
processes

Article

Analysis of a Series-Parallel Resonant Converter for DC
Microgrid Applications

Bor-Ren Lin

����������
�������

Citation: Lin, B.-R. Analysis of a

Series-Parallel Resonant Converter

for DC Microgrid Applications.

Processes 2021, 9, 542. https://

doi.org/10.3390/pr9030542

Academic Editor: Chang-Hua Lin

Received: 22 February 2021

Accepted: 17 March 2021

Published: 18 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan;
linbr@yuntech.edu.tw

Abstract: An input-series output-parallel soft switching resonant circuit with balance input voltage
and primary-side current is studied and implemented for direct current (DC) microgrid system
applications. Two resonant circuits are connected with input-series and output-parallel structure to
have the advantages of low voltage stresses on active devices and low current stresses on power
diodes. A balance capacitor is adopted on high voltage side to balance two input capacitor voltages.
The LLC (inductor–inductor–capacitor) resonant circuit cells are employed in the converter to have
soft switching operation for power semiconductors. The magnetic coupling component is adopted
on the primary-side to automatically realize current balance of the two resonant circuits. In the end,
a laboratory hardware circuit is built and tested. Experiments demonstrate and prove the validity of
the resonant converter.

Keywords: series-parallel resonant converter; zero-voltage switching; DC microgrid

1. Introduction

High efficiency power converters were widely presented and discussed for modern
industry products [1,2]. For high power demand, power converters with high input voltage
have been proposed for DC microgrid systems and DC light rail transportation power
units. The input voltage may be higher than 750 or 1500 V. The control strategies and basic
circuit topologies in DC microgrid have been presented and discussed in detail in [3,4].
Power semiconductors with high voltage rating capability have high cost, low frequency
operation and large conduction losses. Therefore, the circuit size cannot be reduced
due to limited switching frequency. To overcome this problem, the circuit topologies
with series-connected switches or converters [5–12] and multilevel converters [13–20] can
adopt low voltage stress and high switching frequency operation power switches in high
voltage input cases. Therefore, the voltage stress on active devices can be reduced in
these circuit topologies. However, power switches may have an unbalanced voltage rating
on these circuit topologies. Multilevel diode-clamped or flying circuit topologies have
been developed for converters or inverters with balance voltage rating on power switches.
The control scheme is usually based on duty cycle control [21,22] or variable frequency
control [23,24] to regulate load voltage and implement soft switching operation on power
devices. LLC (inductor–inductor–capacitor) resonant converters [25,26] have the benefits
of high circuit efficiency and less switching loss. However, the main drawback of the
parallel-connected resonant circuit is unbalanced resonant currents. Thus, the current
stresses on input power switches and output diodes are different.

A series-parallel resonant converter is presented and accomplished to achieve the
advantages of the balanced input capacitor voltages and balance diode currents on two
resonant circuits. The resonant converter presented has two LLC circuits with series–
parallel connection. To balance input voltages, a flying capacitor is employed on high
voltage side. A current balance component based on a magnetic-coupling core is used
between two resonant circuits to achieve current sharing on power diodes. Therefore,
the voltage and current balance issues on power semiconductors are all accomplished
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and achieved by using the voltage balance capacitor and magnetic-coupling component.
Two resonant circuits are operated at inductive load. Thus, the soft switching operation
on power semiconductors can be realized over the whole load range. Compared to past
three-level circuit topologies in [13,19,21], this circuit topology has simpler control and less
circuit components for high voltage input applications. Experiments of a laboratory circuit
with 750~800 V input voltage, 24 V output voltage and 40 A load current are demonstrated
to confirm the benefits of the circuit.

