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Abstract: This paper studies and implements a power converter to have less current ripple output
and wide voltage input operation. A three-leg converter with different primary turns is presented
on its high-voltage side to extend the input voltage range. The current doubler rectification circuit
is adopted on the output side to have low current ripple capability. From the switching states of
the three-leg converter, the presented circuit has two equivalent sub-circuits under different input
voltage ranges (Vin = 120–270 V or 270–600 V). The general phase-shift pulse-width modulation is
employed to control the presented converter so that power devices can be turned on at zero voltage
in order to reduce switching loss. Compared to two-stage circuit topologies with a wide voltage input
operation, the presented converter has the benefits of simple circuit structure, easy control algorithm
using a general integrated circuit or digital controller, and less components. The performance of the
presented circuit is confirmed and validated by an 800 W laboratory prototype.

Keywords: PWM converter; soft switching; less current ripple

1. Introduction

For the past decade, clean energy sources have brought attention to the depletion
of fossil fuel demand due to the rising demand for electric power. Fuel cell stacks, wind
energy, and photovoltaic (PV) are the most attractive renewable energy sources [1–6].
However, the output voltage of dc wind power and PV panels is unstable and widely
varies. High-frequency dc-link converters can convert an unstable dc voltage to a constant
dc voltage by using duty cycle control [7–9] or pulse frequency modulation (PFM) [10–12].
In duty cycle control, the turn-on time of the power switch is related to input voltage
under the constantly switching frequency. Therefore, the load terminal is regulated at the
command voltage. In the PFM approach, the switching frequency is variable and related to
input voltage. Thus, the input impedance of the resonant tank is variable to change voltage
gain and regulate load voltage. For dc wind energy and PV power, the solar intensity and
wind speed have a wide deviation. Therefore, the output voltage of PV panels and wind
generators is variable in a wide voltage range. In conventional isolated dc converters, the
maximum and minimum effective duty cycles are related to input voltage, deff,max/deff,min =
Vin,max/Vin,min. In phase-shift pulse-width modulation (PWM) converters, the maximum
(or minimum) effective duty cycle or duty ratio is normally less (or greater) than 0.45
(or 0.15). Then, the available input voltage variation range Vin,max/Vin,min is less than 3.
However, the output voltage variation of some dc wind power and PV panels may be
greater than 4. To overcome this problem, dc converters with a cascaded structure [13–15]
have been studied which have a wide input voltage variation. The problem with the
cascaded structure converters is low efficiency. The dc converters with duty cycle control
were studied in [16–18] to achieve wide voltage operation and low switching loss. However,
the control algorithm is too complicated for using a general-purpose integrated circuit.
Full-bridge converters with wide input voltage range that have PWM or PFM schemes have
been presented in [19,20]. The input voltage variation range in [20] with two transformers
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and one ac switch structure could achieve Vin,max/Vin,min = 4. Four equivalent circuits
could be operated in [14] to realize wide voltage operation. However, the control scheme
is more complicated when using a general-purpose integrated circuit. In [21], a hybrid
dc–dc converter is presented to have wide voltage operation between Vin = 120 V and
600 V. However, this converter has more ripple current on the output inductor and more
passive components on the secondary side. In [22], a wide voltage resonant converter was
discussed and implemented to be operated between Vin = 10 V and 160 V for low-power
applications. However, the circuit topology was still a cascaded dc–dc converter.

In the present work, a three-leg structure phase-shift PWM converter is studied and
implemented to have a wide voltage input operation and a wide load range of zero-voltage
turn-on operation. Two sub-circuits with different voltage gains can be operated in the
presented converter according to input voltage ranges. Hence, the presented converter can
accomplish wide input voltage operation. The phase-shift PWM approach is used to control
the gating signals of power devices. Then, the zero-voltage switching (ZVS) operation for
the three-leg converter can be easily achieved. The current doubler rectification circuit
is operated on the load terminal. Therefore, the current ripple on the output terminal
is decreased. A Schmitt voltage comparator is used in the control circuit to select the
proper sub-circuit, having a high voltage gain under a low voltage input range or a
low voltage gain under ahigh voltage input range. The reference voltage of the voltage
comparator is equal to 270 V. The presented circuit is designed to be operated under Vin
= 120~600 V. Compared to the conventional cascaded structure converter in [13–18], the
studied converter has an easy control algorithm and a simple circuit structure. Compared to
conventional converters with a wide voltage operation [19–22], the proposed converter has
fewer active switches and a wider voltage deviation region. The effectiveness and benefits
of the presented circuit are verified by theoretical analysis and experimental verifications
with an 800 W prototype.

