective optimization
problem

A 4

~
[ Modelling
J
\ 4
a2 Y
Generate Pareto domain
\ S

v

{ N
Rank Pareto domain with Net Flow

method

Figure 5. Flowchart of the methodology for solving the multi-objective optimization problem.

4.1. Definition of the Optimization Problem

In multi-objective optimization, it is desired to determine the best set of operating
conditions (decision variables) that will lead to an ensemble of objective functions that is
considered optimal, based on the knowledge and expertise of the decision-maker. There
is no unique way to define an optimization problem, and it may involve many iterations
before reaching an appropriate problem definition [23]. In this investigation, the ensemble
consists of three objective functions that are deemed to have an impact on the efficiency
and economics of the process: the SO, conversion (X), the SOz productivity (Pro), and the
catalyst weight (W), as defined in Equations (12)—(14). This study desired to maximize
the first two objective functions, and to minimize the latter one. A summary of the input
variables and the objective functions is presented in Table 4. A multi-objective optimization
problem can be defined mathematically in general terms using Equation (15), where it
is desired to maximize the ensemble of objective functions (F(x)) by choosing the set of
decision or input variables (x) to satisfy some equality and inequality constraints. The
values of each input variable must be drawn within their feasible range (see Table 4 for
lower and upper bounds). The feasible ranges of the decision variables were chosen large
enough to ensure that all Pareto optimal solutions were well within these ranges. In
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addition, various configurations of the catalytic packed bed reactor were evaluated and
therefore the number of decision variables varied between two and eight. Finally, there
were no equality and inequality constraints used [23].

Max F(x) = (X(x), Pro(x), —W(x))

Subject to j(x) = 0 j=1] (15)
gn(x) >0 n=1,-,N
(xi)min S Xi S (xi)max i: 1/ 2/ tty 8

Table 4. Input and output process variables.

Variables

Decision Variables Identifier Range and Units
Temperature

First bed T 600-900 (K)

Second bed T, 600-900 (K)

Third bed T3 600-900 (K)

Fourth bed Ty 600-900 (K)
Length

First bed Ly 0.02-2 (m)

Second bed Ly 0.02-2 (m)

Third bed Ls 0.02-2 (m)

Fourth bed Ly 0.02-2 (m)
Objective Functions Identifier Desired Attributes
Conversion (%) X Maximize
Productivity (mol/kgcat S) Pro Maximize
Catalyst weight (kg) W Minimize

4.2. Pareto Domain

The Pareto domain is defined as the collection of solutions taken from the total solution
set that are non-dominated when compared to the other solutions within this set [23]. A
solution is said to be dominated by another solution if the values of all optimization
objectives of the first solution are worse than those of the second. Moreover, a non-
dominated or Pareto-optimal solution is obtained if no other feasible solution dominates
it. As engineering problems are usually complex, it is not possible to derive an analytical
solution to represent the Pareto domain; instead, it is represented by a large number of
solutions obtained using an iterative procedure [24]. The Pareto front in the objective space
represents the optimal trade-off among all objective functions. If the objectives were not
conflicting, which is rarely the case, the Pareto domain would contain a unique solution
that maximizes or minimizes all objectives. In this investigation, the conversion and the
productivity are clearly conflicting.

For the optimization of the SO, oxidation to SO3, many design strategies were explored
keeping the same set of objective functions but with different numbers of decision variables.
The decision variables are the inlet temperature and the length of each catalytic bed.
Figure 6 presents a schematic diagram of the optimization process for a given strategy;,
with four catalytic beds in series resulting in eight decision variables to be considered.
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I, ::l —)  Conversion (Max)

Iy — 3 Optimization » Productivity (Max)
L 5 Process

Ls = (atalyst weight (Min)

Figure 6. Schematic of the optimization of the SO, oxidation to SO3. This optimization problem considered for the scenario
where four catalytic beds in series are used. The eight decision variables are the inlet temperature and the length of each
catalytic bed.

