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Abstract: Fe-Cu materials were synthesized using the chemical plating method from Fe powder
and CuSO4 5% solution and then characterized for surface morphology, composition and structure
by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray
diffraction (XRD), respectively. The as-synthesized Fe-Cu material was used for removal of phenol
from aqueous solution by internal microelectrolysis. The internal electrolysis-induced phenol de-
composition was then studied with respect to various parameters such as pH, time, Fe-Cu material
weight, phenol concentration and shaking speed. The optimal phenol decomposition (92.7%) was
achieved under the conditions of (1) a pH value of phenol solution of 3, (2) 12 h of shaking at the
speed of 200 rpm, (3) Fe-Cu material weight of 10 g/L, (4) initial phenol concentration of 100.98 mg/L
and (5) at room temperature (25 ± 0.5 ◦C). The degradation of phenol using Fe-Cu materials obeyed
the second-order apparent kinetics equation with a reaction rate constant of k of 0.009 h−1L mg−1.
The optimal process was then tested against real coking wastewater samples, resulting in treated
wastewater with favorable water indicators. Current findings justify the use of Fe-Cu materials in
practical internal electrolysis processes.

Keywords: internal microelectrolysis; Fe-Cu material; phenol; wastewater treatment; coking wastew-
ater

1. Introduction

In recent years, the process of industrialization and modernization in Vietnam has
taken place rapidly, promoting socio-economic development of the country and accom-
panying problems of environmental pollution. Phenol is a hazardous pollutant and is
listed as one of 129 pollutants that need to be pre-treated, according to US Environmental
Protection guidelines. Phenol is often generated in the waste streams of industries such as
petrochemicals, oil refining, plastics, steel, textile, paper and pulp, pesticides, pharmaceu-
ticals, synthetic resins, and coking plants [1–3]. Phenol is a less biodegradable chemical
that can cause cancer, gene mutation and teratogen. Phenol contaminates water sources,
causing tremendous harm to humans and organisms; thus, eradication of phenol pollution
in wastewater is being studied in many countries, including Vietnam. In order to treat
phenols, physicochemical methods, such as adsorption, flocculation and sedimentation
have been used as a traditional treatment. However, they are found to be not very effective.

Processes 2021, 9, 720. https://doi.org/10.3390/pr9040720 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr9040720
https://doi.org/10.3390/pr9040720
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9040720
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9040720?type=check_update&version=1


Processes 2021, 9, 720 2 of 16

Internal electrolysis (IE) has been proposed as a remedy for this issue. Usually, based
on the electron material used, there are four types of IE, including Fe-Cu, Fe-C, Al-Cu
and Al-C. Among them, the Fe-C and Fe-Cu systems are widely used in actual projects.
The principle of IE involves two materials with different electrode potentials that generate
microelectrode pairs when being in contact. For Fe-C, the Fe-Cu iron system acts as an
anode and copper or carbon acts as a cathode, similar to the micro-battery pair in metal
corrosion. With a micro-battery with a voltage of about 1.2 V, a small power circuit of µA
appears, which acts as a redox agent in the decomposition reaction of adsorbed organic
compounds on the electrode surface. Due to this principle, Fe-C and Fe-Cu electrolytic
processes are also known as internal microelectrolysis. Therefore, it is possible to dissolve
iron without the use of an external current by placing micro-battery pairs as composites
of Fe-C and Fe-Cu, providing an advantage in internal microelectrolysis technology in
wastewater pretreatment applications [1–26]. The reactions that occur during internal
microelectrolysis are as follows [27].

The reaction at the anode (Fe):

Fe→ Fe2+ + 2e E0(Fe2+/Fe) = −0.44 V (1)

The reaction at the cathode (Cu):

2H+ + 2e→ 2[H] = H2 E0(H+/H2) = 0.00 V (2)

Fe and Cu: H2O→ HO* + H+ + e (3)

Organic substances that exist in the solution, such as RX (organochlorine compound)
and RNO2 (aromatic ring nitro compound) then receive electrons from the anode surface
(metal Fe) and are reduced by the chlorine and amine reaction. The resulting pollutants
would become non-toxic or less toxic products, hence being more easily biodegradable.