2. Presented Resonant Converter

Figure 1 gives the basic circuit diagram in a simplify DC microgrid. The input sources
of the DC microgrid may be DC or AC utility systems and clean energy power systems such
as solar power or wind power. The outputs of the DC microgrid may be the low or high
power DC loads, AC motor drives, battery storage systems or light rail transit applications.
For DC transportation or DC light rail transit system applications, the input DC bus
voltage may be 750 or 1500 V. For local industry factory and residential house applications,
the input DC bus voltage is 380 V. Thus, the DC bus voltage in the DC microgrid system
may be 380, 750 and 1500 V for universal power demands. Therefore, the high voltage input
DC–DC converters are needed for DC transportation or high power DC loads applications.
The proposed converter is presented to meet the demand of these applications.
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Figure 1. Simplified circuit schematic of a DC microgrid system. 
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Frequency modulation with constant duty cycle is employed to regulate load voltage Vo 
and produce the gate signals for Sa and Sb. The basic circuit analysis of LLC converter can 
be analyzed using the fundamental harmonic approach in [27]. When a LLC converter is 
operated at series resonant frequency, the resonant converter likes a high frequency 
isolated DC transformer with zero-voltage switching (ZVS) turn-on operation on power 
switches and zero-current switching (ZCS) turn-off operation on rectifier didoes. 
Fundamental frequency harmonic approach is usually used to approximately derive 
voltage gain of the resonant circuit. The turn-on time of Sa and Sb equals half of the 
switching period so that a square signal with 0 and Vin voltage values are observed on vab. 
The root-mean-square fundamental voltage of vab can be calculated as π/2 inV . 
However, the secondary winding current is a quasi-sinusoidal current so that vLm is a 

Figure 1. Simplified circuit schematic of a DC microgrid system.

2.1. Circuit Characteristics of a Conventional Resonant Converter

Figure 2a provides the circuit structure of conventional LLC converter. Lm, Lr and Cr
are the magnetizing inductance, series resonant inductance and series resonant capacitance,
respectively. Da and Db are rectifier diodes and Sa and Sb are power switches. Frequency
modulation with constant duty cycle is employed to regulate load voltage Vo and produce
the gate signals for Sa and Sb. The basic circuit analysis of LLC converter can be analyzed
using the fundamental harmonic approach in [27]. When a LLC converter is operated
at series resonant frequency, the resonant converter likes a high frequency isolated DC
transformer with zero-voltage switching (ZVS) turn-on operation on power switches
and zero-current switching (ZCS) turn-off operation on rectifier didoes. Fundamental
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frequency harmonic approach is usually used to approximately derive voltage gain of
the resonant circuit. The turn-on time of Sa and Sb equals half of the switching period so
that a square signal with 0 and Vin voltage values are observed on vab. The root-mean-
square fundamental voltage of vab can be calculated as

√
2Vin/π. However, the secondary

winding current is a quasi-sinusoidal current so that vLm is a quasi-square voltage signal
with nVo and −nVo voltage values. The root-mean-square value of vLm is derived as
2
√

2nVo/π. Figure 2b gives the ac equivalent circuit on the primary side. For high voltage
applications, the Insulated Gate Bipolar Transistor (IGBT) devices with 1200 V voltage
rating can be used for Sa and Sb, shown in Figure 2a. The switching frequency of IGBT
devices, however, is normally less than 400 kHz, and IGBT devices have serious switching
losses at turn-off instant.
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2.2. Proposed LLC Resonant Converter

Figure 3 provides the circuit schematic of the LLC converter presented. The input
voltage is about 750~800 V from DC microgrid or DC light rail power system. The converter
developed has two LLC circuits with series–parallel structure. Thus, the voltage stress of
Sa~Sd is reduced to Vin/2 and the average current of Da~Dd is reduced to Io/4. The first
LLC circuit have components Sa, Sb, Cr,a, Lr,a, Ta, Da and Db. The circuit components of
the second LLC circuit are Sc, Sd, Cr,b, Lr,b, Tb, Dc and Dd. Da~Dd are rectifier diodes. Cr1
and Cr2 are the resonant capacitances, Lr,a and Lr,b are resonant inductors and Lm,a and
Lm,b are the magnetizing inductors. Co, Cin,a and Cin,b are output capacitor and input
split capacitors. Capacitor Cf is connected between points b and c. If Sa and Sc are in
the on-state and Sb and Sd are in the off-state, then VCf = VCin,a. If Sa and Sc are turned
off and Sb and Sd are turned on, then VCf = VCin,b. Since the turn-on times of Sa~Sd are
identical and equal Ts/2, the average capacitor voltages are derived as VCf = VCin,a = VCin,b
= Vin/2. Therefore, input split DC voltages VCin,a and VCin,b are well balanced in each
switching cycle. For achieving current balance of two LLC circuits, a magnetic-coupling
(MC) component [28] is employed to achieve current sharing. If the inductor currents are
well balanced (|iLr,a| = |iLr,b|), then the induced voltages VLa = VLb = 0. If the inductor
currents are unbalanced (such as |iLr,a| > |iLr,b|), then VL,a is decreased to reduce iLr,a and
VLb is increased to increase iLr,b. After |iLr,a| = |iLr,b|, the voltages VLa and VLb are reduced
to zero. Thus, iLr,a and iLr,b can be automatically balanced under steady state by using the
MC component. The switching frequency is regulated to adjust voltage gain of the LLC
presented. Therefore, Vo is regulated at the reference voltage value Vo,ref.
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Figure 3. Circuit schematic of the inductor–inductor–capacitor (LLC) converter with
series–parallel structure.