2. Proposed Converter

Figure 1a gives the circuit schematic of the presented converter. It can be observed
that the three-leg circuit structure is operated on the primary side and a current doubler
rectification structure is adopted on the secondary side. An isolation transformer with
two sets of primary-turn np and one set of secondary-turn ns is selected in the converter.
The ac switch Q is realized by two power MOSFETs (Metal-Oxide-Semiconductor Field-
Effect Transistors) with a back-to-back connection. According to low voltage or high
voltage input conditions, Q is controlled to be OFF or ON. Therefore, two equivalent
sub-circuits are worked in the presented converter. For a low voltage input region (e.g.,
Vin,L = Vin,min~2.3Vin,min), Q, S1, and S2 are OFF, and the two-leg PWM converter shown
in Figure 1b with active switches S3–S6 is operated to regulate the load voltage. The duty
cycle control is selected to generate the necessary gate signals of active switches S3–S6.
Thus, the ZVS operation of S3–S6 is achieved. The output voltage can be estimated as
Vo = nsVin,Lde f f /np − VD, where deff is an effective duty cycle and VD is the voltage drop
on D1 or D2. The output voltage can be kept stable and constant by the regulation of the
effective duty ratio deff. The minimum effective duty ratio dmin,min happens at the maximum
input voltage case Vin,L,max under the low voltage input range. On the other hand, the
minimum input voltage Vin,L,min will result in the maximum effective duty ratio deff,max
when the converter is operated in the low voltage input range. The voltage gain of the
converter in the low voltage input range is Gdc-L = Vo/Vin,L ≈ deff/NL, where NL = np/ns.
For the high voltage input region (e.g., Vin,H = 2.3Vin,min~5Vin,min), Q is ON and S3 and S4
are OFF. The two-leg PWM converter shown in Figure 1c with active switches S1, S2, S5,
and S6 is operated to regulate the output voltage. S1 and S2 (S5 and S6) are active devices
on the leading leg (lagging leg) of the phase-shift PWM converter. As can be noted in
Figure 1c, the transformer turns ratio is NH = 2np/ns instead of np/ns. Under the high
voltage input condition, the output voltage is expressed as Vo = nsVin,Hde f f /

(
2np)− VD

and the voltage gain becomes Gdc-H = Vo/Vin,H ≈ deff/NH. From the circuit operation



Processes 2021, 9, 580 3 of 16

in the previous statements, the presented circuit can achieve ZVS operation and a wide
voltage input operation with about Vin,min − 5Vin,min input voltage variation by the proper
switching of Q and S1–S6.
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Figure 1. Cont.
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Figure 2. Pulse-width modulation (PWM) singles in the (a) low voltage input range; (b) high volt-

age input range. 

Figure 1. Proposed converter (a); circuit schematic (b); equivalent sub-circuit under low voltage
input range (c); equivalent sub-circuit under high voltage input range.

3. Principle of Operation

The converter has two sub-circuits shown in Figure 1b,c for low voltage input Vin,L
and high voltage input Vin,H operations. For the low voltage input region (Vin,min ≤ Vin,L <
2.3Vin,min) in Figure 1b, Q, S2 and S1 are turned OFF and S3–S6 are active with duty cycle
control. The transformer turns ratio is NL = np/ns. The corresponding PWM waveforms
are provided in Figure 2a. For the high voltage input region (2.3Vin,min ≤ Vin,H < 5Vin,min)
in Figure 1c, Q is ON and S3 and S4 are OFF. S1, S2, S5, and S6 are active with duty
cycle control. The transformer turns ratio is NH = 2np/ns. It is assumed the magnetizing
inductances Lm1 = Lm2 = Lm >> Lr1 = Lr2 = Lr and the output capacitances CS1 = ... = CS6 =
Coss. The PWM waveforms under the high voltage input condition are given in Figure 2b.
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According to the PWM waveforms of S3–S6 and the conducting states of D1 and D2,
ten operating steps can be observed in Figure 2a under the low voltage input case. As can
be observed, the PWM waveforms are symmetric for each half cycle. Thus, only the first
five operating steps are explained briefly, and the corresponding step circuits are given in
Figure 3.
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Step 1 [t0, t1]: At t0, iD1 = 0. S3 and S6 are active in this step. The leg voltage is vbc =
Vin, vLo1 = Vin/NL − Vo, and vLo2 = −Vo. Therefore, iLo1 will increase and iLo2 will decrease
in this step. The primary and secondary inductor currents are given in Equations (1)–(3).