The internal microelectrolysis process holds two main advantages. First, it could be
applied to treat various types of industrial wastewater, including polyester-containing
effluent [15], dyes [11,13,16], discharge from coal gasification [12], plant protection prod-
ucts [3,25], nitrate contamination [19], mixed industry (textile, dyeing, paper, plating,
mechanic) [6–9], high organic matter [4,17,18], oil contamination [14], TNT and RDX con-
tamination [10]. Second, internal microelectrolysis exhibits high treatment efficiency, fast
response time and low operating costs. Fan and Ma [4] used a Fe-Cu electrode system to
treat mixed industrial wastewater in Taopu, Shanghai at the capacity of 60,000 m3/day,
achieving a COD removal efficiency of 40%. Yin et al. [12] used this method to connect an
external current to treat 4-chlorophenol, reaching a removal efficiency that was higher than
90% after 36 min. Yang et al. [5] also reported that internal electrolysis could be used to
treat polyester wastewater, achieving the COD removal efficiency of 58%. The COD of the
wastewater decreased from 3353.2 mg/L to 1391.6 mg/L and its BOD5/COD ratio also in-
creased from 0.27 to 0.42 after treatment. Zhu [17] combined internal microelectrolysis and
a bio-membrane to treat mixed industry wastewater, reducing the COD from 150,000 mg/L
to 500 mg/L.

Recent trends in enhancing the decomposition of organic pollutants have shifted to the
use of bimetallic internal microelectrolytic materials prepared by the deposition of second
transition metals on the iron surface. Previous studies showed that transition metals such
as Ni, Cu and Co can enhance the catalytic activity of FeO [28]. Two types of catalytic
mechanisms of bimetallic internal electrolytic materials have been proposed: (a) indirect
reduction by atomic hydrogen ([H] abs) absorbed on the material’s surface in bimetallic and
transition metal additives form that facilitates the generation of surface-linked hydrogen
atoms ([H] abs), and (b) direct reduction on the catalytic active site by receiving electrons
during FeO oxidation and surface additives (i.e., transition of metals) to increase FeO
oxidation through the formation of a multitude of micro-battery pairs [29,30].

In many studies, Fe-Cu and Fe-C materials are usually made from scrap, iron granules,
copper and carbon powder with different sizes or prepared by second transition metal
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deposition on the surface of Fe, thus offering modest degradation efficiency against pollu-
tants [5,28–31]. However, it has been suggested that the use of chemical plating of Cu on
the Fe surface might result in materials with significantly improved degradation capacities
for internal microelectrolysis [22]. For example, Xu et al. (2008) fabricated Fe-Cu material
using the chemical plating method and used it in treatment of nitrobenzene (100 mg/L) in
aqueous solution [31]. The obtained material showed a removal efficiency of approximately
95% at optimal conditions, suggesting a better reactivity of the chemically galvanized Fe-
Cu for internal electrolysis. Bo et al. (2014) used a micro-sized Fe-Cu internal electrolyte
material prepared by chemical plating to pretreat p-nitrophenol in aqueous solution [22].
The material was prepared with the content of Cu on the surface varying from 30% to 95%.
Remarkably, the results pointed out that the Fe-Cu ratio played a key role in degradation
of p-nitrophenol.

In this work, we continued this research pathway by fabricating Fe-Cu materials
using the chemical plating method and investigated the effect of some factors such as pH,
treatment time, mass of Fe-Cu system, shaking rate, and the concentration to efficiency ratio
of phenol degradation of Fe-Cu materials in aqueous medium. In addition, the internal
electrolysis reaction was applied to treat real coking wastewater from a coal factory in
Vietnam.

2. Materials and Methods
2.1. Fabrication of Cu-Fe Material

Fe powder with sizes smaller than 50 µm and 99.9% purity (PA, China) was immersed
in 30% NaOH solution for 10 min to remove grease and clean the surface. The surface was
activated by treating in HCl 7.4% wt for 3 min. The diluted HCl solution was prepared with
an HCl solution concentration of 37% wt. The material was then washed several times with
water, followed by drying at 105 ◦C for 2 h, allowed to cool and stored in a sealed glass jar.
Fe-Cu samples were made using the chemical plating method in 5% CuSO4 solution (wt%).
To be specific, a total of 100 g of Fe powder was added into 1 L of 5 wt% CuSO4 solution
for a period of 2 min. The mixture was then washed several times with water and dried
at 105 ◦C for 3 h under N2 gas. The material was then stored in a desiccator for further
research.