3. Principle of Operation

The circuit operations of the LLC converter presented are discussed from the follow-
ing statements:

(1) Transformers Ta and Tb have identical turn-ratio na = nb = np/ns;
(2) Inductances Lm,a = Lm,b = Lm and Lr,a = Lr,b = Lr;
(3) Sa~Sc have identical output capacitances CSa = CSb = CSc = CSd = CS;
(4) Capacitances Cin,a = Cin,b and Cr,a = Cr,b = Cr.

The gate singles of power switches and key current and voltage waveforms per every
switching cycle are given in Figure 4. From the conducting states of power devices, it can
be observed that the converter presented has six operating steps for every switching cycle.
Figure 5 gives the topological circuits for the six operating steps.
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Step 1 (t0~t1): At time t < t0, Sa~Sd are all off and iLr,a > 0 and iLr,b < 0. Thus, iLr,a discharges
CSa and charges CSb and iLr,b discharges CSc and charges CSd. Due to iLr,a < iLm,a and iLr,b > iLm,b,
the diode currents iDb and iDc are positive. After time t > t0, vCSa and vCSc decrease to zero
voltage. Due to iSa(t0) < 0 and iSc(t0) < 0, the body diodes of Metal-Oxide-Semiconductor Field-
Effect Transistor (MOSFET) Sa and Sc conduct and vSa,ds and vSc,ds are zero voltage. Therefore,
switches Sa and Sc can turn on to realize a soft switching characteristic. In step 1, iLr,a < iLm,a
and iLr,b > iLm,b, the rectifier diodes Dc and Dd conduct, and VCf = VCin,a. Since the magnetizing
voltages vLm,a = –nVo and vLm,b = nVo, the magnetizing currents iLm,a and iLm,b decrease and
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increase, respectively. Under steady state operation and |iLr,a| = |iLr,b| operation, the induced
voltages VLa and VLb across the MC cell are equal to zero. (Lr,a and Cr,a) and (Lr,b and Cr,a) are
naturally resonant in converters 1 and 2, respectively with frequency fr = 1/2π

√
LrCr. If fs

> fr, then iDb and iDc will decrease to zero before Sa and Sd turn off. After the step 1, circuit
operation goes to step 2 when iDb = iDc = 0. If fs < fr, then iDb and iDc are still positive when Sa
and Sc turn off. Under this condition, the circuit will go to step 3.

Step 2 (t1~t2): If fs > fr, then iLr,a = iLm,a and iLr,b = iLm,b at time t1. Diodes Da~Dd are
turned off without reverse recovery current. (Cr,a, Lr,a and Lm,a) and (Cr,b, Lr,b and Lm,b) are
resonant in circuits 1 and 2, respectively with frequency fp = 1/2π

√
(Lm + Lr)Cr.

Step 3 (t2~t3): At t2, power devices Sa and Sc turn off. Due to iLr,a(t2) < 0 and
iLr,b(t2) > 0, CSa (CSb) and CSc (CSd) are charged (discharged) in step 3. Diodes Da and
Dd are forward biased to conduct load current. If the energies on Lr,a and Lr,b are greater
than the energies on CSa~CSd, then vSb,ds and vSd,ds will decrease to zero at t3.

Step 4 (t3~t4): At time t3, CSb and CSd discharge to zero voltage. Due to iLr,a(t3) < 0 and
iLr,b(t3) > 0, the body diodes of Sb and Sd conduct and Thus, Sb and Sd can turn on to realize
ZVS operation. Diodes Da and Dd conduct, vLm,a = nVo, vLm,b = −nVo, iLm,a increases, and
iLm,b decreases. (Lr,a and Cr,a) and (Lr,b and Cr,b) are naturally resonant in each LLC circuit.

