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Abstract: Conditioning of lignocellulosic hydrolysates with sulfur oxyanions, such as dithionite,
is one of the most potent methods to improve the fermentability by counteracting effects of inhibitory
by-products generated during hydrothermal pretreatment under acidic conditions. The effects of
pH, treatment temperature, and dithionite dosage were explored in experiments with softwood
hydrolysates, sodium dithionite, and Saccharomyces cerevisiae yeast. Treatments with dithionite at
pH 5.5 or 8.5 gave similar results with regard to ethanol productivity and yield on initial glucose,
and both were always at least ~20% higher than for treatment at pH 2.5. Experiments in the dithionite
concentration range 5.0–12.5 mM and the temperature range 23–110 ◦C indicated that treatment at
around 75 ◦C and using intermediate dithionite dosage was the best option (p ≤ 0.05). The investiga-
tion indicates that selection of the optimal temperature and dithionite dosage offers great benefits for
the efficient fermentation of hydrolysates from lignin-rich biomass, such as softwood residues.

Keywords: lignocellulose biorefining; conditioning; detoxification; cellulosic ethanol; inhibitors;
sodium dithionite

1. Introduction

Biorefining of lignocellulosic biomass offers a route for the production of bio-based
commodities, to reduce the dependency on fossil fuels, and reduce greenhouse gas emis-
sions [1,2]. Coniferous trees, principally Norway spruce and Scots pine, are predominant
(82%) in Swedish forests [3], and softwood is therefore the main form of lignocellulosic
biomass. Mandatory reforestation after harvesting was introduced in Sweden in the
Forestry Act of 1903, and active forest management has led to an increase in standing
volume from roughly 1700 million m3 in 1926 (when measurements were initiated) to
around 3500 million m3 today [3].

Lignocellulosic biomass consists mainly of cellulose, hemicellulose, and lignin [1]. One
of the main biorefining routes is biochemical conversion, in which lignocellulosic biomass
is converted by pretreatment, enzymatic saccharification of cellulose, microbial fermenta-
tion of sugars, and separation and refining of hydrolysis lignin, an approach sometimes
referred to as a sugar-platform process. Pretreatment is necessary to make the cellulose
in lignocellulosic biomass more accessible to enzymatic saccharification [2,4]. Enzymatic
saccharification and microbial fermentation can be performed separately (SHF, separate
hydrolysis and fermentation) or simultaneously (SSF, simultaneous saccharification and
fermentation) [5]. Other approaches include consolidated bioprocessing (CBP) [6], in which
the fermenting microorganism contributes to the enzymes required for saccharification,
and hybrid hydrolysis and fermentation (HHF) [7], in which the saccharification is initiated
prior to addition of the fermenting microorganisms.

Among numerous pretreatment methods, hydrothermal pretreatment with or without
externally added acid catalyst is one of the most studied [2,8,9]. Regardless of whether
an acid catalyst, such as sulfuric acid or sulfur dioxide, is added, the pretreated material
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will become acidic due to formation of carboxylic acids when hemicelluloses are degraded.
Hydrothermal pretreatment targets hemicellulose, but cellulose and lignin will also be
affected [2,10]. For feedstocks such as wood, and particularly softwood, harsh pretreatment
conditions must be used to remove the main part of the hemicelluloses, which is imperative
for getting high sugar yields in the ensuing enzymatic saccharification.

Hydrothermal pretreatment under harsh acidic conditions is a good approach for
removing hemicelluloses, but also leads to the formation of by-products, particularly
from hemicellulose but also from cellulose, lignin, and extractives. The by-products may
reach concentrations that are inhibitory for both enzymes that are used for saccharifica-
tion [7,10–12] and microorganisms that are used for the fermentation process [10,13,14].

Certain groups of by-products that inhibit microorganisms have been extensively
studied, and these include aliphatic carboxylic acids (such as acetic acid, formic acid,
and levulinic acid), furan aldehydes (such as furfural and 5-hydroxymethylfurfural [HMF]),
and phenolic and other phenylic substances [10,13,14]. More recently, small aliphatic
aldehydes (such as formaldehyde and acetaldehyde) [15] and benzoquinones (such as
p-benzoquinone) [16] were also found to be commonly occurring in pretreated biomass.
Martín et al. [17] reported that formaldehyde was the most important inhibitor of Saccha-
romyces cerevisiae yeast in a set of slurries of pretreated Norway spruce. p-Benzoquinone
was found only in very low concentrations (micromolar range), but on the other hand it
was by far the most toxic inhibitor on the basis of concentration.

Enzyme inhibitors are less well characterized than microbial inhibitors. Apart from
feedback inhibition by sugars [18], aromatic substances also cause inhibition [10].
Ximenes et al. [12] found that phenols occurring in lignocellulosic hydrolysates inhibit
cellulases. Malgas et al. [19] investigated inhibition by lignin derivatives of mannanolytic
enzymes. Zhai et al. [20] found that monomeric sugars and phenolics were the main enzyme
inhibitors in steam-pretreated biomass, whereas oligomeric sugars had little influence.