2.2. Characterization of Structure, Composition, Physical Properties, Surface Characteristics of
Fe-Cu Materials

The surface characteristics and components of the Fe-Cu material after fabrication
were determined by scanning electron microscopy (SEM) and energy-dispersive X-ray
spectroscopy (EDS) (on an SEM-EDS machine, JSM 6610 LA—JEOL, Tokyo, Japan), re-
spectively. Measurements were made at the Institute of Materials Chemistry, Institute of
Military Science and Technology, Vietnam. The structure of the material was determined by
the method of X-ray diffraction (XRD) (on a Bruker D5000, Siemens, München, Germany).
The measurement was conducted at the department of Chemistry—Hanoi University of
Natural Sciences.

2.3. Study on Decomposition of Phenol

Factors affecting degradation of phenol were investigated, including pH, time, dosage
of Fe-Cu materials, shaking rate and initial concentration of phenol. The experiments were
carried out at room temperatures (25 ± 0.5 ◦C). Parameters for the experiments are shown
in Table 1.
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Table 1. Parameters for single factor investigations.

Investigation pH Time (h) Fe-Cu Dosage (g) Shaking Speed
(rpm)

Initial Phenol
Concentration

(mg/L)

Effect of pH 2, 3, 4, 5, 6, 7 and 8 12 1 200 100

Effect of time 3 2, 4, 6, 8, 12, 20 and
24 1 200 100

Effect of material
dosage 3 12 0.25, 0.5, 0.75, 1.0,

1.25 and 1.5 200 100

Effect of shaking
speed 3 12 1 100, 120, 150, 180

and 200 100

Effect of initial
phenol

concentration
3 12 1 200 50, 100, 150, 200,

250 and 300

All experiments were conducted three times to check the repeatability. The result
of each experiment is the average result of the three times, with P values less than 0.05
indicating a significant difference between the means.

The phenol degradation efficiency was calculated by the formula:

H% =
(C0 − Ccb)

C0
× 100% (4)

In which: C0 is the concentration of the phenol solution before decomposition (mg/L),
Ccb is the concentration of the phenol solution after decomposition (mg/L) and H is the
degradation efficiency (%).

The initial and post-treatment phenolic concentrations were determined on the HPLC
Waters Acquity Arc instrument at the University of Education, Thai Nguyen University,
Thai Nguyen Province, Vietnam. The instrument was equipped with chromatographic
column C18 Inertsil ODS (5 µm, 250 × 3 mm, GL Sciences Inc., Tokyo, Japan). The optimal
conditions for the determination of phenol content are as follows: wavelength of 272 nm,
ratio of phosphate buffer solution mixture (pH = 4) to acetonitrile solution (pH = 3) of 30:70
(v/v), flow rate of 1.0 mL/ min, column temperature of 30 ◦C. TSS, BOD5, COD, total N,
total P and NH+

4 -N indicators were determined at the Thai Nguyen Center for Natural
Resources and Environment Monitoring.

3. Results and Discussion
3.1. Survey Results on Surface Characteristics and Physical Properties of Fe-Cu Materials

From the analysis results of the SEM-EDS images of the materials and synthetic
materials shown in Figures 1–4, it was found that the surface composition of the synthetic
materials was different from the original materials. The Fe powder particles were arranged
overlapping each other in blocks, whereas the Fe and Cu powder particles in Fe-Cu material
were distributed relatively evenly on the surface with sizes of less than 50 µm. This shows
that there was an even distribution of Cu plating alternating Fe powder particles to form Fe-
Cu micro-cell pairs. The results of analyzing the EDS spectrum of Fe and Fe-Cu materials
shown in Figures 3 and 4 and Tables 2 and 3 show specifically the presence of the elements
and their content in each sample.
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Table 2. Results of analyzing Fe sample elements.

Elements % Mass % Atom

O 8.95 25.55

Fe 91.05 74.45

Total 100.00 100.00

Table 3. Results of analyzing Fe-Cu sample elements.

