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Abstract: During the rice growing season, farmers’ decisions about cropping systems and seed
varieties directly affect the utilization of heat resource, and eventually affect the potential yield.
In this study, we used the hourly accumulated temperature model to calculate the available heat
resource as well as the effective heat resource in southern China. We conducted a spatiotemporal
analysis of the heat resource effectiveness during rice growing season and an impact assessment of
heat resource effectiveness on rice potential yield and cereal yield reduction. The results showed that,
during the period of 1951–2015, heat resource effectiveness generally declined in the rice cropping
area of southern China. And this decrease worsened during the most recent three decades compared
with the period of 1951–1980. A strong correlation was detected between heat resource effectiveness
and rice potential yield in the study area. When the effective heat resource during the growing season
increased by 1 ◦C·d, rice potential yield would increase by 14 kg ha−1. For each percentage increase
in heat resource effectiveness, the rice potential yield reduction rate would go down by 0.65%. This
agro-climatological study aims to offer a scientific basis for rice production decisions in southern
China, such as when to plant, which varieties to choose and so on.

Keywords: climate change; heat resource effectiveness; hourly accumulated temperature simulation;
rice potential yield

1. Introduction

Rice is one of the three main food crops in China. China’s rice yield accounts for 30%
of the total global rice yield. The fluctuations of rice yield in China affect the national or
even global food security. Against the background of climate change, such impact could be
amplified by the changes in effective heat resources during the rice growing period.

Heat resources (temperature, herein unless otherwise specified) plays a major role in
the geological distribution of crops [1–4]. Given sufficient available water, the heat resource
determines the crop mixture structure and seed variety allocation [5,6], crop growing
season length [7,8], and eventually the potential yield [9]. Conversely, farming decisions
of crop mixture, cropping system, and seed varieties could affect the utilization of heat
resource during the crop growing season.

Previous scholars had discovered a clear relationship between crop development and
thermal time [7,10–13]. The application of thermal time has been widely used to predict
crop phenology [14–20] and crop yield [21–23] in crop models. Recently, the application of
thermal time has been expanded to evaluate the effective heat resource during the crop
growing season. The spatiotemporal analyses on the effective heat resources for different
crops in different regions of China have been reported. Nevertheless, those studies did
not consider the effect of temperatures greater than the upper threshold beyond which
temperatures accelerate crop growth or crop development. Similar to the temperatures
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less than the lower threshold of crop growth requirement, temperatures greater than the
upper threshold of crop growth requirement are useless or even detrimental to crop de-
velopment [24]. Therefore, some researchers came up with three-point temperatures to
measure the effective temperature for crop development, and further recognized that only
temperatures greater than the lower threshold and less than the upper threshold of crop
growth requirement are seen as effective [25,26]. The ratio of accumulated effective tem-
perature to accumulated available temperature is defined as the accumulated temperature
effectiveness and is used to quantify the effectiveness of the heat resource [27]. In addition,
the ratio of heat resource effectiveness has been used to analyze the effect of temperature
change on crop yield [28].

In China, three different methods are primarily used to calculate the accumulated
effective temperature during the growing season: (a) the average temperature-based
method [26,29–32], (b) the adjusted maximum and minimum temperatures method [33–36];
and (c) the hourly temperature-based method [37]. Jiang and Wen (2013) have pointed
out that the hourly temperature-based method is more accurate than the others [38]. In
this study, we used the hourly temperature-based method to calculate the available and
effective heat resources during rice growing season in the rice cropping area of southern
China. We investigated the spatiotemporal characteristics of heat resource effectiveness
in the southern rice cropping area and further discussed the relationships between heat
resource effectiveness and rice potential yield, as well as grain yield reduction rate. This
study aims to offer scientific support for the optimal cropping system arrangement in the
rice cropping area of southern China.

2. Materials and Methods
2.1. Study Region and Data

In this study, the research area is southern China (99◦–123◦ E and 18◦–34◦ N) where
national rice production is concentrated. The boundaries of the research area followed
the suggestions in Liu and Han [39], where natural resources (e.g., terrain factors, radia-
tion and water resources), socio-economic conditions, agricultural background (e.g., crop
varieties, crop mixtures, and maturity types), and the integrity of county-level adminis-
trative divisions were taken into consideration. In the research area, rice-based cropping
systems include double-cropping systems rotated with middle rice and winter wheat and
triple-cropping systems rotated with early or middle rice and winter wheat or rape. The
regional paddy land area accounts for 83.52% of the national paddy land area [40]. Within
the regional area, the double-cropping system accounts for 66% of the paddy land area,
and produces 61.3% of the national rice grain yield [41]. Therefore, improved understand-
ing of the effects of temperature change on rice grain yields and production for multiple
rice-based cropping systems in southern China is critically important for the country’s food
security.