4.3. Non-Sorting Genetic Algorithm I1I (NSGA II)

A number of algorithms have been developed to generate a reasonable representation
of the Pareto domain from a given number of solutions. One such method, referred to
as the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [22], was used in this
investigation to determine a finite representation of the Pareto domain. The evolutionary
algorithm NSGA is a popular non-domination based genetic algorithm for multi-objective
optimization. It is a very effective algorithm, but has been generally criticized for its
computational complexity, lack of elitism, and for choosing the optimal parameter value
for sharing parameters [25]. A modified version, NSGA-II was developed, which has a
better sorting algorithm, incorporates elitism, and no sharing parameter needs to be chosen
a priori. The general procedure of the NSGA-II is summarized in Figure 7.

Populationinitialization

-
»

Non dominated sort

\ 4

Crowding distance

Geneticoperators

Recombination and selection

Figure 7. Different stages of NSGA-II algorithm are used to adequately circumscribe a large number
of representative non-dominated solutions.
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The first step in the NSGA-II algorithm consists in generating an initial number of
solutions, called the initial population. This is done by randomly selecting values for each
of the process inputs or decision variables (inlet temperature and length of each bed) that
lie within their lower and upper bounds (see Table 4). The model is then solved for all sets
of the input variables within the initial population to generate the three objective criteria
associated to each set of decision variables. A pairwise comparison is then performed for
all Pareto-optimal solutions in the population to determine the number of times a given
solution is dominated, which provides a domination score for each solution. All solutions
within the population are then sorted by ascending score of non-domination. The first
front is comprised of all solutions with the lowest domination score. The other solutions
with higher domination scores are progressively categorized into additional fronts, which
indicate their relative performance. A new population of the same size is selected by taking
the solutions contained in the fronts with a lower index until the size of the population is
exceeded. To make the population equal to the desired size, solutions of the last front are
chosen based on the crowding distance to ensure preserving diversity. Parents are selected
from the newly created population using binary tournament selection based on the rank
and crowding distance. The selected population generates offspring from crossover and
mutation operators. The total members of the current population and the current offspring
are sorted again based on non-domination, and only the best N individuals are selected,
where N is the population size [26]. This procedure is followed until the desired number of
generations is performed.

4.4. Multicriteria Optimization Algorithm: Net Flow Method (NFM)

When the Pareto domain has been circumscribed, the next step consists of ranking
all Pareto-optimal or non-dominated solutions. The Pareto domain has been established
through a domination perspective without the bias of a priori knowledge and preferences.
However, to rank each solution of the Pareto domain, the decision-maker now needs to
express their preferences based on the knowledge that they have of the process. There
are many methods for ranking the Pareto domain. In this investigation, a multi-criteria
optimization algorithm, known as the net flow method (NFM) [11], has been used. The
NFM is essentially an evaluation process, where the decision maker’s preferences are
included by means of some constraint-like parameters [8]: indifference, preference, veto
thresholds, and the relative weights of each objective. A complete description of the NFM
and its application to chemical engineering problems are presented in Thibault [27]. The
four parameters used for each objective in the NFM are briefly described as follows:

1. The first parameter gives the relative importance of each objective or criterion k,
expressed as a relative weight (Wy). In this algorithm, the weights are normalized:

Y We=1 (16)

2. The second parameter is the indifference threshold (Qy), which defines the range of
variation of the difference between the values of the objective k for two solutions for
which it is not possible to favour one solution over another for that objective;

3. The third parameter is the preference threshold (P;). When the difference between the
values of objective k for two solutions exceeds the preference threshold, the preference
is given to solution with the better objective value;

4.  The fourth parameter is the veto threshold (V), which serves to ban a solution relative
to another solution as the difference between the values of objective k is too high to
be tolerated. The solution with the worst objective is banned based on a particular
objective, even if the other criteria are very good. The veto threshold can be equally
considered as non-preference information.
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The three thresholds are defined for each criterion such that:
0<S Q<P <V (17)
The values of the four NFM parameters used in this investigation are given in Table 5.

Table 5. Relative weights (W), and indifference (Qy), preference (Px), and veto (V) thresholds for
each objective that are used in the NFM algorithm to rank the entire Pareto domain.