Conditioning of slurries and hydrolysates is used to make them suitable for biocata-
lysts, such as enzymes and microbes. Detoxification is a form of conditioning that is used
to minimize inhibition of microorganisms [13,21]. The drawbacks of many detoxification
methods include the requirement of an additional process step, the use of large amounts of
chemicals, and that they only address inhibition of microorganisms and not inhibition of
enzymes. These drawbacks have been addressed by the introduction of conditioning using
reducing agents [22–24]. This approach relies on the use of relatively low concentrations
of reducing agents, preferably industrial chemicals such as sodium sulfite and sodium
dithionite, and their addition to the bioreactor just prior to or simultaneously with the
biocatalysts [22]. Further investigations have shown that sulfur oxyanions, such as sulfite
and dithionite, cause hydrophilization of inhibitors by sulfonation [23], which alleviates
inhibition of cellulolytic enzymes in a way that other reducing agents, such as sodium
borohydride, do not do [24].

Sodium dithionite has been shown to be very potent for the conditioning of softwood
hydrolysates, but despite the potential benefits very little is known about fundamental
aspects of the treatment. The current work addresses that lack of knowledge by investiga-
tion of the effects of pH, method of administration of dithionite, treatment temperature,
and dosage of dithionite in experiments with a hydrolysate of Norway spruce. The ef-
fects were evaluated using a standard S. cerevisiae industrial yeast strain and by analyzing
productivities and yields. Research on the efficiency of the process is important for indus-
trial implementation of new technology for the biorefining of lignocellulosic feedstocks,
an industrial enterprise in which high yields and efficient use of expensive biocatalysts are
among the keys to high competitiveness.

2. Materials and Methods
2.1. Pretreatment

The SF (Severity Factor) (Equation (1)) of the pretreatments was determined as the
logarithm of the reaction ordinate according to Overend and Chornet [25] (Equation (2)),



Processes 2021, 9, 887 3 of 13

and the CSF (Combined Severity Factor) of the acid-catalyzed pretreatments was calculated
as outlined by Chum et al. [26] (Equation (3))

SF = Log Ro (1)

Ro = t x exp
(

Tr − 100
14.75

)
(2)

CSF = Log (Ro)− pH (3)

where t is the holding time of pretreatment in minutes, and Tr is the pretreatment tempera-
ture in ◦C.

The pretreatment of sawdust from Norway spruce was performed by SEKAB E-
Technology in the Biorefinery Demonstration Plant (BDP), Örnsköldsvik, Sweden. The
demonstration unit has a pre-treatment capacity of approx. two tons of feedstock per day
and is equipped with a continuous steam explosion pretreatment reactor. The Norway
spruce was impregnated with sulfuric acid prior to pretreatment and the subsequent
pretreatment was performed at a temperature, residence time and reactor pH that resulted
in a CSF of approx. 2.6. The pretreatment conditions were: load of sulfuric acid, 1% (w/w)
per dry weight biomass; temperature, 210 ◦C; residence time, 7–8 min. The resulting
pH was 1.5. The pretreated biomass was collected and stored at 4 ◦C until further use.
For determination of the dry-matter content, the slurry was separated through vacuum
filtration (membrane diameter equal to 0.50 mm and pore size 0.20 µm) (VWR International
AB, Spånga, Sweden) and the solid phase was washed with deionized water and analyzed
using an HG63 moisture analyzer (Mettler-Toledo, Greifensee, Switzerland). The WIS
(water-insoluble solids) content of the slurry was around 17.5% (w/v) and was determined
according to Sluiter et al. [27].

2.2. Enzymatic Hydrolysis

Each of three 2 L shake flasks was filled with 750 g of slurry, and the pH of the slurry
was adjusted to 5.5 with a 10 M aqueous solution of sodium hydroxide. Enzymatic sac-
charification was initiated by addition of 14 g Cellic CTec2 solution (obtained from Sigma-
Aldrich, Steinheim, Germany) to each flask. The flasks were incubated for 48 h at 50 ◦C
and 140 rpm in an orbital shaker (Kühner Lab-Therm LT-X, Adolf Kühner AG, Birsfelden,
Switzerland). After enzymatic saccharification, the slurry was filtered by vacuum filtration
and the enzymatic hydrolysates were pooled and used in fermentation experiments.

The concentration of glucose after pretreatment and enzymatic saccharification was
measured by high-performance liquid chromatography (HPLC). The HPLC instrument
was a 1260 Infinity system equipped with a refractive index detector (RID), an autoinjector,
and a column oven (Agilent Technologies, Santa Clara, CA, USA). The column was an
Aminex HPX-87P column (300 mm × 7.8 mm) equipped with a guard column, 125-0131
Standard Cartridge Holder (30 mm × 4.6 mm) (Bio-Rad, Irvine, CA, USA). The temperature
of the column oven was set to 80 ◦C and the temperature of the detector was set to 55 ◦C.
The injection volume was 10 µL. The eluent consisted of ultrapure water and the flow
rate was 0.6 mL/min. Glucose calibration standards were used for the determination of
released glucose by converting the peak heights in chromatograms to concentrations. The
software was OpenLAB CDS Chem Station Edition for LC and LC/MS Systems Rev.C.01.07
Edition 27. The analysis was performed in triplicates.