iLr1(t) ≈ iLr1(t0) +
Vin − NLVo

N2
LLo1

(t − t0) (1)

iLo1(t) ≈ iLo1(t0) +
Vin/NL − Vo

Lo1
(t − t0) (2)

iLo2(t) ≈ iLo2(t0)−
Vo

Lo2
(t − t0) (3)

Step 2 [t1, t2]: S3 turns OFF at time t1. iLr1(t1) is positive and CS4 is discharged. CS4
can be discharged to zero at t2 if Equation (4) is satisfied. Therefore, the ZVS operation of
S4 is achieved.

(Lr + N2
LLo)i2Lr1(t1) ≥ 2CossV2

in (4)

The time ∆t12 in this step is expressed in Equation (5).

∆t12 ≈ 2VinCossNL/iLo1(t1) (5)

where iLo1(t1) ≈ iLo1(t0) + (Vin/NL − Vo)de f f Tsw/Lo1.
Step 3 [t2, t3]: At t2, vCS4 = 0 and DS4 is conducting due to iLr1 > 0. Thus, the ZVS

turn-on operation of S4 can be naturally realized. Due to leg voltage vbc = 0, D1 and D2 are
both conducting. It can be observed that vLo1 = vLo2 = −Vo and vLr1 = -vS4,dp − vS6,dp, where
vS4,dp and vS6,dp are voltage drops on S4 and S6. In step 3, iLo1, iLo2 and iLr1 all decrease, iD1
increases and iD2 decreases.

Step 4 [t3, t4]: At t3, S6 is turned off. iLr1 will charge CS6 and discharge CS5. The ZVS
turn-on condition of S5 is given in Equation (6).

Lri2Lr1(t3) ≥ 2CossV2
in (6)

Step 4 ends at t4 when vCS5 = 0. The time ∆t34 in this step can be obtained in
Equation (7).

∆t34 ≈ 2VinCoss/iLr1(t3) (7)

Step 5 [t4, t5]: At t4, vCS5 = 0. Then DS5 is conducting due to iLr1(t4) > 0. The ZVS
operation of S5 is naturally realized. In step 5, the leg voltage vbc = −Vin and D1 and D2 are
still conducting. The inductor voltage vLr1 = −Vin. The output filter inductor voltages vLo1
= vLo2 = -Vo. Therefore, inductor currents iLo1, iLo2, and iLr1 all decrease. Step 5 ends at t5
when iD2 = 0. The time duration ∆t45 is derived as Equation (8):

∆t45 ≈ (IoLr)/(VinNL) (8)

The duty loss in this step can be derived in Equation (9).

d5 ≈ (IoLr fsw)/(VinNL) (9)

where fsw is the switching frequency. Then, the circuit operation will go to next half
switching cycle at time t5.

For high voltage input operation (2.3Vin,min ≤ Vin,H < 5Vin,min), ac switch Q is ON
and active devices S4 and S3 are OFF. Then, the full-bridge converter with switches S1, S2,
S5, and S6, as shown in Figure 1c, is operated with duty cycle control. The transformer
turns ratio on this equivalent circuit becomes NH = 2np/ns. The dc gain can be expressed
as Vo/Vin,H ≈ deff/NH. This can be observed in Figure 2b. The converter has five steps in
one-half of the switching period. The corresponding step circuits are given in Figure 4, and
the circuit operations are explained briefly in the following discussions.
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Step 1 [t0, t1]: The current iD1 = 0 at t0. Thus, D1 is OFF. In step 1, S1 and S6 are
conducting, vac = Vin, vLo1 = Vin/NH − Vo, and vLo2 = −Vo. The currents iLr1 and iLo1
increase and iLo2 decreases. Step 1 ends at t1 when S1 turns off.

Step 2 [t1, t2]: S1 is turned off at t1. iLr1 = iLr2 > 0 and CS2 (CS1) is discharged (charged)
by iLr2. The ZVS turn-on operation of S2 is expressed as Equation (10):

(2Lr + N2
H Lo)i2Lr2(t1) ≥ 2CossV2

in (10)

Step 3 [t2, t3]: vCS2(t2) = 0. iLr2 > 0 and DS2 is forward biased. At this moment, S2
is turned ON under zero voltage. The leg voltage vac = 0 and both diodes D1 and D2
conducting. Therefore, vLo1 = vLo2 = −Vo and vLr1 + vLr2 = −vS2,drop − vS6,drop − vQ,drop.
The currents iLo1, iLo2, iLr1, and iD2 decrease and iD1 increases.