According to [42], the study area can be further divided into four sub-regions: sin-
gle rice-cropping system (SRCS), early double rice-cropping system (EDRCS), middle
double rice-cropping system (MDRCS) and late double rice-cropping system (LDRCS)
(Figure 1B,C), and rice varieties for the four main rice-based cropping systems are shown
in Table 1. The division of these sub-regions is based on cropping suitability for different
rice-based cropping systems from a climatological perspective [43].
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2.2. Determination of Rice Growing Season 
According to [44,45], we divided the entire rice growing season into three stages: 

early stage (from sowing to booting), middle stage (from booting to flowering), and late 
stage (from flowering to maturity). The climatic-ecological model proposed by Gao, et al. 
[46] was adopted to calculate potential growing season length for different rice varieties 
during the two periods of 1951–1980 and 1981–2015 (Table 2). For early and middle ma-
turity rice varieties, the sowing date was specified as the date when the possibility of 

Figure 1. Overview of the study area. (A) Distribution of the 254 meteorological stations in southern China; (B) suitable
planting area for the four rice-based cropping systems during the period of 1951–1980; (C) suitable planting area for the
four rice-based cropping systems during the period of 1981–2015.

Table 1. Rice varieties for the four main rice-based cropping systems.

Rice-Based Cropping System Rice Variety

Single rice Hybrid rice
Early double rice Medium maturity early indica + medium maturity japonica

Middle double rice Late maturity early indica + hybrid rice
Late double rice Hybrid rice + hybrid rice

The historical climate data from 1951 to 2015 for 254 meteorological stations (Figure 1)
were obtained through the China Meteorological Science Data Sharing Service (http://
cdc.cma.gov.cn, accessed on 8 March 2018), including atmospheric pressure, maximum,
minimum, and average temperatures, relative humidity, precipitation, wind speed, and
sunshine hours. The crop phenology data are acquired from China Meteorological Bureau
agricultural meteorological observations (http://cdc.cma.gov.cn, accessed on 8 March
2018).

2.2. Determination of Rice Growing Season

According to [44,45], we divided the entire rice growing season into three stages: early
stage (from sowing to booting), middle stage (from booting to flowering), and late stage
(from flowering to maturity). The climatic-ecological model proposed by Gao, et al. [46]
was adopted to calculate potential growing season length for different rice varieties during

http://cdc.cma.gov.cn
http://cdc.cma.gov.cn
http://cdc.cma.gov.cn
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the two periods of 1951–1980 and 1981–2015 (Table 2). For early and middle maturity rice
varieties, the sowing date was specified as the date when the possibility of average daily
temperature equal to or greater than 10 ◦C reached 80%. For late maturity rice varieties,
sowing date (the beginning date of seedling) was specified as 30 days earlier than the
maturity date of early maturity rice varieties, and transplanting date was specified as
5 days (typical time needed for harvest activities) after the maturity of early maturity rice
varieties. The maturity date was also calculated based on the climatic-ecological model. As
suggested by FAO [44], we used the mean phenology stage length during the period of
1981–2015 to interpolate the booting and heading dates. The mean phenology dates for
different rice cropping systems during the two study periods of 1951–1980 and 1981–2015
are presented in Table 3.

Table 2. The potential growing season length for different rice varieties.

Rice Variety Rice Type Potential Growing Season Length (day)

Hybrid rice Shanyou II N = 101.56− 3.52∆T + 0.16(∆T)2 +
0.16∆D + 3.28∆Φ

Medium maturity early indica Yuanfengzao N = 71.82− 2.42∆T + 0.14∆D + 1.49∆Φ
Late maturity early indica Guangsi N = 71.73− 3.826∆T+ 0.088∆D+ 1.856∆Φ
Medium maturity japonica Nanjing 34 N = 122.64− 3.13∆T + 0.39∆D + 1.09∆Φ

Note: N means the potential growing season length (day); ∆T means the difference between 25 ◦C and the mean
temperature from the safe sowing date to the safe fully heading date (◦C); ∆D means the number of days between
April 1 and the sowing date; and ∆Φ means the difference between station latitude and 30◦ N.