2.3. Conditioning of Hydrolysate

Three different experimental series were performed. In the first experimental series
(A, Table 1) the pH and the temperature of conditioning were varied. The pH was adjusted
to 5.5 prior to conditioning using a 10 M aqueous solution of sodium hydroxide, and then
the hydrolysates were conditioned with sodium dithionite, which was added as a powder
(technical grade 93%) for 10 min at 23 ◦C with magnetic mixing. For reactions at 75 ◦C,
the sodium dithionite was added when the hydrolysates reached a temperature of 75 ◦C,
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and the reaction mixtures were incubated for 10 min. Experiments included triplicates of
each reaction mixture.

Table 1. Experimental conditions for series with varying pH and conditioning temperature.

Codification Na2S2O4 (mM) T (◦C) Time (min) pH

A1 - 23 10 5.5
A2 5 23 10 2.5
A3 5 23 10 5.5
A4 5 23 10 8.5
A5 5 a 23 10 5.5
A6 5 75 10 5.5
AR Glucose reference

B1 5 75 10 5.5
B2 - 75 10 5.5
B3 - 23 10 5.5
B4 5 23 10 5.5
BR Glucose reference

C1 5 50 10 5.5
C2 8.7 50 10 5.5
C3 12.5 50 10 5.5
C4 5 75 10 5.5
C5 8.7 75 10 5.5
C6 12.5 75 10 5.5
C7 5 95 10 5.5
C8 8.7 95 10 5.5
C9 12.5 95 10 5.5

C10 5 110 10 5.5
C11 8.7 110 10 5.5
C12 12.5 110 10 5.5
CR Glucose reference

a Dissolved in deionized water before addition.

In the second experimental series (B, Table 1) the temperatures were decided based on
the results of the first experimental series and investigated in order to better understand
and evaluate the impact of the temperature under the conditioning step.

In the third experimental series (C, Table 1) the concentration of sodium dithionite
was varied from 5 mM to 12.5 mM, while the conditioning temperature was set at 50 ◦C,
75 ◦C, 95 ◦C, and 110 ◦C. The conditioning at 95 ◦C and 110 ◦C was performed in an oil
bath. The experiments were performed using reagent bottles with screw caps. The bottles
with the enzymatic hydrolysates were placed in the oil bath and the sodium dithionite was
added when the sample reached the right temperature (95 ◦C or 110 ◦C) under magnetic
stirring. Experiments included triplicates of each reaction mixture.

2.4. Fermentation

For assessing the effects of conditioning, fermentation of media based on hydrolysate
was performed with the industrial S. cerevisiae yeast Ethanol Red (Fermentis, Marcq-en-
Baroeul, France). After the enzymatic saccharification, the monosaccharide composition of
the hydrolysate (in g/L) was: glucose, 97; galactose, 7.7; mannose, 37; xylose, 20; arabinose,
3.2. A medium based on a synthetic glucose solution was used as a reference. Reference
fermentations were included in all series to compensate for potential differences between
inocula used on different occasions. The glucose medium consisted of 97 g/L glucose in
ultrapure water (the same glucose concentration as in the hydrolysate). Fermentations were
performed in 30 mL glass flasks containing 25 mL culture medium. The culture medium
contained 23.5 mL hydrolysate, or, alternatively, glucose reference solution, and 0.5 mL
of a nutrient solution (containing 150 g/L yeast extract, 75 g/L (NH4)2HPO4, 3.75 g/L
MgSO4·7 H2O, and 238.2 g/L NaH2PO4·H2O). The pH of the media was adjusted to
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5.5 before inoculation. Before inoculum, freeze-dried Ethanol Red was rehydrated by
suspension in five times its weight of sterilized water for 30 min at 35 ◦C. One mL of yeast
suspension was added to each flask to an initial yeast biomass concentration of 2 g/L. The
flasks were sealed with rubber plugs pierced with cannulas for letting out carbon dioxide
and were then incubated for 48 h or 60 h in a water bath, with magnetic stirring at 180 rpm
and 30 ◦C. The glucose levels during the fermentation were monitored using a glucometer
(Glucometer Elite XL, Bayer AG, Leverkusen, Germany). Fermentations were performed
in duplicates.

2.5. Analysis of Ethanol and Glucose

The Agilent 1260 Infinity HPLC system was used for determination of ethanol and glu-
cose in fermentation samples. The column was an Aminex HPX-87H column
(300 mm × 7.8 mm) equipped with a 125-0131 Standard Cartridge Holder guard column
(30 mm × 4.6 mm) (Bio-Rad). The temperature of the column oven was set to 80 ◦C and
the temperature of the detector was set to 55 ◦C. The injection volume was 10 µL and the
flow rate was 0.6 mL/min. The eluent consisted of a 5 mM aqueous solution of H2SO4.
The software used for the analysis was OpenLAB CDS Chem Station Edition for LC and
LC/MS Systems Rev.C.01.07 Edition 27. Calibration standards were used for both glu-
cose and ethanol. The concentrations were calculated by converting the peak heights in
chromatograms to concentrations. Analysis was performed in triplicates.