Elements % Mass % Atom

O 12.11 24.97

Fe 18.59 21.83

Cu 69.30 53.20

Total 100.00 100.00

Analysis of the EDS of the Fe-Cu samples has shown Cu appearance, which proves
successful copper plating. The reaction in the process of dissolving and chemically plating
copper follows the processes below:

Fe 
 Fe2+ + 2e

Fe2+ 
 Fe3 + + e (There may be a part of Fe2+ oxidized to Fe3+)

Cu2+ + 2e 
 Cu

On the other hand, the analysis of the structure of the synthesized Fe and Fe-Cu
materials shown in Figure 5 shows that the components of the two spectra were distinctly
different. The Fe accounted for 18.59% of the mass according to EDX. On the XRD pattern,
the peaks assigned to Fe were quite weak, which suggests that Fe may be converted into
other compounds such as Fe•Cu2O. However, this is not always the case because Fe might
be present in the Fe-Cu materials in amorphous forms, which does not show up in XRD
results. Therefore, further studies are needed to confirm the exact material composition.
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This proves that the Fe-Cu bimetal material has been successfully fabricated and that
Cu has coated the Fe surface to form Fe-Cu micro-battery pairs.

3.2. Decomposition of Phenol
3.2.1. Effect of pH

According to Equations (1) and (2), the pH value has a great influence on the reaction
rate and the redox ability to create [H]. When the pH is lower, the amount of H+ provided for
the reaction becomes adequate or excessive, therefore accelerating the internal electrolysis
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or the corrosion of the electrode system. A lower initial pH value is associated with a
higher concentration of [H]. Furthermore, in the presence of O2, the cathode reduction of
the internal electrolytic reaction can also occur in the following reaction:

O2 + 4H+ + 4e→ 2O* + 4[H]→ 2H2O; E0 (O2/H2O) = 1.23 V (5)

Thus, more H+ would produce more [H] and O*, enhancing the ability to redox and
reduce phenol and leading to a better phenol treatment efficiency. The initial pH value also
affects the rate of corrosion reactions of Fe/Cu materials to form Fe2+, Fe3+, Fe (OH)2 and
Fe(OH)3. In a more acidic environment than Fe2+, Fe3+ is easy to form, yet it is difficult to
precipitate Fe(OH)2 and Fe(OH)3. Conversely, when the pH is high and in the presence
of dissolved oxygen, Fe(OH)2 and Fe(OH)3 concentration could be increased gradually in
response to reaction time. Iron hydroxides are also factors that indirectly remove the phenol
part as well as the intermediate compounds of the treatment by adsorption, flocculation
and precipitation.

The results shown in Figure 6 show that when the pH value increases from 4 to 9, the
phenol decomposition efficiency decreases. This can be explained by three main phenol
decomposition processes, including decomposition due to the impact of internal electrolyte
materials, adsorption and coagulation with iron hydroxide. As the concentration of Fe (II)
and Fe (III) ions exceeds 10−5 mol/L in the material, precipitates of Fe(OH)2 and Fe(OH)3
will appear at pH values higher than 3, which is favorable for the flocculation of Fe (II)
and Fe (III). At high pH (pH > 3), the phenol decomposition process was hindered, and
coagulation was accelerated. As a result, phenol decomposition efficiency was decreased.
Therefore, a pH value of 3 gave the maximum phenol decomposition efficiency and was
selected for further studies.
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Figure 6. Effect of pH on the phenol removal performance of Fe-Cu material.

3.2.2. Effect of Time

Variations of phenol removal with respect to reaction time are illustrated in Figure 7.
The results show that when increasing the time from the 2 to 12 h, the phenol decomposition
efficiency increased rapidly to a maximum value of 92.39%. Thereafter, over a period from
12 to 24 h, decomposition efficiency decreased slowly and then became almost stable.



Processes 2021, 9, 720 8 of 16
Processes 2021, 9, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 7. The effect of time on the phenol removal performance of Fe-Cu material. 