Step 4 [t3, t4]: S6 turns OFF at t3. iLr1 charges (discharges) CS6 (CS5). The ZVS turn-on
condition of S5 is obtained as Equation (11):

2Lri2Lr2(t3) ≥ 2CossV2
in (11)

This step ends at t4 when CS5 is discharged to zero voltage.
Step 5 [t4, t5]: vCS5(t4) = 0. Since iLr1(t4) is positive, DS5 becomes forward biased. In

this step, vac = −Vin and D2 and D1 are ON. It can be obtained that vLr1 + vLr2 = −Vin, and
vLo2 = vLo1 = −Vo. iLo2, iLo1, and iLr1 all decrease. This step ends at t5 when iD2 = 0. The
time ∆t45 is obtained as Equation (12):

∆t45 ≈ (2IoLr)/(VinNH) (12)

The duty loss can be calculated in Equation (13).

d5 ≈ (2IoLr fsw)/(VinNH) (13)

At t5, the circuit operation will go to the next half switching period.

4. Steady State Analysis

In relation to the ON/OFF status of Q and S1–S6, two equivalent sub-circuits shown in
Figure 1 are operated to have a wide voltage input operation and a ZVS turn-on operation.
According to the voltage-second balance on Lo1 or Lo2, the load voltage Vo can be expressed
as Equation (14):

Vo =


nsVin,L

np
(d − ns Io Lr fsw

npVin,L
)− VD, Vin,min ≤ Vin,L < 2.3Vin,min

nsVin,H
2np

(d − ns Io Lr fsw
npVin,H

)− VD, 2.3Vin,min < Vin,L ≤ 5Vin,min
(14)

where d is the duty cycle on voltage vac or vbc. For the low voltage input condition,
NL = np/ns is obtained as Equation (15):

NL =
Vin,L

(Vo + VD)
(d − IoLr fsw

NLVin,L
) (15)

The winding turns of transformer T are expressed as np ≥ (Vin,mindmaxTsw)/(∆BAe)
and ns = np/NL. If the duty loss in (9) is defined, Lr1 and Lr2 can be approximated as
Equation (16):

Lr = Lr1 = Lr2 =
NLd5Vin

fsw Io
(16)



Processes 2021, 9, 580 9 of 16

In the presented circuit, the load current is equally distributed on inductors Lo1 and
Lo2, and ILo1 = ILo2 = Io/2. If the ripple currents of Lo1 and Lo2 are identical (i.e., ∆iLo1 =
∆iLo1 = ∆iLo), then Lo1 = Lo2 = Lo can be calculated in Equation (17).

Lo =
(Vo + VD)

∆iLo fsw
(1 − d +

ns IoLr fsw

npVin,L
) (17)

Then, the winding turns of Lo1 and Lo2 are obtained as nLo ≥ [Lo(Io + ∆iLo)/2]/
(Bmax Ae). The peak switch currents are approximated as Equation (18):

iSx,paek ≈
(Io + ∆iLo)/2

NL
+

∆iLm
2

=
(Io + ∆iLo)/2

NL
+

dVin,LTsw

2Lm
− Lr Io

2NLLm
(18)

where x = 1~6. From the ZVS conditions in (4) and (6), the ZVS operation of leading-leg
switches are easier to achieve than lagging-leg switches under the given inductance Lr1.
The necessary inductances Lr1 = Lr2 = Lr2 are derived as Lr ≥ 2CossV2

in/i2Lr1(t3) to achieve
the ZVS operation of lagging-leg switches S5 and S6. The voltage stress of S1–S6 and Q is
Vin,max. The voltage stress and dc currents of D2 and D1 are obtained as Vin,max/NL and
Io/2, respectively.

5. Experimental Results

The performance of the converter is confirmed from a laboratory circuit with 800 W
rated power. The electric specifications of the test circuit are Vin = 120–600 V, the output
voltage Vo = 48 V, the maximum power Po = 800 W, and fsw = 140 kHz. The presented
converter operates in the low voltage input condition if 120 V ≤ Vin < 270 V. Then, Q, S1,
and S2 are OFF. Likewise, the presented converter operates in the high voltage condition if
270 V < Vin ≤ 600 V. For the high voltage input operation, S3 and S4 are OFF and Q is ON.
A Schmitt trigger circuit with ±20 V voltage tolerance is selected to avoid control signal
oscillation at the transition voltage 270 V. Therefore, the actual low and high voltage input
ranges are Vin,L = 120–290 V and Vin,H = 250–600 V. Figure 5a gives the circuit parameters of
a prototype circuit. The phase-shift PWM integrated circuit UCC3895 is selected to produce
the gating waveforms of S5 and S6. The gating waveforms of S1–S4 are generated by the
logic gates and PWM output of UCC3895. Figure 5b gives the picture of the prototype
circuit in the laboratory test.