2.6. Analysis of Monosaccharides

Analysis of monosaccharides was performed using high-performance anion-exchange
chromatography (HPAEC) with pulsed amperometric detection (PAD). The instrument
used was an ICS-5000 system equipped with a CarboPac PA1 4 × 250 mm separation
column and a 4 × 50 mm guard column (all from Dionex, Sunnyvale, CA, USA). Elution
was performed with ultra-pure water using a flow rate of 1 mL/min for 25 min. Post-
column addition of a 300 mM aqueous solution of NaOH (0.5 mL/min) was used to amplify
the signal. The column was regenerated by washing for 11 min with a mixture consisting
of 60% of the 300 mM NaOH solution and 40% of a 200 mM NaOH solution with 170 mM
sodium acetate, and equilibration with ultra-pure water for 3 min. PAD was performed
on gold electrode applying a Gold Standard PAD waveform with Ag/AgCl as reference
electrode. Prior to analysis all samples were diluted with ultra-pure water and filtered
through 0.2 µm nylon membranes.

2.7. Determination of Microbial Inhibitors

Determination of furfural and 5-hydroxymethylfurfural (HMF) was performed using
an HPLC system (Dionex UltiMate 3000) equipped with a diode-array detector and a
3 × 50 mm, 1.8 µm Zorbax RRHT SB-C18 column (Agilent Technologies). The temperature
of the column oven was set to 40 ◦C. Gradient elution was performed using a mixture of
Eluent A (an aqueous solution of 0.1% (v/v) formic acid) and Eluent B (acetonitrile with
0.1% (v/v) formic acid). The flow rate was 0.5 mL/min. Separation was achieved with
3% Eluent B for 3 min. The ensuing cleaning step was done with 20% Eluent B for 4 min.
Finally, the column was equilibrated for 4 min with 3% Eluent B. The absorption at 282 nm
was monitored.

Analysis of commonly occurring aliphatic carboxylic acids (acetic acid, formic acid,
and levulinic acid) was performed by MoRe Research Örnsköldsvik AB, Sweden. The
analysis was done using HPAEC.

Ultra-high performance liquid chromatography-electrospray ionization-triple
quadrupole-mass spectrometry (UHPLC-ESI-QqQ-MS) was used for determination of
formaldehyde, acetaldehyde, p-benzoquinone, vanillin, coniferyl aldehyde, syringalde-
hyde, p-hydroxybenzaldehyde, p-coumaraldehyde, and acetovanillone. Derivatization
with 2,4-dinitrophenylhydrazine (DNPH) and calibration was performed as previously
described [15,16]. Briefly, UHPLC-ESI-QqQ-MS analysis was carried out using an Agilent
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1290 Infinity system coupled to an Agilent 6490 TripleQuad mass spectrometer (QqQ-MS)
used in negative electrospray ionization (ESI) mode and equipped with Agilent Jetstream
technology. The QqQ-MS source parameters were optimized for each analyte using the
following settings: gas temperature 290 ◦C, gas flow 20 L/min, nebulizer 30 psi, sheath gas
temperature 400 ◦C, sheath gas flow 12 L/min, capillary voltage −3000 V, nozzle voltage
−2000 V. The separation was performed on a 2.1 mm × 50 mm Kinetex 1.7 µm biphenyl
100 Å column (Phenomenex, Torrance, CA, USA) operating at 30 ◦C and using a flow rate of
0.3 mL/min. The eluent consisted of a mixture of aqueous 0.1% (v/v) formic acid (Eluent C)
and a three-to-one (by volume) solution of acetonitrile and 2-propanol mixed with 0.1%
formic acid (Eluent D). Elution was performed using a gradient profile containing the fol-
lowing fractions of Eluent D: 0.0–4.5 min 30–40%, 4.5–9.0 min 40–50%, 9.0–11.0 min 50–70%,
11.0–11.01 min 70–95%, 11.01–15.0 min 95%, 15.0–15.01 min 95–30%, 15.01–18.0 min 30%,
and, at the end, two min post-time with 30% for further re-equilibration. Data evaluation
was done with MassHunter quant software (Agilent Technologies).

For determination of total phenolics, the Folin–Ciocalteu method [28] was used with
vanillin as calibration standard. The color generated after 2 h at about 23 ◦C was read at
760 nm in a microtiter plate using SpectraMax i3x (Molecular Devices, San Jose, CA, USA).
Reactions were performed in triplicates.

Total aromatic content (TAC) [29] in pretreatment liquids was determined by mea-
suring the absorbance at 280 nm using a UV-1800 spectrophotometer (Shimadzu, Kyoto,
Japan). Total carboxylic acid content (TCAC) [29] was determined by titration from pH 2.8
to pH 7.0 using an aqueous solution of sodium hydroxide (200 mM).

2.8. Calculations

The ethanol yield on consumed sugar (Ycon) was calculated as the amount of ethanol
formed per gram of consumed glucose (g/g). The ethanol yield on initial sugar (Yini)
was calculated as the amount of ethanol formed per gram of initial glucose (g/g). The
volumetric productivity (Q) was based on grams of ethanol produced per L of culture
medium during the first 24 h, 36 h, and 48 h of the fermentation [g/(L h−1)]. The specific
productivity (q) was based on the volumetric productivity divided by the initial cell dry
weight concentration [g/(g h−1)].

3. Results and Discussion

Three series of fermentations, using different detoxification conditions, were per-
formed to investigate how pH, temperature, and loading of the reducing agent affected the
fermentability of hydrolysates of wood of Norway spruce. The concentrations of microbial
inhibitors were also determined (Table 2).