Step 5 (t4~t5): At time t4, the magnetizing currents iLm,a and iLm,b equal iLr,a and
iLr,b, respectively. Thus, the secondary-side diodes Da~Dd are turned off without reverse
recovery current loss. (Lr,a, Cr,a and Lm,a) and (Lr,b, Cr,b and Lm,b) are naturally resonant in
each circuit, respectively.

Step 6 (t5~Ts + t0): At time t5, power devices Sb and Sd turn off. Due to iLr,a(t5) > 0
and iLr,b(t5) < 0, CSa (CSb) and CSc (CSd) are discharged (charged) in step 6. The diodes
Db and Dc are conducting. If the energies on Lr,a and Lr,b is greater than the energies on
CSa~CSd, then vSa,ds and vSc,ds will be decreased to zero at Ts + t0.
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4. System Analysis and Design Example

Two LLC resonant circuits with series–parallel structure are adopted to decrease volt-
age stresses on power switches and current stresses on power diodes. A flying capacitor
is employed to realize voltage balance on input capacitors. A magnetic-coupling com-
ponent is connected between two LLC circuits to accomplish current sharing. In current
balance condition and steady state operation, the primary and secondary voltages of the
magnetic-coupling component equal zero. The magnetic-coupling component is ignored
in the following discussion. Fundamental frequency analysis [27] is employed to obtain
voltage gain of the converter presented. It is observed that vab and vcd are square voltage
waveforms. (Lr,a and Cr,a) and (Lr,b and Cr,b) are resonant on circuits 1 and 2 to generate two
quasi-sinusoidal on iLr,a and iLr,b. The voltages vab and vcd at the fundamental frequency
are vab, f = vcd, f = Vin sin(2π fst)/π. If the circuit is operated at series resonant frequency,
then the conducting time of Da~Dd is equal to Ts/2. The secondary winding currents at
fundamental frequency are derived as iTa,sec = iTb,sec = π Io sin(2π fst− θ)/4. The fun-
damental magnetizing voltages are given as vLm,a, f = vLm,b, f = 4nVo sin(2π fst− θ)/π.
The ac equivalent resistances Rac,a and Rac,b on primary-side of Ta and Tb are derived
Rac,a = Rac,b =

vLm,a, f
iTa,sec/n = 16( n

π )
2Ro (Cr,a, Lr,a, Lm,a and Rac,a) and (Cr,b, Lr,b, Lm,b and Rac,b)

are resonant on each corresponding resonant tank. Figure 6a gives the resonant tank on
the primary-side of resonant circuit 1. The ac voltage gain of the circuit developed can be
expressed as.

|G( fs)| = vLm,a, f /vab, f = 1/

√
[1 +

1
KL

(1− 1
F2 )]

2
+ [Q(F− 1

F
)]

2
(1)

where fr = 1/2π
√

LrCr, KL = Lm,a/Lr,a, Q =
√

Lr/Cr/Rac,a and F = fs/fr. From Equation (1),
the gain voltage between the different load (Q) and normalized switching frequency (F)
under KL = 8 is provided in Figure 6b.

The converter studied is proved by a prototype based on the following conditions:
750 V~800 V input voltage, 24 V output voltage, 40 A load current and 120 kHz series
resonant frequency by Cr,a and Lr,a. Ta and Tb are implemented by magnetic cores TDK
EER-42 with 24 primary winding turns and 3 secondary winding turns. Based on the
turn-ratio of Ta and Tb, the maximum and minimum voltage gains of LLC converter are
provided in (2).

Gdc,max =
4n(Vo + Vf )

Vin,min
≈ 1.06, Gdc,min =

4n(Vo + Vf )

Vin,max
≈ 1 (2)

where Vf = 0.8 V on Da~Dd. At 100% output power, Rac,a and Rac,b are derived in (3).