Table 3. Simulated rice phenology (day of the year) of different varieties for the four main rice-based cropping systems in
southern China.

Period Cropping
System

Rice
Variety

Sowing
Date

Transplant
Date

Booting
Date

Flowering
Date

Mature
Date

Length of
Growing Season (days)

1951–1980

SRCS MM 84 115 196 206 247 163

EDRCS
EM 78 108 151 160 187 109
LM 162 192 251 245 304 142

MDRCS
EM 68 98 144 153 182 114
LM 157 187 215 244 275 118

LDRCS
EM 2 50 106 116 149 147
LM 124 154 205 216 244 120

1981–2015

SRCS MM 84 114 190 199 238 154

EDRCS
EM 83 113 156 165 193 110
LM 168 198 256 268 309 141

MDRCS
EM 72 102 149 159 187 115
LM 162 192 248 260 300 138

LDRCS
EM 2 50 106 116 149 147
LM 124 154 205 216 252 128

Note: MM: middle maturity; EM: early maturity, and LM: late maturity.

In the crop model, the potential growing season length for the four representative
cultivars was calibrated based on the actual crop phenology data from China Meteorological
Bureau agricultural meteorological observations. The validation results show that the
correlation coefficient (R2) between the observed and simulated growing season length
was greater than 0.80 for all four representative rice cultivars (Figure 2).
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2.3. Available Heat Resources (AHR)

Temperatures below the lower threshold of crop growth requirement can be detrimen-
tal [47,48]; likewise temperatures above the upper threshold of crop growth requirement
can be detrimental [23,49,50]. In this study, we used the lower threshold of 10 ◦C, and
the upper threshold of 35 ◦C to evaluate the heat resources during the rice growing sea-
son [51–53]. The calculation equations are

DHi =


0 Ti < Tb
Ti − Tb Tb ≤ Ti ≤ Tu
0 Ti > Tu

(1)

DD =

(
24

∑
i=1

DHi

)
/24 (2)

GDD =
n

∑
k=1

DDk (3)

where DHi is the available heat resource in the ith hour of a day (◦C·h); Ti is the average
temperature (◦C); Tb is the lower threshold (◦C); Tu is the upper threshold (◦C); DD is the
available heat resource in the day (◦C·d); GDD is the available heat resource during the
growing season (◦C·d); and n is the number of days in the growing season (unitless).

2.4. Effective Heat Resource (EHR)

The effective heat resource is defined as the accumulated temperatures that are above
the lower threshold of crop growth [32,54–57]. It has been pointed out that rice growth rate
is exponentially related to the daily mean temperature [53,58]. The response of growth rate
to hourly temperature can be described by the bilinear model [59]. Hodges [60] found that
daily mean temperature between base and optimum temperature has a positive relationship
with the crop growth rate, while temperature between optimum temperature and upper
threshold has a negative relationship with the crop growth rate. This implies that the
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effectiveness of temperature to crop growth varies among different ranges. Based on the
“cardinal” temperature theory, we modified the effective temperature model brought up by
Bouman et al. (2001) [61] as below:

EHRi =


1

24

[
Tou − (Ti−Tou)(Tou−Tb)

Tu−Tou

]
Tou < Ti < Tu

0 Ti ≤ Tb, Ti ≥ Tu
Tob−Tb

24 Tob ≤ Ti ≤ Tou

( Ti−Tb
24 ) Tb < Ti < Tob

(4)

DEHR =
24

∑
i=1

EHRi (5)

GEHR =
3

∑
k=1

n

∑
j=1

24

∑
i=1

EHRijk (6)

where EHRi is the EHR for the ith hour (◦C·h); DEHR is the daily EHR (◦C·d); Tob is the
lower range of the optimum temperature (◦C); Tou is the upper range of the optimum
temperature (◦C); Ti is the average temperature for the ith hour (◦C); Tu is the upper
threshold (◦C); Tb is the lower threshold (◦C); GEHR is the sum of total growing season
EHR for different rice cropping systems (◦C·d); EHRijk is the EHR at the ith hour on the jth
day at the kth crop stage; and n is the number of days in the growing season (unitless).