The experimental waveforms of the proposed converter at a low voltage input range
(Vin = 120~290 V) are given in Figures 6–9. The measured results under a high voltage input
range (Vin = 250~600 V) are given in Figures 10–13. Figure 6 provides the experimental
primary-side (Figure 6a) and secondary-side (Figure 6b) waveforms at Vin = 120 V and Po =
800 W. Note that the duty cycle on voltage vbc is close to 0.5, the ripple current on iLo1 + iLo2
is reduced compared to the ripple current on iLo1 or iLo2, and the resultant current iLo1 +
iLo2 has twice the switching frequency of currents iLo1 and iLo2. Figure 7a,b gives the PWM
signal of S3 at 20% power and 100% power with the Vin = 120 V input case. In the same
way, the PWM waveform of S5 (lagging-leg switch) at 50% and 100% loads are illustrated
in Figure 7c,d. Figures 8 and 9 provide the measured results of the presented converter
operated at Vin = 290 V in the low voltage input region. Since the higher input voltage
will result in a lower duty cycle, it is clear that the voltage vbc at Vin = 290 V input has less
duty ratio than in the Vin = 120 V input condition. It can also be noted in Figures 6b and 8b
that iLo1 + iLo2 has more ripple current at Vin = 290 V than Vin = 120 V. Figure 9 gives
the experimental waveforms of S3 in leading leg and S5 in lagging leg in the 290 V input
condition. It can be observed from Figures 7 and 9 that the ZVS turn-on operation of S3 is
realized from 20% power for both 120 V and 290 V input conditions. Likewise, the ZVS
turn-on operation of S5 is accomplished from 50% power under 120 V and 290 V input
cases. For a high voltage input range (Q is ON and S3 and S4 are OFF), the test results
are shown in Figures 10–13. For Vin = 250 V, the experimental results at 100% power are
given in Figure 10. The PWM signals of S1 and S5 are given in Figure 11. In the same way,
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the experimental waveforms for Vin = 600 V input are given in Figures 12 and 13. From
the experimental results in Figures 7, 9, 11 and 13, it can be observed that the leading-leg
switch, such as S1 and S3, can achieve ZVS operation from 20% load, and the ZVS operation
of S5 in the lagging leg is from 50% power. The measured results of Vin, vQ,g, vS1,g, and
vS3,g between 120V and 600 V input are shown in Figure 14. When Vin is increased from
120 V to 290 V, the presented circuit is controlled in the low voltage input range. Q, S1, and
S2 are OFF and S3 and S4 are controlled with the phase-shift PWM approach. When Vin
> 290 V, Q is ON and S3 and S4 are OFF. S1 and S2 are operated with duty cycle control.
When Vin is decreased from 600 V to 250 V, the converter is controlled in the high voltage
input range. The switch Q is ON and S3 and S4 are OFF. The test results in Figure 14 are
in agreement with the theoretical analysis. The test efficiencies of the proposed converter
are 89.3% and 91.2% for 120 V and 600 V input cases under a full load. The synchronous
rectifiers can be further used on the secondary side to reduce the conduction losses on D1
and D2 and improve the converter efficiency.
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6. Conclusions

A ZVS converter with three-leg circuit topology is presented and discussed, and an
800 W prototype is constructed and measured to achieve ZVS operation and a wide voltage
input operation. The presented converter is expected to be used for dc converters with
wide input-voltage or output-voltage demand such as dc wind power applications, battery
charger systems with wide voltage operation, and solar PV panel power units with variable
input voltage. The proposed converter with a phase-shift PWM scheme can be operated at
two equivalent circuits. Therefore, active devices in the leading leg are easily turned on
under zero voltage. The current doubler rectification circuit is operated on the low-voltage
side in order to have less output ripple current. Compared to conventional phase-shift
PWM converters, the studied circuit topology has a wider voltage input capability with
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the drawback of using an extra three switches in the presented converter. Finally, test
results with an 800 W prototype are provided to demonstrate circuit characteristics and the
validity of the operating principle.
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