Threshold Values
Criterion (k) Relative Weight (Wy,)
Qk Py Vi
Conversion(X) 0.6 0.5 1 3
Productivity(Pro) 0.3 0.002 0.004 0.01
Catalyst weight(W) 0.1 500 1000 4000

By defining the ranking parameters (Table 5), the NFM algorithm [8] is implemented
to rank the entire Pareto domain based on the decision-maker’s preferences. The NFM
algorithm is briefly described as follows.

Using a pairwise comparison, the difference Ay (i j) between of objective k for solutions
i and j, the individual concordance index c(i,j), the global concordance index C(i,j), and the
discordance index Dy(i,j) are calculated using Equations (18)—(21), respectively.

e LM
Ar(i, j)= Fi(j) — F(i) q j € [LM] (18)
k € [1,K]
1A < Q
celi ) = { BBB) i Qp < Av(i,f) < Py (19)
0 lfAk(l,]) > Pk
K .
.. .. 1 e |1,M
C(l/]) = Zwk Ck(l/]>{ = %1 M} (20)
k=1 J ’
0 if Ap(i,j) < Px
Di(irj) = { S it < A(i,f) < Vi (21)
1 if Ak(i,j) > Vi

Using the global concordance and discordance indices, the relative performance of
each pair of Pareto-optimal solutions is finally evaluated by calculating each element of the
outranking matrix o(i,j) using Equation (22).

T - i€ [1,M]
oti)=<ti) (TT[1 - 0w { € @

Finally, the following equation is used to calculate the score of each solution i. The
solution with the highest score is the best solution.

M M
o; =Y o(i,j)— Y o(ji) (23)
=1 =1

The first term in Equation (23) evaluates the extent to which solution i performs
relative to all the other solutions in the Pareto domain, while the second term evaluates
the performance of all the other solutions relative to solution i [27]. The solutions are then
sorted from highest to lowest according to the ranking score.
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Instead of having a unique optimal solution, as in classical optimization methods,
the distribution of the numerous Pareto-optimal solutions in the solution space offers the
opportunity to better understand the underlying interrelationship that exists between the
numerous process variables, and is able to clearly illustrate the trade-offs that are made
when examining the different regions of a Pareto domain [28]. The operating conditions
associated with the optimal objective function zone are then candidates to be implemented
in the process.

5. Results and Discussion

To conduct this optimization study as comprehensively as possible, a total of eleven
case studies or process scenarios were defined and compared. Table 6 lists these eleven
scenarios. The design parameters and operating conditions of the SO, oxidation packed
bed reactor are same for all scenarios and are given in Table 3. The inlet temperature and
the length of each catalytic packed bed are under the control of the genetic algorithm, in
order to circumscribe the Pareto domain for each process configuration.

Table 6. Brief description of the various process scenarios that were optimized in this investigation.

Number Scenario

1 One catalytic bed

Two catalytic beds with global optimization

Two catalytic beds with individual bed optimization

Three catalytic beds with global optimization

Three catalytic beds with individual bed optimization

Four catalytic beds with global optimization

N |G| =W DN

Four catalytic beds with individual bed optimization

Two catalytic beds, followed by an intermediate absorption column and

8 two catalytic beds with global optimization

9 Three catalytic beds, followed by an intermediate absorption column and a
fourth catalytic bed with global optimization

10 Four catalytic beds, followed by an intermediate absorption column and a
fifth catalytic bed with global optimization

1 Minimum-length catalytic bed, where the temperature is adjusted to follow

the maximum reaction rate curve

5.1. Various Process Configuration Scenarios

The different scenarios of Table 6 differ by the number of catalytic beds used, the
presence, or lack of, of an intermediate SO3 absorption column, and the chosen optimization
procedure (individual or global) for scenarios with more than one catalytic bed in series. A
heat exchanger is used to decrease the temperature of the gas mixture prior to entering the
next catalytic bed.

Scenario 1 is the base case, and considers the optimization of only one catalytic bed
to determine the optimal solution. Scenarios 2 and 3 consider the optimization of two
catalytic beds in series while performing, respectively, a global optimization of the two
beds, or optimizing the two beds separately. Similarly, scenarios 4 and 5, as well as 6 and 7,
consider the optimization of three or four catalytic beds in series while performing a global
optimization of the beds or optimizing the beds separately. With these seven scenarios, it
was desired to see the progressive change in the three objective functions as the number of
catalytic beds was increased, as well as to observe the gain in performance when the global
optimization is performed compared to the bed-by-bed optimization.