With regard to aliphatic aldehydes, the hydrolysate contained a high concentration
of formaldehyde (6.1 mM) whereas the concentration of acetaldehyde was rather low
(1.7 mM). Cavka et al. [15] and Martin et al. [17] found that 1.0 mM of formaldehyde
and 5.0 mM of acetaldehyde was sufficient to inhibit S. cerevisae. Thus, the formaldehyde
concentration found in the hydrolysate would be expected to be strongly inhibitory, while
the acetaldehyde concentration would not be inhibitory. The observed concentrations are in
line with previous studies of pretreated spruce showing higher concentrations of formalde-
hyde than of acetaldehyde [15,17]. It is probable that formaldehyde primarily comes from
lignin, and that acetaldehyde primarily comes from acetyl groups in hemicelluloses. As
softwood has comparatively high lignin content and low acetyl content, this can explain
the predominance of formaldehyde.
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Table 2. Concentration of bioconversion inhibitors in pretreatment liquid a.

Substance Concentration

Aliphatic aldehydes (mM)

Acetaldehyde 1.7 (0.2)
Formaldehyde 6.1 (0.4)

Aliphatic carboxylic acids (mM)

Acetic acid 95 (3)
Formic acid 21 (2)
Levulinic acid 19 (2)

Benzoquinones (µM)

p-Benzoquinone ND b

Furan aldehydes (mM)

Furfural 19.3 (0.9)
HMF 20.1 (0.9)

Group analyses

TAC (AU) c 0.26 (0.01)
TCAC (mM) d 153 (2)
Total phenolics (g/L) e 1.6 (0.1)

Phenols (µM)

Acetovanillone 9.8 (1.0)
Coniferyl aldehyde 121 (10)
p-Coumaraldehyde 1.6 (0.1)
4-Hydroxybenzaldehyde 35.1 (9.4)
Syringaldehyde 0.12 (0.01)
Vanillin 430 (120)

a Mean values of three replicates with standard deviations in parentheses. b Not detected. c Total Aromatic
Content, absorbance units. d Total Carboxylic Acid Content. e Determined using vanillin as calibration standard.

The sum of the concentrations of acetic acid, formic acid, and levulinic acid (Table 2)
was 135 mM. As expected, the TCAC value was higher than that, viz. 153 mM. Lignocel-
lulosic hydrolysates typically contain other aliphatic acids as well as aromatic carboxylic
acids [30]. Individual carboxylic acids are not covered by the mass spectrometric method
used in this investigation, as DNPH derivatization targets aldehydes and ketones. Studies
by Larsson et al. [31] showed an inhibitory impact of aliphatic acids on S. cerevisiae yeast
when the concentrations were above 100 mM. Thus, it is likely that carboxylic acids (Table 2)
contributed to the toxicity. However, detoxification with sodium dithionite would not be
expected to decrease the concentrations of aliphatic acids in the hydrolysates, as has been
previously reported [22].

p-Benzoquinone was not detected (Table 2). Previous studies have shown the presence
of p-benzoquinone in steam-pretreated Norway spruce, even when less severe pretreatment
conditions were used [17]. The concentration of p-benzoquinone is closely related to lignin
degradation, especially at high temperature.

The concentration of furan aldehydes (HMF and furfural) was slightly lower than
in spruce hydrolysates in a previous study [17]. Although common in lignocellulosic
hydrolysates due to dehydration of sugars, the molar toxicity of HMF and furfural is
low [17]. According to a recent study by Wang et al. [32], concentrations of furfural and
HMF above 31 mM and 39 mM, respectively, inhibit yeast. Therefore, concentrations around
20 mM (Table 2) would hardly be inhibitory. Based on previous studies, conditioning of
hydrolysates with reducing agents, such as sodium dithionite, would not be expected to
cause any significant changes in the concentrations of HMF and furfural [22,33]. In model
experiments with only one inhibitor present at the time, the concentrations of HMF and
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furfural decreased after treatment with dithionite [23], so the reaction may occur even if it
is not favored in complex media such as lignocellulosic hydrolysates.

The concentrations of six individual phenols (acetovanillone, coniferyl aldehyde,
p-coumaraldehyde, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) are shown in
Table 2. Vanillin and coniferyl aldehyde were the most abundant of the phenols. This can be
explained by the fact that both are guaiacyl-type substances, as is softwood lignin [34]. The
concentration of total phenolics, estimated as vanillin equivalents using the Folin–Ciocalteu
method, was 1.6 g/L, which corresponds to 11 mM. The combined concentration of the
six phenols in Table 2 is 0.6 mM. The reason for the discrepancy is that lignocellulosic
hydrolysates contain a wide variety of phenolic and other aromatic substances [13,30],
and that the subset shown in Table 2 is just a small fraction of the total. Furthermore,
common analytical procedures used (for example by Du et al. [30] and in this work) result
in reports on mononuclear aromatics, whereas dimeric and oligomeric phenolic lignin
fragments would also contribute to total phenolics as determined using the Folin–Ciocalteu
method. The concentration of total phenolics would not be expected to be affected by
conditioning with dithionite [22], as that treatment does not necessarily lead to a decrease
in the content of phenolic hydroxyl groups although it does affect many individual phenols
and causes detoxification by sulfonation [23].