In Table 4, we present the three “cardinal” temperatures for different crop development
stages of rice [24,51,52,62].

Table 4. The cardinal (i.e., the base, maximum and optimum) temperatures for different crop development stages of rice.

Development Stages
Three Cardinal Temperature (◦C)

Lower Threshold
(Tb)

Upper Threshold
(Tu)

Lower Optimum
Range (Tob)

Upper Optimum
Range (Tou)

Sowing to booting 10 35 25 30
Booting to flowering 22 35 30 33

Flowering to maturity 15 35 20 29

We calculated the hourly temperatures based on the daily minimum and maximum
temperatures by using the method from Bouman, Kropff, Tuong, Wopereis, ten Berge and
van Laar [61].

T =


Tmax+Tmin

2 + Tmax−Tmin
2 ·cos

(
hi−14
14−hr

·π
)

hr ≤ hi ≤ 14
Tmax+T′min

2 +
Tmax−T′min

2 ·cos
(

hi−14
10+hs

·π
)

14 ≤ hi ≤ 24 + hs
(7)

where Ti is the hourly mean temperature (◦C); Tmax is the daily maximum temperature
(◦C); Tmin is the daily minimum temperature (◦C); hi is the ith hour; hr is the sunrise time in
a day; and hs is the sunset time in a day. The calculations for sunrise time and sunset time
are cited from Allen, et al. [63].

2.5. Heat Resource Effectiveness (HRE)

The term “resource effectiveness” was coined by Liu and Zhong (1996) to indicate
the effectiveness of environmental resources on crop development [64]. Furthermore, heat
resource effectiveness was defined as the percentage ratio of actually utilized heat resource
(effective heat resource) to available heat resource during the crop growing stages or the
entire crop growing season [65]. By investigating heat resource effectiveness during the
entire crop growing season, we could quantify the utilization of heat resource by the plants.
Based on the investigation results, we can make better decisions about seed varieties, crop
mixture, and farming management to make better use of the heat resource.
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Heat resource effectiveness is the percentage ratio of effective heat resource to available
heat resource (%). The HRE during growing season for a crop type can be calculated as:

HRE =
GEHR
GDD

× 100 (8)

where HRE is the heat resource effectiveness during the growing season (%); GDD is the
total available heat resource during the growing season (◦C·d); and GEHR is the total
effective heat resource during the growing season (◦C·d).

Without considering the blank time between different crops, the gross EHR of a
cropping system is the sum of the EHR for all crops. The gross HRE (GHRE, %) for a
cropping system can be calculated as:

GHRE =
∑n

i=1 GEHRi

∑n
i=1 GDDi

× 100 (9)

where GEHRi is the total EHR for the ith crop during the growing season (◦C·d); and GDDi
is the total AHR for the ith crop during the growing season (◦C·d).

2.6. Calculation of Rice Potential Yield and Yield Reduction Rate

Crop potential yield is the maximum yield when crops grow under an ideal en-
vironment, without any limitations in soil fertility farming technology, and it is solely
determined by climate elements of solar radiation, temperature, and precipitation. In the
research area, irrigation is typically used for rice production. Therefore, we define the crop
potential yield without any water limitation. This is similar to the so-called photo-thermal
potential [66–68]. The crop potential yield (YT) can be calculated as

YT = YP · f (T) (10)

YP =
s ·Ω · ε · φ · (1− α)(1− β)(1− ρ)(1− γ)(1−ω) · f (L)

q · (1− η)(1− δ)

n

∑
i=1

Qi (11)

where YP is the daily photosynthetic potential, kg ha–1; YT is the daily photo-thermal
potential, kg ha–1; f(T) is the temperature correction coefficient and can be calculated

with Equation (12); and
n
∑

i=1
Qi is the total solar radiation during the growing season,

MJ·m–2. The rest of the parameters are listed in Table 5 together with values from earlier
studies [66,67,69,70].

Table 5. Parameters and values for rice potential yield calculation.