In scenarios 8 and 9, four catalytic beds in series are used, with the integration of an
absorption column to remove the SOz produced in earlier beds in order to favor additional
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SO3 production in subsequent beds. In Scenario 8, two catalytic beds are used before
the intermediate absorption column, and are followed by two catalytic beds, whereas in
Scenario 9, three beds are used before, and one after, the absorption column. Similarly;,
Scenario 10 used an intermediate absorption column after four catalytic beds, and a fifth
catalytic bed is included after the intermediate absorption column.

Finally, Scenario 11 differs from the 10 other scenarios as it considers the ideal case
where the temperature of a unique catalytic bed at any location along the bed is changed,
such that the rate of reaction is always at its maximum for a given conversion instead of
using a number of adiabatic beds. In other words, the local temperature of the catalytic
bed is adjusted to follow the maximum-rate curve illustrated in Figure 2. This case is
considered to provide a point of comparison for the minimum amount of catalysts that
would be required to achieve a given conversion under ideal conditions.

5.2. Plots of the Decision and Objective Spaces of the Pareto Domain

The Pareto domains for all eleven process scenarios using the evolutionary algorithm
NSGA-II were circumscribed with the same ensemble of the three objectives (conversion,
productivity, and catalyst weight) and the corresponding decision variables (inlet tem-
peratures of each catalytic bed and the length of each bed) based on the process scenario
considered. Each Pareto domain was ranked with the Net Flow Method to determine the
optimal region of operation that has given rise to the best Pareto-optimal solutions based
on the preferences of a decision-maker.

In this investigation, the eleven Pareto domains had the same shape, even though the
Pareto front were located at slightly different locations. As a result, only one Pareto domain
is presented and discussed in this paper, and only the highest-ranked Pareto-optimal
solution for each scenario is used in the next section to compare the different process
strategies.

The results of Scenario 6, presented in Figure 8, are used to illustrate the shape of
the Pareto domain. Results are presented in two-dimensional plots, such that the three-
dimensional Pareto front is projected onto the two dimensions selected. Results of the
ranking by NFM were grouped as follows: the best Pareto-optimal solution, followed by
the solutions ranked in the best 5%, the next 45%, and finally the last 50%.

Figure 8a—c presents the graphs of the three objective functions of the ranked Pareto
domain. Figure 8a presents the SO, conversion exiting the fourth catalytic bed as a
function of the productivity. This plot clearly shows the typical compromise that commonly
exists between conversion and productivity. An increase in conversion is obtained at the
expense of a lower productivity, and vice versa. The NFM parameters were chosen in this
investigation to favor a higher conversion, as it is required to use as much SO; as possible
and achieve a low concentration at the end of the process, which needs to be captured
and disposed of. Therefore, more emphasis was placed on conversion, which is also the
case industrially. However, to further increase the conversion beyond the highest-ranked
solution, it would significantly decrease the productivity without a significant gain in
conversion. Figure 8b presents the plot of the conversion as a function of the total weight
of the catalyst for the four beds, whereas Figure 8c presents the plot of the total weight
of the catalyst as a function of the SO3 productivity. Figure 8b clearly illustrates that to
reach higher conversion, an extremely high amount of catalysts and a much larger total
reactor volume would be required. Figure 8c shows that higher productivity would be
achieved with a low catalyst weight, leading to a rapid production of SO3, but at a very
low conversion. The catalyst weight and the productivity are obviously correlated, as the
productivity is defined as the number of moles of SO3 produced per unit time and catalyst
weight. It would be possible to use only the conversion and the productivity as objectives,
but it was desired to also put a small emphasis on the total quantity of catalyst. If the
conversion and productivity would be equally desired, the highest-ranked solution would
be located closer to the elbow of the curve in Figure 8b,c.
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Figure 8. Plots of the ranked Pareto domain for the Scenario 6, where four catalytic beds are considered in single contact
method. (a) conversion versus catalyst weight; (b) conversion versus productivity; (c) catalyst weight versus productivity;
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and (d) the two decision variables: temperature and length of the last catalytic bed.