TAC (Table 2), which is based on UV absorption at 280 nm, covers both aromatic
substances, such as phenols, and heteroaromatic substances, such as furans [29]. Thus, TAC
reflects both lignin-degradation products and products of dehydration of sugars formed
during the pretreatment.

The first experimental series (Table 1, Figure 1) was aimed at the questions whether
the pH (2.5, 5.5 or 8.5), the temperature (23 ◦C or 75 ◦C), or the mode of addition of
dithionite (as a salt or as an aqueous solution) had any impact on the detoxification
effect. For 24 and 36 h all combinations with dithionite (A2–A6) performed better than
the combinations without dithionite (A1) (p ≤ 0.05) (Figure 1). That was evident with
regard to volumetric productivity (Q), specific productivity (q), and yield on initial sugar
(Yini). It was somewhat less obvious with regard to the yield on consumed sugar (Ycon),
which is reasonable considering that inhibitors might not necessarily affect how sugar
is utilized by the cell. After 48 h, the values (Q, q, Yini, Ycon) for A1 were close to the
values of the worst-performing of A2–A6, but they never came close to the values of the
best-performing of A2–A6. The detoxification effect observed for dithionite agrees with the
results of previous studies [22,24].

The results of A2–A4 indicate the impact of the pH when dithionite is added. A2
(pH 2.5) reflects the pH of a slurry after pretreatment, A3 (pH 5.5) the pH after conditioning
with alkali to a pH that is suitable for enzymes and yeast, and A4 (pH 8.5) an alkaline pH,
as alkaline pH improves the stability of dithionite [35]. At the beginning (24 h), there were
no clear differences, but by the end (36 h, 48 h) A3 and A4 were always superior compared
to A2 with regard to Q, q, and Yini (Table 2). After 48 h, the superiority of A3 and A4
compared to A2 amounted to at least 20% for Q, 19% for q, and 19% for Yini. For Ycon, there
were no clear differences. Thus, it is advantageous to wait with dithionite treatment until
the pH has been adjusted to around 5.5 to be appropriate for biocatalysts, and there is no
reason to raise the pH to an alkaline value.
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which was used in experimental series A.  
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higher, and the yield on consumed sugar was 18% higher. This demonstrates the effi-
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which was used in experimental series A.  
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time with control fermentations without dithionite both for 23 °C (B3) and 75 °C (B2). The 
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ciency of dithionite as a detoxification agent, even at as low a concentration as 5 mM, 
which was used in experimental series A.  

The results from Series A encouraged further investigations of the significance of the 
treatment temperature. The differences between A3 and A6 were rather small, and one 
question was if treatment at 75 °C without dithionite addition had any effect. In Series B 
(Table 1), dithionite treatments at 23 °C (B4) and 75 °C (B1) were again compared, but this 
time with control fermentations without dithionite both for 23 °C (B3) and 75 °C (B2). The 
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Ycon) performed better than the corresponding control (B2 or B3). For Q, q, and Yini, B2 and 

 A1 A2 A3 A4 A5 A6 AR 
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A comparison of A3 (23 °C) and A6 (75 °C) would indicate whether the temperature 
is relevant for dithionite treatment. In previous studies [22,24], dithionite and other reduc-
ing agents that were investigated were added at room temperature, but, as the pretreated 
material is warm after the pretreatment, it might be an option to conduct dithionite treat-
ment prior to cooling the pretreated material to a temperature that is not harmful for bio-
catalysts. Furthermore, enzyme preparations used for saccharification of cellulose are of-
ten used at temperatures around 50 °C [9], or even higher if thermostable cellulases are 
used [36]. Several industrial yeasts exhibit high vigor at 40 °C [37]. Even if both A3 (23 °C) 
and A6 (75 °C) performed well (Figure 1), A6 was always slightly better for Q, q, and Yini. 
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A5 exhibited slightly higher values than A3 for Ycon, but otherwise A3 and A5 performed 
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At the end of the fermentation (48 h), A6 was always closest to the reference (AR) 
(Figure 1). Compared to untreated (A1), the volumetric productivity of A6 was 33% 
higher, the specific productivity was 34% higher, the yield on initial glucose was 45% 
higher, and the yield on consumed sugar was 18% higher. This demonstrates the effi-
ciency of dithionite as a detoxification agent, even at as low a concentration as 5 mM, 
which was used in experimental series A.  

The results from Series A encouraged further investigations of the significance of the 
treatment temperature. The differences between A3 and A6 were rather small, and one 
question was if treatment at 75 °C without dithionite addition had any effect. In Series B 
(Table 1), dithionite treatments at 23 °C (B4) and 75 °C (B1) were again compared, but this 
time with control fermentations without dithionite both for 23 °C (B3) and 75 °C (B2). The 
result (Figure 2) showed that dithionite-treated cultures (B1 and B4) always (Q, q, Yini, and 
Ycon) performed better than the corresponding control (B2 or B3). For Q, q, and Yini, B2 and 

 A1 A2 A3 A4 A5 A6 AR 

Q24h 0.48 (0.08) 0.95 (0.10) 0.85 (0.07) 0.88 (0.09) 0.85 (0.09) 0.92 (0.10) 1.75 (0.18) 