The current result is in line with that of a previous study [19], which used Fe-Cu to 

treat polyester wastewater. This can be explained as follows: when the time increases from 

2 to 12 h, the ongoing occurrence of the interior microelectrolysis reactions accumulates 

ferrous and ferric hydroxides, thus promoting phenol degradation efficiency. However, 

increasing the time from 12 to 24 h also leads to increased precipitation of hydroxides on 

the Fe-Cu surface and impedes the electron transmission between Fe-Cu and wastewater, 

thereby neutralizing the Fe-Cu surface and terminating the internal electrolysis, so the 

phenol degradation efficiency is reduced [20]. Therefore, we chose 12 h as the optimal 

time for phenol decomposition of Fe-Cu materials. 

3.2.3. Effect of Dosage of Material 

Removal efficiencies achieved at different dosages are shown in Figure 8. As the dos-

age of Fe-Cu material increased from 0.25 to 1.0 g, the phenol decomposition efficiency 

increased gradually. Increasing the dosage from 1.0 to 6.0 g seemed to impair the phenol 

degradation efficiency. In general, increasing the dosage of Fe-Cu resulted in a higher 

generation of microscopic galvanic cells, possibly leading to improved phenol removal 

efficiency. However, excessive amount of Fe-Cu in the solution might cause particle ag-

glomeration, thus reducing the contacting area among Fe-Cu and wastewater. Moreover, 

the excess iron would react with H+ present in the solution, leading to weakened reaction 

from Fe-Cu [21]. The Fe-Cu utilization efficiency would decrease remarkably if its dosage 

were too high. Therefore, the material weight of 1.0 g or 10g/L was selected as the optimal 

material weight to decompose the phenol of Fe-Cu material. 

19.84

39.63

59.92

78.73

92.39 90.25 89.23

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 12 20 24

R
e

m
o

v
a

l 
e

ff
ic

ie
n

c
y
 (

%
)

Time (h)

Figure 7. The effect of time on the phenol removal performance of Fe-Cu material.

The current result is in line with that of a previous study [19], which used Fe-Cu to
treat polyester wastewater. This can be explained as follows: when the time increases from
2 to 12 h, the ongoing occurrence of the interior microelectrolysis reactions accumulates
ferrous and ferric hydroxides, thus promoting phenol degradation efficiency. However,
increasing the time from 12 to 24 h also leads to increased precipitation of hydroxides on
the Fe-Cu surface and impedes the electron transmission between Fe-Cu and wastewater,
thereby neutralizing the Fe-Cu surface and terminating the internal electrolysis, so the
phenol degradation efficiency is reduced [20]. Therefore, we chose 12 h as the optimal time
for phenol decomposition of Fe-Cu materials.

3.2.3. Effect of Dosage of Material

Removal efficiencies achieved at different dosages are shown in Figure 8. As the
dosage of Fe-Cu material increased from 0.25 to 1.0 g, the phenol decomposition efficiency
increased gradually. Increasing the dosage from 1.0 to 6.0 g seemed to impair the phenol
degradation efficiency. In general, increasing the dosage of Fe-Cu resulted in a higher
generation of microscopic galvanic cells, possibly leading to improved phenol removal
efficiency. However, excessive amount of Fe-Cu in the solution might cause particle
agglomeration, thus reducing the contacting area among Fe-Cu and wastewater. Moreover,
the excess iron would react with H+ present in the solution, leading to weakened reaction
from Fe-Cu [21]. The Fe-Cu utilization efficiency would decrease remarkably if its dosage
were too high. Therefore, the material weight of 1.0 g or 10 g/L was selected as the optimal
material weight to decompose the phenol of Fe-Cu material.
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Figure 8. The effect of material dosage on phenol removal performance of Fe-Cu material.

3.2.4. Effect of Shaking Speed

The effect of shaking speed on phenol decomposition efficiency is shown as in Figure 9.
As the speed was accelerated, the phenol decomposition efficiency also improved. This
can be explained as follows. The shaking speed increases the dissolved oxygen content
into the solution and enhances the ability to diffuse pollutants to the surface in contact
with the Fe-Cu electrode, as well as the rapid dispersion of the products treated at the
electrode in the solution. However, in acidic environments with low pH, the dissolved
oxygen content is lower than in alkaline media. The effect of dissolved oxygen content on
phenol degradation efficiency can be explained by the following reasons:

(1) When the shaking rate increases, the dissolved oxygen concentration in the electrolyte
solution will also increase, in turn accelerating the subsequent cathode process when
the pH changes to a neutral medium. This contributes to the corrosion rate as well as
the rate of reaction with electrolytic internal materials [22].