Parameter Value Description

s 0.45 The harvest index of rice
Ω 0.9 The capacity of crop photosynthetic CO2 fixation

ε 0.49 The ratio of photosynthetic active radiation to total solar
radiation on the ground

ϕ 0.224 The conversion efficiency from light to energy
α 0.06 The reflectance of crop canopy
β 0.08 The transmittance of crop canopy

ρ 0.1 The ineffective absorption rate (absorption rate of
non-photosynthetic organs)

γ 0.05 The rate of solar above photosynthetic saturation point
ω 0.3 The respiration rate of rice

q 17.8 The energy requirement for one-kilogram dry matter
formation (MJ/kg)

η 0.14 The standard water content of rice grain
δ 0.08 The mineral content of rice plant

f(L) 0.56 The correction index of daily leaf area index (LAI)
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Since the critical temperatures are different among the rice growing stages, the effects
of temperature on crop development vary. And we use the equations below to revise the
temperature thresholds for different crop development stages:

f (T) =


0 T ≤ Tb, T ≥ Tu

T−Tb
T0b−Tb

Tb < T < Tob
1 Tob < T < Tou

Tu−T
Tu−Tou

Tou < T < Tu

(12)

where f(T) is the temperature correction coefficient (unitless); T is the daily average temper-
ature (◦C); Tb is the lowest temperature (◦C); Tu is the upper temperature limit (◦C); Tob is
the lower range of optimal temperature (◦C); Tou is the upper range of optimal temperature
(◦C). In this study, critical temperatures for different rice growing stages (Table 4) are drawn
from some previous studies [24,51,52,62].

The reduction rate of rice potential yield is calculated as:

RPY =
YP −YT

YP
× 100 (13)

where RPY is the reduction rate of crop potential yield (%).

3. Results
3.1. Temporal Variations in Major Heat Resource Indices

We analyzed the temporal trends in the three elements of AHR, EHR and HRE for five
spatial scales: the entire study area, SRCS area, EDRCS area, MDRCS area and LDRCS area.
We detected that in the areas of EDRCS, MDRCS, and LDRCS, both AHR and EHR showed
a slightly decreasing trend during the period of 1951–1980, then a significantly increasing
trend during the period of 1981–2015. In the entire study area, both AHR and EHR showed
a slightly increasing trend during the study period of 1951–2015. Meanwhile, both AHR
and HRE showed a slightly decreasing trend in SRCS area during the period of 1951–2015
(Figure 3A,B).
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As seen in Figure 3C, HRE failed to show a clear trend for the entire study area or for
the areas of four rice-based cropping systems during the period of 1951–2015. However,
within the study period, there was a slightly increasing trend in HRE during the period of
1951–1980, but a slightly decreasing trend during the period of 1981–2015.

Overall, in the southern China rice cropping area, both AHR and EHR increased,
while HRE decreased. The heat resource effectiveness decreased during the study period
of 1951–2015.

3.2. Spatial Patterns of Major Heat Resources Indices
3.2.1. Available Heat Resource

During the period of 1951–2015, AHR during the rice growing season decreased from
southeast to northwest in the study area (Figure 4A,C). The areas with AHR lower than
3000 ◦C·d were located in the southwestern part of the study area (i.e., Yunnan province),
while the areas with AHR greater than 5500 ◦C·d were located in the central (i.e., Poyang
Lake Plain and Dongting Lake Plain) and southeastern (e.g., Fujian and Guangdong
provinces) parts of the study area.
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On average, the total growing season AHR for the entire study area was 4609 ◦C·d
and 4628 ◦C·d during the periods of 1951–1980 and 1981–2015, respectively. During the
period of 1951–1980, a total of 66% of the research locations showed a decreasing trend in
AHR (6% were statistically significant (p < 0.05), and were concentrated in the southeastern
part of the study area), and the composite trend was −16.9 ◦C·d·decade−1 (Figure 4B).
However, during the period of 1981–2015, a total of 96.5% of the research locations showed
an increasing trend in growing season AHR (86% were statistically significant (p < 0.05)),
and the composite trend was 114.5 ◦C·d·decade−1.
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For the same rice varieties, growing season AHR was greater during the period of
1951–1980 than 1981–2015 for different rice-based cropping systems. During the period
of 1951–1980, total growing season AHR for SRCS, EDRCS, MDRCS and LDRCS was
3308 ◦C·d, 5072 ◦C·d, 5377 ◦C·d, and 5810 ◦C·d, respectively. And during the period
of 1981–2015, total growing season AGR for SRCS, EDRCS, MDRCS and LDRCS was
3105 ◦C·d, 4884 ◦C·d, 5407 ◦C·d, and 5736 ◦C·d, respectively. This is because potential
growing season was shortened for different rice cropping systems under the background
of climate change (Table 6).