Q36h 0.43 (0.07) 0.64 (0.07) 0.95 (0.08) 0.91 (0.09) 0.91 (0.10) 1.03 (0.17) 1.36 (0.18) 

Q48h 0.64 (0.05) 0.61 (0.06) 0.79 (0.06) 0.73 (0.08) 0.78 (0.09) 0.85 (0.08) 0.89 (0.05) 

q24h 0.24 (0.01) 0.48 (0.02) 0.42 (0.02) 0.44 (0.03) 0.43 (0.03) 0.46 (0.01) 0.88 (0.09) 

q36h 0.21 (0.01) 0.32 (0.01) 0.47 (0.02) 0.46 (0.02) 0.46 (0.01) 0.51 (0.06) 0.68 (0.06) 

q48h 0.32 (0.01) 0.31 (0.01) 0.40 (0.02) 0.37 (0.01) 0.39 (0.01) 0.43 (0.01) 0.45 (0.01) 

Yini24h 0.12 (0.01) 0.25 (0.01) 0.21 (0.01) 0.23 (0.01) 0.22 (0.01) 0.24 (0.01) 0.44 (0.02) 

Yini36h 0.16 (0.01) 0.25 (0.01) 0.36 (0.01) 0.35 (0.01) 0.36 (0.01) 0.41 (0.01) 0.51 (0.02) 

Yini48h 0.31 (0.01) 0.32 (0.01) 0.40 (0.01) 0.38 (0.01) 0.41 (0.01) 0.45 (0.01) 0.47 (0.01) 

Ycon24h 0.24 (0.01) 0.47 (0.01) 0.37 (0.01) 0.40 (0.01) 0.41 (0.02) 0.34 (0.01) 0.44 (0.02) 

Ycon36h 0.31 (0.01) 0.47 (0.02) 0.41 (0.03) 0.45 (0.01) 0.46 (0.02) 0.41 (0.02) 0.51 (0.03) 

Ycon48h 0.38 (0.02) 0.48 (0.03) 0.40 (0.01) 0.38 (0.01) 0.41 (0.02) 0.45 (0.03) 0.45 (0.02) 

, <33% of reference. Q, g
EtOH/(L × h); q, g EtOH/(g biomass × h); Yini, g EtOH/g initial glucose; Ycon, g EtOH/g consumed glucose.

A comparison of A3 (23 ◦C) and A6 (75 ◦C) would indicate whether the temperature is
relevant for dithionite treatment. In previous studies [22,24], dithionite and other reducing
agents that were investigated were added at room temperature, but, as the pretreated ma-
terial is warm after the pretreatment, it might be an option to conduct dithionite treatment
prior to cooling the pretreated material to a temperature that is not harmful for biocatalysts.
Furthermore, enzyme preparations used for saccharification of cellulose are often used
at temperatures around 50 ◦C [9], or even higher if thermostable cellulases are used [36].
Several industrial yeasts exhibit high vigor at 40 ◦C [37]. Even if both A3 (23 ◦C) and A6
(75 ◦C) performed well (Figure 1), A6 was always slightly better for Q, q, and Yini. For Ycon,
the outcome of the comparison was variable.

A comparison of A3 (addition as salt) and A5 (addition as aqueous solution) would
indicate whether the mode of addition of dithionite is relevant for dithionite treatment.
A5 exhibited slightly higher values than A3 for Ycon, but otherwise A3 and A5 performed
similarly. Thus, the mode of addition was of no significance (p > 0.05).

At the end of the fermentation (48 h), A6 was always closest to the reference (AR)
(Figure 1). Compared to untreated (A1), the volumetric productivity of A6 was 33% higher,
the specific productivity was 34% higher, the yield on initial glucose was 45% higher,
and the yield on consumed sugar was 18% higher. This demonstrates the efficiency of
dithionite as a detoxification agent, even at as low a concentration as 5 mM, which was
used in experimental series A.

The results from Series A encouraged further investigations of the significance of the
treatment temperature. The differences between A3 and A6 were rather small, and one
question was if treatment at 75 ◦C without dithionite addition had any effect. In Series B
(Table 1), dithionite treatments at 23 ◦C (B4) and 75 ◦C (B1) were again compared, but this
time with control fermentations without dithionite both for 23 ◦C (B3) and 75 ◦C (B2). The
result (Figure 2) showed that dithionite-treated cultures (B1 and B4) always (Q, q, Yini,
and Ycon) performed better than the corresponding control (B2 or B3). For Q, q, and Yini, B2
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and B3 performed similarly, and the values were always <33% of the values of the reference
(Figure 2). With regard to Ycon, B2 was better than B3 (p ≤ 0.05). B1 and B4 performed
similarly. Importantly, B4 performed much better than B2 (p ≤ 0.05), demonstrating that it
was the dithionite addition that was important, and not incubating the mixture at 75 ◦C.
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At the end of the fermentation (48 h), A6 was always closest to the reference (AR) 
(Figure 1). Compared to untreated (A1), the volumetric productivity of A6 was 33% 
higher, the specific productivity was 34% higher, the yield on initial glucose was 45% 
higher, and the yield on consumed sugar was 18% higher. This demonstrates the effi-
ciency of dithionite as a detoxification agent, even at as low a concentration as 5 mM, 
which was used in experimental series A.  