For the optimization of Scenario 6, there are eight decision variables, namely the
inlet temperature and the length of each catalytic bed. The results of the fourth catalytic
bed will be presented here, as all beds show more or less the same pattern between the
inlet temperature and the length of the bed. Figure 8d shows the plot of the length of
the fourth bed as a function of its inlet temperature. Due to the exothermic equilibrium
reaction, if the inlet gas temperature is high, the reaction will reach equilibrium rapidly
with a relatively low increase in conversion. On the other hand, a minimum temperature is
needed for the catalyst to be active for this oxidation reaction. It is called an auto-ignition
temperature, or strike temperature, and is generally in the range of 415 to 425 °C [29]. This
higher temperature and the proximity of the equilibrium curve lead to a relatively short
length of bed. On the other hand, if the inlet gas temperature is low, the reaction rate
will initially be lower and the length of the bed to achieve near-equilibrium will be much
longer, whereas the conversion will be much higher, as shown in Figure 2. In addition, the
minimum temperature criterion due to the catalyst strike temperature has to be fulfilled
for the reaction to occur. The nonlinear relationship observed in Figure 8d is due to the
speed of reaction being higher for higher temperatures and the shape of the equilibrium
conversion curve.

The ranking of the best 5% of all solutions within the Pareto domain could be affected
by the relative weight (W) of objectives. With a relative weight of unity for one objective
and zero for the other two, one could expect that the optimal zone would shift along the
Pareto domain towards the extreme of the favored criterion. However, this does not occur
to the full extent that would be expected as, although the relative weight for one criterion
and its resulting contribution to the concordance index are both zero, the preference and
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veto thresholds still play the same role with respect to the discordance index. Therefore, the
values of the threshold will affect the ranking of a given solution with respect to another
when, in a pairwise comparison, the difference of a given criterion exceeds the preference or
the veto thresholds. This sensitivity analysis clearly suggests that the NFM is significantly
robust to changes in the relative weights, and the thresholds play a very important role in
the ranking of the Pareto domain.

5.3. Comparison of Various Process Strategies

Figure 9 shows the highest-ranked Pareto-optimal solutions for the conversion, pro-
ductivity, and total catalyst weight for scenarios 1 to 10. As can be observed in Figure 9a,
the first seven scenarios simply illustrate the progressive and necessary increase in the
number of catalytic beds for the production of SOj3 to achieve a sufficient conversion, going
from 70% to over 97%. The use of four catalytic beds in series has been used industrially
for many decades to reach the desired conversion. The results of the four catalytic bed sce-
narios are then used as a benchmark in this study to investigate the possible improvements
implementing other strategies. The target conversion may vary slightly from one industry
to another and, to achieve higher conversion given the thermodynamic limitation of this
exothermic equilibrium reaction, one would need to sacrifice the productivity and resort to
higher amounts of catalyst.
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Figure 9. Comparison of the optimal values for the three objectives for the various scenarios that are defined in Table 6,

based on the number and arrangement of the catalytic packed beds: (a) conversion, (b) productivity, and (c) catalyst weight.
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Results of the scenarios 2 to 7 of Figure 9a were also generated to quantify the loss in
performance that would occur if the catalytic beds were optimized individually in sequence,
rather than being optimized globally with all catalytic beds considered together. As shown
in scenarios 3, 5, and 7, for the individual optimization of each bed the conversion is as
expected significantly lower in general than for the global optimization, showing the need
for such procedure.

Trying to achieve higher conversion by the addition of a fifth catalytic bed did not lead
to a significant increase, mainly due to the proximity of the equilibrium curve and the very
small driving force, and this scenario was not evaluated further. It is certainly not logical
to add a heat exchanger and an extra catalytic bed for a negligible gain in conversion. The
double contact process, in which the absorption column is used, is investigated in scenarios
8 to 10 with different process sequences. With these three scenarios, it was possible to
achieve a conversion in excess of 99.5% for the highest-rank Pareto-optimal solutions.
It is clear that the double contact process permits us to achieve higher conversion and
reduce the amount of SO, that needs to be discarded. The decision to add an intermediate
absorption column would be decided from an economical and environmental point of view.