Table 6. Growing season AHR for different rice-based cropping systems in southern China during
the two periods of 1951–1980 and 1981–2015 (unit: ◦C·d).

Rice Cropping System 1951–1980 1981–2015

SRCS 3308 3105
EDRCS 5072 4884
MDRCS 5377 5407
LDRCS 5810 5763

3.2.2. Effective Heat Resource

From 1951 to 2010, during the rice growing season, EHR also decreased from southeast
to northwest in the study area (Figure 5A,C). During the period of 1951–1980, growing
season EHR was 1668 ◦C·d on average in the study area, the areas with growing season
EHR greater than 2000 ◦C·d were located in Guangdong, Guangxi, and southern Yunnan;
the areas with growing season EHR lower than 1000 ◦C·d were located in northern Yunnan
and southern Sichuan. During the period of 1981–2015, growing season EHR was 1676 ◦C·d
on average in the study area; the spatial distribution characteristics were similar with the
1951–1980 period, but the areas with growing season EHR greater than 2000 ◦C·d expanded.
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During the period of 1951–1980, the composite trend in growing season EHR was
–4.2 ◦C·d·decade−1, with a total of 55% research locations showing decreasing trends (only
5% were statistically significant at p < 0.05) (Figure 5B). During the period of 1981–2015, the
composite trend in growing season EHR was 37.6 ◦C·d·decade−1, with a total of 95% of the
research locations showing increasing trends (63% were statistically significant at p < 0.05).

During the study period of 1951–2015, the rice growing season was shortened against
the background of climate warming; therefore, growing season EHR had been decreasing.
Compared with the period of 1951–1980, growing season EHR for the entire study area
had decreased by 27 ◦C·d during the period of 1981–2015. During the period of 1981–2015,
the order of growing season EHR for different rice-based cropping systems from high to
low was: LTCRS, MTCRS, ETCRS, and SRCS (Table 7).

Table 7. The amount of growing season EHR for different rice-based cropping systems in southern
China during the two periods of 1951–1980 and 1981–2015 (unit: ◦C·d).

Rice Cropping System 1951–1980 1981–2015

SRCS 1260 1177
EDRCS 1747 1719
MDRCS 1873 1898
LDRCS 2115 2093

3.2.3. Heat Resource Effectiveness

During the period of 1951–2015, growing season HRE increased from southeast to
northwest in the study area (Figure 6). On average, growing season HRE for the entire
study area was 36% and 35.8% during the period of 1951–1980 and 1981–2015, respectively.
During the period of 1951–1980, the single rice planting area had relatively higher growing
season HRE (>37%), e.g., Sichuan, Shaanxi, Anhui and Jiangsu area, while the main double
rice planting area had relatively lower growing season HRE (<34%), e.g., Hu’nan and Jiangxi
area. During the period of 1981–2015, the area with relatively higher growing season HRE
had decreased, while the area with relatively lower growing season HRE had expanded.
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During the period of 1951–1980, growing season HRE showed a slightly increasing
trend at 58% of the research locations, with a composite trend of 0.01%·decade−1, but none
of them were statistically significant. During the period of 1981–2015, a total of 57% of the
research locations showed a decreasing trend in growing season HRE (22% are statistically
significant at p < 0.01, and they were located in Zhejiang and Fujian, Figure 6D), with a
composite trend of −0.03%·decade−1.

During the period of 1981–2015, growing season HRE has decreased by 0.1% on
average compared with 1951–1980. In general, single rice cropping system has higher
growing season HRE than double rice cropping systems. More specifically, the order of
growing season HRE from high to low is: SRCS, LDRCS, MDRCS, and EDRCS (Table 8).

Table 8. Growing season HRE in southern China during the two periods of 1951–1980 and 1981–2015
(unit: %).