(2) Oxygen could combine with H+ to forms H2O2 hyperoxides, which then react with
newly generated Fe2+ ions to form Fe(OH)2 and Fe(OH)3 ions. These are good phenol
flocculation agents and intermediate products of phenol degradation.

(3) One previous study [22] suggested that the increased shaking speed caused the
decomposition of substance molecules and dispersion of the intermediate decom-
position products in the solution. At that time, the possibility of contact between
the decomposed substances and the intermediate products with the surface of the
Fe-Cu electrode system are increased, causing oxidation in the solution, improving
electrochemical reduction on the cathode surface, and improving processing speed
and efficiency.

When shaking speed increased from 100 to 150 rpm, the phenol decomposition speed
increased rapidly from 180 to 200 rpm. This could be the reason why at this time the
dissolved oxygen concentration in the solution was almost saturated. Therefore, we chose
the shaking speed of 200 rpm to proceed to subsequent experiments.
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Figure 9. The effect of shaking speed on the phenol removal efficiency of Fe-Cu material.

3.2.5. Effect of Initial Phenol Concentration

Phenol removal efficiencies at different initial phenol concentrations are shown as
in Figure 10. The results from Figure 10 show that the phenol decomposition efficiency
increased proportionally when the concentration increased from 53.38 to 100.98 mg/L.
Afterwards, in the concentration range from 146.69 to 250.76 mg/L, the phenol decom-
position performance decreased. At a phenol concentration value of 100.98 mg/L, the
degradation efficiency reached the maximum value of 92.7%, which indicates almost
complete phenol decomposition. There was a sharp decrease in performance at higher
concentrations of phenols (higher than 100.98 mg/L), possibly due to higher required
amount of internal electrolytic material. At low phenol concentrations, a low concentration
gradient would obstruct the mass transportation. Simultaneously, the short lifetime of
HO* is also a contributing factor to reduce the number of reactions with phenol. At higher
phenol concentrations, it is more likely for phenol and HO* to mutually react, which results
in improved phenol removal efficiency. However, at very high phenol concentrations
(146.69 mg/L), the phenol removal efficiency decreased to 72.71% due to limited formation
of HO* in the interior micro-electrolysis system Therefore, there should be further studies
and surveys to handle phenol at high concentrations.
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Figure 10. The effect of initial phenol concentration on the phenol removal capability of Fe-Cu
material.
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3.2.6. Decomposition Analysis Phenol Concentrations by HPLC

Figure 11 illustrates HPLC results of different phenol solutions (initial concentration
of 100.98 mg/L) treated with different masses of Fe-Cu internal electrolysis material. It
was indicated that phenol was completely decomposed when being treated with Fe-Cu
material with the weight of 10 g/L, under 12 h of shaking at 200 rpm and at a pH value
of 3.
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Figure 11. Chromatographic lines of a phenol solution sample depend on the amount of Fe-Cu
material. Red curve: chromatogram of an untreated phenol sample (100.98 mg/L). Blue curve:
chromatogram of a phenol sample treated with the following conditions: initial phenol concentration
of 100.98 mg/L, Fe-Cu material weight of 5 g/L, shaking time of 12 h, shaking speed of 200 rpm, at
pH = 3. Black curve: chromatogram of a phenol sample treated with the following conditions: initial
phenol concentration of 100.98 mg/L, Fe-Cu material weight of 10 g/L, shaking time of 12 h, shaking
speed of 200 rpm, at pH = 3.

3.2.7. Degradation Kinetics of Phenol Using Fe-Cu Material

The classical kinetics is that of the first-order and second-order chemical reaction
kinetics. The equations are shown as follows:

First-order kinetic model: lnCt = −k1·t + A1 (6)

Second-order kinetic model: 1/Ct = k2·t + A2 (7)

Third-order kinetic model: 1/Ct
2 = 2k3·t + A3 (8)

where: k1 and k2 are the first-order and second-order reaction rate constants, respectively;
A1, A2 and A3 are constants. C0 is the initial concentration of the phenol solution before
decomposition (mg/L), which is 100 mg/L.