The results from Series A encouraged further investigations of the significance of the 
treatment temperature. The differences between A3 and A6 were rather small, and one 
question was if treatment at 75 °C without dithionite addition had any effect. In Series B 
(Table 1), dithionite treatments at 23 °C (B4) and 75 °C (B1) were again compared, but this 
time with control fermentations without dithionite both for 23 °C (B3) and 75 °C (B2). The 
result (Figure 2) showed that dithionite-treated cultures (B1 and B4) always (Q, q, Yini, and 
Ycon) performed better than the corresponding control (B2 or B3). For Q, q, and Yini, B2 and 
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, <33% of reference. Q, g EtOH/(L × h); q, g EtOH/(g × h); Yini, g
EtOH/g initial glucose; Ycon, g EtOH/g consumed glucose.

The third experimental series, C, covered four treatment temperatures (50 ◦C, 75 ◦C,
95 ◦C, and 110 ◦C) and three dithionite concentrations (5.0 mM, 8.7 mM, and 12.5 mM)
(Table 1). The results (Figure 3) show that for the lowest dithionite concentration (C1, C4,
C7, and C10), treatments at lower temperatures (50 ◦C and 75 ◦C) worked better (p ≤ 0.05)
than treatments at higher temperatures (95 ◦C and 110 ◦C), except for Ycon, which varied
within a comparatively low range (0.14–0.35 g/g). For the lowest temperature (50 ◦C, C2),
there was no benefit of raising the dithionite concentration to 8.7 mM, but for all other
temperatures there was a clear improvement when the concentration was raised from 5.0 to
8.7 mM (p ≤ 0.05). After 48 h and for all parameters (Q, q, Yini, Ycon), C5 outperformed C8
and C11 (p ≤ 0.05), which in turn outperformed C2 (p ≤ 0.05). For the lowest temperature
(50 ◦C, C3), there was a clear benefit of raising the dithionite concentration to 12.5 mM
(p ≤ 0.05), but for all other temperatures there were no or relatively small benefits of raising
the concentration from 8.7 to 12.5 mM (p > 0.05). At the beginning (24 and 36 h), the highest
values for Q, q, and Yini were observed for C11 (8.7 mM and 110 ◦C) and C12 (12.5 mM and
110 ◦C). However, the highest values for hydrolysate-based cultures after 48 h were always
observed for C5 (8.7 mM and 75 ◦C): Q, 0.85 g/(L × h); q, 0.43 g/(g × h); Yini, 0.39 g/g;
Ycon, 0.44 g/g. The second highest values were observed for C3 (12.5 mM and 50 ◦C) (Q, q,
and Yini) and C9 (12.5 mM and 95 ◦C) (Ycon). The lowest values after 48 h were observed
for C7 (5.0 mM and 95 ◦C). The differences between the highest and lowest values were
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large, as C7 reached 12–13% of the values for Q, q, and Yini shown by C5, and 32% of the
value of Ycon shown by C5.
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Figure 3. Fermentation results from the third experimental series (C1–CR). Codes refer to conditions detailed in Table 1.
Calculations are based on the results obtained after 24 h, 36 h, and 48 h of fermentation. Standard deviations are shown in
parentheses. Color scheme:
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Within the concentration and temperature ranges investigated, the results obtained
after 48 h indicate that both the dithionite concentration and the temperature have a large
impact on the effect, that using high temperatures (>75 ◦C) combined with a low dithionite
dosage can result in a very poor effect, that high temperatures (such as 95 ◦C and 110 ◦C)
are not needed to achieve an optimal effect, that the best effect is not necessarily achieved
with high dithionite dosage, and that high dithionite dosage might have adverse effects at
higher temperatures, such as 75 ◦C and 95 ◦C. Consequently, modulating dithionite dosage
and treatment temperature emerges as a better alternative than consistently using high
dithionite dosage or high temperature.

After 48 h, C4 (5.0 mM and 75 ◦C) performed clearly better (p ≤ 0.05) than C1 (5.0 mM
and 50 ◦C) and C2 (8.7 mM and 50 ◦C), and C5 (8.7 mM and 75 ◦C) performed clearly
better (p ≤ 0.05) than C2 and C3 (12.5 mM and 50 ◦C). Thus, the results also indicate
that, at least to some extent, increased temperature can compensate for a lower dosage of
sodium dithionite.

4. Conclusions

Conditioning with dithionite was investigated with regard to the influence of pH,
mode of addition of dithionite, concentration of dithionite, and temperature. The re-
sults showed clearly that conditioning should be done after the pH has been raised to a
slightly acidic value suitable for biocatalysts, and that using mildly alkaline pH to stabilize
dithionite is of no advantage. The temperature and the dosage of dithionite can be used
to modulate the effect. The finding that increased temperature can compensate for using
lower concentrations of dithionite can potentially be advantageous from an economical
point of view, as the cost for dithionite can be minimized and as the pretreated biomass
is warm after the pretreatment and using temperatures at or around 75 ◦C, therefore,
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does not necessarily require heating. Further research in the field can facilitate industrial
implementation of new technology suitable for bioconversion of lignin-rich lignocellulosic
biomass, such as softwood residues.
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