Rac,a = Rac,b = 16(
n
π
)

2
Ro ≈ 62.25Ω (3)

In the prototype, the selected Q is 0.3 to obtain the maximum gain at low voltage
input under full load. The inductor ratio KL is selected as 8 to reduce the circulating current
losses on magnetizing inductor. With the given KL, fr and Q, the components Lr,a, Lr,b, Cr,a,
Cr,b, Lm,a and Lm,b are derived:

Lr,a = Lr,b =
QRac,a

2π fr
≈ 25µH (4)

Cr,a = Cr,b =
1

4π2Lr1 f 2
r
≈ 70nF (5)

Lm,a = Lm,b = KLLr,a ≈ 200µH (6)



Processes 2021, 9, 542 8 of 14

The root-mean-square magnetizing currents iLm,a,rms and iLm,a,rms at series resonant
frequency 120 kHz are calculated as

iLm,a,rms = iLm,b,rms =
1

2
√

3
nVo

2 fsLm,a
≈ 1.155A (7)

The primary-side root-mean-square load currents at full load are expressed as

iTa,pri,rms = iTb,pri,rms =
π

4
√

2
Io

n
≈ 2.78A (8)

Therefore, the root-mean-square resonant inductor currents are obtained as

iLr,a,rms = iLr,b,rms =
√

i2Lm,a,rms + i2Ta,pri,rms ≈ 3A (9)

Due the circuit structure, the voltage rating of power devices Sa~Sd is obtained as

vSa,stress = vSb,stress = vSc,stress = vSd,stress = Vin,max/2 = 400V (10)

The root-mean-square switch currents iSa,rms~iSd,rms are obtained in (11).

iSa,rms = iSd,rms = iLa,a,rms/
√

2 ≈ 2.13A (11)

MOSFETs SIHG20N50C with 500 V/20 A rating are employed for power devices
Sa~Sd. The voltage and average current ratings of diodes Da~Dd are expressed as

vDa,stress = vDb,stress = vDc,stress = vDd,stress = 2(Vo + Vf ) ≈ 49.6V (12)

iDa,av = iDb,av = iDc,av = iDd,av = Io/4 = 10A (13)
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MBR40100PT with 100 V/40 A ratings are employed for power diodes Da~Dd. The in-
put capacitances, voltage balance capacitance and output capacitances are Cin,a = Cin,b =
440 µF/450 V, Cf = 1 µF/630 V and Co = 4400 µF/100 V.

5. Experimental Results

Experiments are given to confirm the circuit performance. The circuit components
of the converter presented are derived in the previous section. Figure 7 demonstrates
the test waveforms of Sa~Sd under 100% rated power. It is clear that Sa (Sb) and Sc (Sd)
have the same gate signal. Therefore, the square voltage waveforms can be generated on
voltages vab and vcd. Due to the converter needing a higher voltage gain at Vin = 750 V
than Vin = 800 V, the switching frequency of Sa~Sd at Vin = 750 V input (Figure 7a) is lower
than the switching frequency at Vin = 800 V input (Figure 7b). Figure 8 provides the test
waveforms of vSa,gs, vSa,ds and iSa at different input voltage and output power conditions.
From the experimental results, one can observe that zero voltage switching of Sa is realized
from 5% to 100% load over the whole input voltage range. Since the other switches Sc~Sd
have the same circuit characteristics as switch Sa, it can be concluded that the soft switching
operation of Sc~Sd is also accomplished from 5% load to full load. Figure 9 demonstrates
the test results of vCr,a, vCr,b, iLr,a and iLr,b of two half-bridge resonant circuits at 100%
rated power. The two currents iLr,a and iLr,b are well balanced for different input voltage
cases. Figure 10 illustrates the experimental waveforms of iDa~iDd under 100% rated power.
The diode currents are also well balanced between two resonant circuits. Figure 11 gives
the test results of VCin,a, VCin,b and VCf at 800 V input and 100% rated power. The voltage
variation between VCin,a and VCin,b is 5 V under full load. The measured circuit efficiencies
are 91.4%, 94.8% and 93.7% at 96, 480 and 960 W output power, respectively. The measured
switching frequencies are 117 kHz (152 kHz), 110 kHz (135 kHz) and 99 kHz (120 kHz) at
96, 480 and 960 W output load under 750 V (800 V) input operation. Figure 12 provides the
test waveforms of the load voltage and load current under load step response. It is clear
that the load voltage is stable without serious voltage variation.Processes 2021, 9, 542 10 of 15 
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Figure 7. Measured waveforms vSa,gs~vSs,gs at 100% rated power under (a) 750 V input voltage 
(vSa,gs~vSd,gs: 10 V/div; time: 2 μs) and (b) 800 V input voltage (vSa,gs~vSd,gs: 10 V/div; time: 2 μs). 
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Figure 7. Measured waveforms vSa,gs~vSs,gs at 100% rated power under (a) 750 V input voltage
(vSa,gs~vSd,gs: 10 V/div; time: 2 µs) and (b) 800 V input voltage (vSa,gs~vSd,gs: 10 V/div; time: 2 µs).