Based on the investigations on the efficiency of phenol degradation over time, we
surveyed the kinetics of phenol degradation according to the first-, second-, and third-order
kinetic equations, as shown in Figures 12–14.

The results show that the degradation of phenol by internal microelectrolysis material
of Fe-Cu seemed to follow the second-order apparent kinetics due to a higher linear
regression coefficient (R2 = 0.9507) than those of other kinetics. The calculated reaction rate
constant of k of the second-order model was 0.009 h−1Lmg−1.
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3.2.8. Real Sample Analysis

In this study, the optimal experimental parameters, including a Fe-Cu mass of 10 g/L,
a shaking time of 12 h, a pH of and a shaking rate of 200 rpm, were adopted for pre-



Processes 2021, 9, 720 13 of 16

treating real wastewater samples collected from a coal factory (Thai Nguyen Iron and
Steel Joint Stock Company, Thai Nguyen Province, Vietnam). The results are shown in
Figures 15 and 16 and Table 4.
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Table 4. Parameters of coking wastewater before and after treatment using Fe-Cu materials.

Parameters Unit Method of Analysis
Result (mg/L) Efficiency

H (%)Before After

DO mg/L TCVN 7325:2004 0.6 2.8 -

TSS mg/L SMEWW 2540 D:2012 124 63.4 48.87

BOD5(20 ◦C) mg/L TCVN 6001-1:2008 1215 540.6 55.50

COD mgO2/L SMEWW 5220C:2012 2379 1189 50.02

Phenol mg/L TCVN 6216:1996 173.70 50.86 70.07

CN− mg/L SMEWW4500 CN−B:2012 0.05 <0.01 -

Total N mg/L TCVN 6638:2000 876 644 26.48

NH+
4 -N mg/L TCVN 6179-1:1996 473 165.2 65.07

Total P mg/L TCVN 6202:2008 15.6 9.3 40.38

The mechanism of phenol degradation in the interior micro-electrolysis has been
presented previously [25], and it involved the conversion of decomposed phenol into a less
toxic intermediate compound. To be specific, during the micro-electrolysis process, radicals
and oxidants are produced and oxidize organic compounds. This causes the destruction
of structures of benzene ring and chemical bonds on its side chain, transforming toxic
compounds into biodegradable intermediates [20]. Simultaneously, microelectron currents
in the galvanic cell reaction also cause electron transfer, which promotes the growth and
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biodegradation capacity of microorganisms and stimulates active metabolic enzymes [32].
Furthermore, the justification of interior microelectrolysis technology for biological treat-
ment is corroborated by its high degradation efficiency of refractory compounds and the
ability to improve wastewater biodegradability [33].

The results in Table 3 show that the highest treatment efficiency was observed in the
phenol parameter (70.07%), followed by the NH4

+-N, BOD5 and COD. The remaining
parameters exhibited lower removal efficiencies (<50%). Thus, further biological treatment
methods are recommended in order to achieve steel industry wastewater standards [34].

4. Conclusions

A sample of Fe-Cu material for internal electrolysis was synthesized from Fe powder
material by using the chemical plating method. The Cu content at the material surface
reached 69.30% (by weight). The surface, structure and composition of the as-synthesized
materials were characterized by scanning electron microscopy (SEM), energy-dispersive
X-ray spectroscopy (EDS) and X-ray diffraction diagram (XRD), respectively.

The internal electrolysis-induced phenol decomposition was then studied with respect
to various parameters, including pH, time, Fe-Cu material weight, phenol concentration
and shaking speed. The optimal phenol decomposition (92.7%) was achieved at the pH
value of 3, the shaking time of 12 h, the shaking speed of 200 rpm, the weight of Fe-Cu
material of 10 g/L, the initial phenol concentration of 100.98 mg/L and at room temperature
(25 ± 0.5 ◦C). The degradation of phenol using Fe-Cu materials obeyed the second-order
apparent kinetics equation with a reaction rate constant of k of 0.009 L×mg−1h−1. Further
evaluation using real coking wastewater resulted in treated effluents with favorable water
indicators, suggesting the suitability of Fe-Cu materials in practical processes to treat
coking wastewater before biological treatment. Further studies should contemplate the
evaluation of material stability through cyclic reactions.
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