Rice Cropping System 1951–1980 1981–2015

SRCS 37.3 37.2
EDRCS 33.9 34.7
MDRCS 34.3 34.5
LDRCS 36.2 36.1

3.3. The Effect of EHR on Photo-Thermal Potential for Different Rice Cropping Systems

We detected a significant linear relationship (R2 > 0.90) between growing season
GEHR and photo-thermal potential yield (Figure 7), which implies a strong correlation
between growing season heat resource and rice potential yield. With a 1 ◦C·d increase in
growing season GEHR, rice photo-thermal potential yield would increase by 14.3 kg·ha−1

and 13.7 kg·ha−1 during the period of 1951–1980 and 1981–2015, respectively.
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3.4. The Effect of Growing Season HRE on Rice Potential Yield

We detected a negative relationship between HRE and RPY (R2 > 0.30, p < 0.01) during
the two periods of 1951–1980 and 1981–2015. For per unit of increase in growing season
HRE, the temperature-induced potential yield reduction rate would be offset by 0.6% and
0.7% during the periods 1951–1980 and 1981–2015, respectively (Figure 8A,B).
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4. Discussion

Agro-thermal resources are the main factors affecting the layout, structure, and yield of
crops. Previous related studies have used agricultural limit temperature, accumulated tem-
perature, and the growing season length [42,71–73] or the temperature suitability indices
based on the development characteristics during various growth stages [74]. However, few
studies have focused on quantifying the effectiveness of heat resource or heat resource use
efficiency.

Traditional methods used to evaluate heat resource during the crop growing season
(e.g., accumulated temperature) fail to consider the changing temperature demands of
the crop within different growth stages. In this study, we adopted the three “cardinal”
temperatures for rice in different developmental stages to calculate the growing season
EHR. In addition, we used hourly temperature simulated from the daily maximum and
minimum temperatures during the computing process [38]. Therefore, the growing season
EHR can better represent the heat resource demands during different growth stages for
rice crops.

Previous studies have shown that growing season thermal time has changed over the
last six decades due to a warming climate [31,32,75,76]. However the changes in growing
season HRE for rice production in southern China have rarely been documented. As
pointed out by Bouman et al. (2001) effective temperature is what really matters for rice
development; thus, we analyzed the changes in growing season HRE in this study. In
general, growing season HRE for rice production had decreased during the research period
in southern China. This decrease might have been related to the shortening rice growing
season [77] and the increase in the number of days with daily maximum temperature
≥ 35 ◦C [78,79].

Statistical methods and crop models are commonly used to predict the potential grow-
ing season for rice. In this study, we selected the meteorological–biological model for the
rice growing season that was brought up by Gao (1983) [46] because it has relatively fewer
parameters and is simple to run. This model is superior to the trending rice models that
require many parameters to simulate the growing season and which are also complicated
and difficult to use.

This study was based on the assumption that no changes had been made to the rice
varieties for the four main cropping systems in southern China during the study period [62].
In practice, the choices of seed varieties could be influenced by breeding technology,
governmental policy, cereal grain market, weather extremes (e.g., low temperatures and
waterlogging), etc. By using the historical rice cultivars to analyze the effects of climate
change on rice potential yield, we omitted the factor that farmers would switch to newer
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hybrids to combat climate change. Hence, our results might exaggerate the effects of
climate change on rice potential yield.

5. Conclusions

During the period of 1951–1980, both growing season AHR and EHR showed a slightly
decreasing trend in southern China. By contrast, during the period of 1981–2015, the trends
in growing season AHR and EHR significantly increased.

In the past six decades, growing season AHR and EHR decreased from southeast to
northwest in the southern rice cropping area. The areas with relatively shorter growing
season AHR and EHR are in the southwestern part of the study area (e.g., Yunnan), where
the single rice-cropping system is typical. The areas with relatively longer growing season
AHR and EHR are in the central (e.g., Poyang Lake plain and Dongting Lake plain) and
southeastern (e.g., Fujian province, Guangdong province) parts of the study area, where
the double rice-cropping systems are typical. Nevertheless, the growing season HRE for
the single rice-cropping system is longer than that for the double rice-cropping systems.

With a 1 ◦C·d increase in growing season GEHR in the southern rice cropping area,
the photo-thermal potential yield for rice would increase by 14.3 kg·ha−1 and 13.7 kg·ha−1

during the period of 1951–1980 and 1981–2015, respectively. For each percentage of increase
in growing season HRE, the temperature-induced rice potential yield reduction rate would
decrease by 0.6% and 0.7% during the period of 1951–1980 and 1981–2015, respectively.
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