Processes 2021, 9, 542 10 of 14

Processes 2021, 9, 542 10 of 15 
 

 

vSa,gs

vSb,gs

vSc,gs

vSd,gs

 
(a) 

vSa,gs

vSb,gs

vSc,gs

vSd,gs

 
(b) 

Figure 7. Measured waveforms vSa,gs~vSs,gs at 100% rated power under (a) 750 V input voltage 
(vSa,gs~vSd,gs: 10 V/div; time: 2 μs) and (b) 800 V input voltage (vSa,gs~vSd,gs: 10 V/div; time: 2 μs). 

vSa,gs

vSa,ds

iSa

 
(a) 

Processes 2021, 9, 542 11 of 15 
 

 

vSa,gs

vSa,ds

iSa

 
(b) 

vSa,gs

vSa,ds

iSa

 
(c) 

vSa,gs

vSa,ds

iSa

 
(d) 

Figure 8. Experimental waveforms of vSa,gs, vSa,ds and iSa under (a) 750 V input and 5% load (vSa,gs: 10 
V/div; vSa,ds: 200 V/div; iSa: 2 A/div; time: 2 μs), (b) 750 V input and 100% load (vSa,gs: 10 V/div; vSa,ds: 
200 V/div; iSa: 5 A/div; time: 2 μs), (c) 800 V input and 5% load (vSa,gs: 10 V/div; vSa,ds: 200 V/div; iSa: 2 
A/div; time: 2 μs) and (d) 800 V input and 100% load (vSa,gs: 10 V/div; vSa,ds: 200 V/div; iSa: 5 A/div; 
time: 2 μs). 

Figure 8. Experimental waveforms of vSa,gs, vSa,ds and iSa under (a) 750 V input and 5% load (vSa,gs:
10 V/div; vSa,ds: 200 V/div; iSa: 2 A/div; time: 2 µs), (b) 750 V input and 100% load (vSa,gs: 10 V/div;
vSa,ds: 200 V/div; iSa: 5 A/div; time: 2 µs), (c) 800 V input and 5% load (vSa,gs: 10 V/div; vSa,ds:
200 V/div; iSa: 2 A/div; time: 2 µs) and (d) 800 V input and 100% load (vSa,gs: 10 V/div; vSa,ds:
200 V/div; iSa: 5 A/div; time: 2 µs).
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Figure 9. Experimental waveforms of vCr,a, vCr,b, iLr,a and iLr,b at 100% rated power under (a) Vin = 750 
V (vCr,a, vCr,b: 100 V/div; iLr,a, iLr,b: 10 A/div; time: 2 μs) and (b) Vin = 800 V (vCr,a, vCr,b: 100 V/div; iLr,a, 
iLr,b: 10 A/div; time: 2 μs). 
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Figure 9. Experimental waveforms of vCr,a, vCr,b, iLr,a and iLr,b at 100% rated power under (a) Vin = 750 V
(vCr,a, vCr,b: 100 V/div; iLr,a, iLr,b: 10 A/div; time: 2 µs) and (b) Vin = 800 V (vCr,a, vCr,b: 100 V/div; iLr,a, iLr,b:
10 A/div; time: 2 µs).
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6. Conclusions

A series–parallel connected resonant circuit with the benefits of low current and volt-
age ratings, balance voltage on active switches, balance current on power components,
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and soft switching operation on power devices is proposed, discussed and implemented
in this paper. The voltage balance of input split capacitors is achieved by a flying ca-
pacitor. The current sharing of two resonant tanks is realized by a magnetic-coupling
core. Frequency-control modulation is used to adjust voltage gain of the LLC converter.
Therefore, the load voltage is well controlled for different input voltage and output current.
Since the resonant circuit is worked at the inductive impedance, power semiconductors
can be controlled at soft switching operation. The converter presented can be applied in
DC light rail vehicles and a DC microgrid bipolar voltage system with high voltage input
applications. Finally, experimental tests are given and demonstrate the practicability of the
proposed circuit.
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