Figure 9b,c present the values of the productivity and catalyst weight for the highest-
ranked Pareto-optimal solutions associated to the different scenarios. As mentioned, these
two objectives are correlated, as an increase in the catalyst weight leads to a decrease in
productivity, as the latter is defined as moles of SO3; produced per second and per kilogram
of catalyst. It is clear that to achieve a higher conversion, a much larger weight of catalyst
is required, and a much lower productivity needs to be reckoned with. Even if a greater
importance has been given to conversion, as it is favored in the industrial production, the
ranking algorithm (NFM) attempts to strike a compromise between the three objectives
whereby a high conversion is achieved, but without using an excessive amount of catalyst.
It is interesting to note that the three scenarios involving the double-contact process (8,
9, and 10) have identical productivity and catalyst weight. This is understandable as the
process is limited by the upper limit of conversion, which was nearly reached with these
three scenarios.

5.4. Minimum Length

In order to determine limiting values of the objectives, the minimum length (or catalyst
weight) to reach a conversion equal to the conversion that was obtained with four catalytic
beds (Scenario 6) was studied. In this case, the minimum length of a unique catalytic bed
would be achieved when the temperature is adjusted at all locations along the packed bed,
such that the reaction rate is always at its maximum value. In other words, the conversion-
temperature profile needs to follow the maximum-rate curve described in Figure 2. A series
of simulations were performed to determine the minimum length of the bed over a range
of inlet reactor temperatures (Scenario 11). For a given inlet temperature, the temperature
was kept constant until the conversion at which the maximum reaction rate was reached.
Thereafter, the temperature was adjusted to follow the constant-rate curve. Results of this
study are presented in Figure 10.

Results of Figure 10 show that, for lower inlet temperatures, the length of the variable
temperature catalytic bed is relatively high, as a longer portion of the bed is maintained at
the inlet temperature where the reaction rate is lower than its optimal value for a given
conversion. As the temperature increases, the length of the bed decreases significantly. For
comparison, the total length of the four catalytic beds of Scenario 6 has been plotted on
Figure 10, which shows that the variable temperature catalytic bed would start to show
better performance when the inlet temperature exceeds 790 K. This comparison shows that
the length of the four-bed catalytic reactor (Scenario 6) is not significantly different from
the best that could be achieved with the large non-adiabatic reactor (about 5% difference in
the best case for the same conversion).
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Figure 10. Plot of the minimum length of the catalytic bed as a function of inlet temperature (Scenario
11), which is compared with the length of bed of the four catalytic beds for the same optimal
conversion.

6. Conclusions

The multi-objective optimization of the sulphur dioxide oxidation to the sulphur
trioxide was used to determine optimal process scenarios. The optimization of this process
considered a series of inputs or decision variables (temperature and length of each bed) and
three process objectives (SO, conversion, SOz productivity, and catalyst weight). A series
of scenarios, or process strategies, were defined and optimized, which aimed in each case
to circumscribe the Pareto domain using a genetic algorithm. All Pareto-optimal solutions
were then ranked using the Net Flow Method, where the knowledge and preferences of a
decision-maker were used. The knowledge of the decision-maker was encapsulated into a
relative weight of each objective, along their respective indifference, preference, and veto
thresholds.

This analysis allowed the determination of the operating conditions of each scenario,
which led to the best trade-off among all three objectives. The highest SO, conversion
was obtained in a double-contact process. Indeed, when the SO, conversion reaches
approximately 90%, it is advantageous to use an intermediate absorption column to recreate
favorable conditions for higher SO, conversion. On the other hand, the four catalytic bed
reactor arrangement, commonly used industrially, still provides a very good conversion,
which is nearly operating with the minimum length of bed that would be ideally achievable.
The next step in this investigation is to perform the global optimization of the sulphuric
acid process, which would include the other major process equipment.
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Nomenclature

(%] Wilke’s Coefficient

AHR Heat of reaction (J/mol)
U Viscosity (Pa-s)

A Reactor area (m?2)

Cp Molar heat capacity (J/mol-K)
Cpmix  Molar heat capacity of gas mixture (J/mol K)
Dped Bed diameter (m)

Dy Particle diameter (m)

€ Void fraction

F Molar flow rate (mol/s)

F; Molar flow rate of component i (mol/s)

K Number of objectives

kq Rate coefficient for reaction (Table 1)

K, Rate coefficient for reaction (Table 1)

K3 Rate coefficient for reaction (Table 1)

Kp Equilibrium constant (atm—09)

L Length of catalytic bed (m)

M Number of solutions in the Pareto domain

My, Molecular weight (kg/kmol)

P Total pressure (atm)

pi Partial pressure (atm)

Py Preference threshold for criterion k in NFM algorithm
Pro Productivity (mole/kgcat s)

Ok Indifference threshold for criterion k in NFM algorithm
R Gas constant (8.314 J/mol-K)

7,502  Experimental rate for the SO, oxidation (molgpy /kgcat*s)
7502 Rate of reaction (kmol/kgcat-s)

T Temperature (K)

Tre Reference temperature (K)

u Superficial gas velocity (m/s)

Vk Veto threshold for criterion k in NFM algorithm
W Catalyst weight (kg)

Wi Relative weight for each objective criterion

X Conversion (fraction or %)

Yi Mole fraction (fraction or %)

Ob Bed density (kg/ m?)

of Fluid gas density (kg/m3)

Appendix A. Heat Capacity

According to Fogler [30], the heat capacity of each species at temperature (T) is
frequently expressed as a quadratic function of temperature:

Co=A+B x T+C x T? (A1)

where A, B, and C are coefficients that are given in Table Al.

To approximate the specific heat capacity of a mixture with an infinite number of
components when the mole and specific heat capacity of each species are known, the rule
of mixture calculator is used:

number of species

Copmix= ),  ¥ixCp, (A2)
i=1

where y; is the mole fraction of species i.
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Table A1. Heat capacity coefficients.

Component SO, SO; O, N,

A (J/mol-K) 30.178 35.634 23.995 26.159
B x 1073 (J/mol-K?) 42.452 71.722 17.507 6.615
C x 1076(J/mol-K®) —18.218 —31.539 —6.628 —2.889

Appendix B. Heat of Reaction
The heat of reaction of the SO, oxidation is calculated from the following equation [30].

3
0.0205 10.007 x 10°
AHg = AHR(at the Treg) = 6.54(T = Trep) + —— (T2 - Tfef) - (T —T3y) (A3)

The heat of reaction at a reference temperature, 700 K, is —98,787.5 kJ /kmol.

Appendix C. Gas Viscosity

Viscosity in gases arises principally from the molecular diffusion that transports
momentum between layers of flow [31]. The kinetic theory of gases allows the accurate
prediction of the behavior of gaseous viscosity. Within the regime where the theory is ap-
plicable, viscosity is independent of pressure and the viscosity increases as the temperature
increases. To estimate the dynamic viscosity of an ideal gas as a function of the temperature,
Honeywell Unisim was used over the temperature range of 500 < T < 900 (K):

Hso,= 4.67 x 1078 T — 2.23 x 107° (Pa s)
Hso,= 5.68 X 1078 T — 9.09 x 10~ ® (Pa s)
Ho,=4.12 x 1078 T — 5.79 x 107® (Pa s)
N, =434 x 1078 T — 8.99 x 10°° (Pas)

(A4)

Davidson [32] proposed to use an equation derived from the simple kinetic theory
that is easily extended to multi-component systems. It requires the evaluation of a complex
coefficient (©j) for each pair of components in a mixture. The evaluation requires only the
viscosity and the molecular weights (Mw;) of individual components:

{1+ u 0.5’ Ma-,], 0.25}2
@ij _ (HJ) I\Ew]leoz (A5)

% [HM%‘

These coefficients are then used with the mole fraction in the calculation of the viscosity
of the mixture:

Yili
Mix =), — o (A6)
Zi: Yi+ Lz YiDij
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