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Abstract: Wind energy is a clean energy source and is receiving widespread attention. Improving
the operating efficiency and economic benefits of wind power generation systems depends on
more accurate short-term wind speed predictions. In this study, a new hybrid model for short-
term wind speed forecasting is proposed. The model combines variational modal decomposition
(VMD), the proposed improved seagull optimization algorithm (ISOA) and the kernel extreme
learning machine (KELM) network. The model adopts a hybrid modeling strategy: firstly, VMD
decomposition is used to decompose the wind speed time series into several wind speed subseries.
Secondly, KELM optimized by ISOA is used to predict each decomposed subseries. The ISOA
technique is employed to accurately find the best parameters in each KELM network such that the
predictability of a single KELM model can be enhanced. Finally, the prediction results of the wind
speed sublayer are summarized to obtain the original wind speed. This hybrid model effectively
characterizes the nonlinear and nonstationary characteristics of wind speed and greatly improves the
forecasting performance. The experiment results demonstrate that: (1) the proposed VMD-ISOA-
KELM model obtains the best performance for the application of three different prediction horizons
compared with the other classic individual models, and (2) the proposed hybrid model combining
the VMD technique and ISOA optimization algorithm performs better than models using other data
preprocessing techniques.

Keywords: wind speed forecasting; kernel extreme learning machine; seagull optimization algorithm

1. Introduction

To achieve global clean energy development, reduce greenhouse gas emissions and
prevent the crisis of the depletion of nonrenewable fossil energy reserves, the large-scale
use of clean energy has become a global energy development trend [1,2]. Among the
various widely used new energies, wind energy is used worldwide due to its wide energy
distribution, pollution-free nature and sustainability, and it is of great significance to tap
into the potential of wind energy to adjust the traditional energy structure. According to a
report released by the Global Wind Energy Association (GWEC) in 2019, the global installed
capacity of wind power in 2019 was 60.4 GW, reaching a total of 651 GW. As of the end of
2019, China’s cumulative installed wind power capacity reached 210 MW [3]. The chaotic,
random and intermittent characteristics of wind speed pose considerable challenges to
power systems. The violent fluctuation of wind power in a short period of time causes a
short-term imbalance of the power system, which may cause the power system to collapse.
Therefore, accurate wind speed forecasting is critical to accurately predicting the output
power of wind power and stabilizing the operating state of the power system.
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At present, wind speed prediction methods mainly include the following four meth-
ods: (i) the physical model method, (ii) the time series method, (iii) the spatial correlation
method and (iv) the artificial intelligence method [4–6]. The physical model method mainly
uses the physical parameters when the wind speed generates the background to construct
complex mathematical equations, and uses numerical weather prediction (NWP) for simu-
lation. Classic numerical simulation approaches include the high-resolution limited area
model (HIRLAM) [7], the fifth-generation mesoscale model (MM5) [8] and the weather re-
search and forecast model (WRF) [9]. However, physical methods have disadvantages such
as a difficulty in obtaining physical data, the consumption of many computing resources
and being unsuitable for short-term wind speed prediction [10]. The time series method
uses the potential before and after information and correlation in the historical wind speed
data to build a model. Common wind speed statistical models include autoregressive
(AR) [11], autoregressive moving average (ARMA) [12], autoregressive integrated moving
average (ARIMA) [13] and autoregressive fraction moving average (ARFIMA) [14] models.
Although time series approaches are simpler and more economical when compared with
physical model methods, they are also limited by the nonlinearity and nonstationarity of
the wind speed time series. As a unique method, the spatial correlation model starts from
the relevant wind speed data around the wind speed center and selects appropriate sites
to build a spatial model. Samalot et al. [15] successfully combined Kalman filtering and
Kriging to reduce the bias of the weather research and forecasting (WRF) model. However,
this method has strict measurement requirements and is difficult to implement.

In addition, with the rise of artificial intelligence, artificial intelligence methods have
shown strong advantages in the extraction of the nonlinear characteristics of wind speed
fluctuations, and have gradually become a research hotspot in the field of prediction. Many
methods including artificial neural networks (ANNs) [16,17], support vector machines
(SVMs) [18,19] and fuzzy logic (FL) methods [20,21] have been applied to wind speed
prediction. Monfared et al. [22] combined fuzzy logic with an artificial neural network,
which not only effectively reduced the rule base but also improved the accuracy of predict-
ing wind speed. Li et al. [23] studied the application of adaptive linear elements (ALEs),
back propagation (BP) and radial basis functions (RBFs) to these three neural networks
in 1-h wind speed prediction and proposed that the best prediction model is related not
only to the type of neural network but also to the data source. Guo et al. [24] proposed
a backpropagation neural network wind speed prediction method to eliminate seasonal
effects to predict daily average wind speed. This method can effectively eliminate seasonal
effects from actual wind speed data. Zhang et al. [25] proposed a two-step method to
determine the connection weight of the RBF network to predict the future wind speed
interval. Compared with the traditional multilayer perceptron (MLP) method, this method
can effectively increase the prediction interval. Compared with the traditional neural net-
work, the extreme learning machine (ELM) has faster convergence speed and less human
intervention, which leads to its strong generalization ability for heterogeneous datasets [26].

The neural network improves the prediction accuracy of wind speed series to a certain
extent. However, the instability of the wind speed sequence and the corresponding noise
also create considerable interference in the neural network model training process. In the
end, the model training effect is not good, and the wind speed prediction error is large.
Therefore, to solve the random interference of the wind speed sequence, various prepro-
cessing technologies have been developed. Liu et al. [27] used wavelet transform (WT)
preprocessing technology to decompose the original sequence into multiple wind velocity
subsequences, and then made predictions through the echo state network. Niu et al. [28]
used empirical mode decomposition (EMD) to decompose the original signal and then pre-
dicted each subsequence through the general regression neural network (GRNN) optimized
by the fruit fly algorithm (FOA), which improved the accuracy of wind prediction. EMD
cannot effectively decompose the original wind speed series due to its disadvantages such
as end effects and modal aliasing. After that, Ren et al. [29] studied the prediction model
based on EMD, its improved version and two intelligent algorithms, and finally suggested
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complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)and
support vector regression (SVR) as the best wind speed prediction method. Zhou et al. [30]
proposed a hybrid framework for multilevel wind speed prediction based on variational
model decomposition (VMD) and convolutional neural networks. Furthermore, chaos
theory has increasingly attracted attention. Multifractal patterns of wind speed can be
obtained through chaotic characteristics analysis. Jiang et al. [31] employed a hybrid linear-
nonlinear modeling method based on chaos theory to capture the linear and nonlinear
factors hidden in wind speed time series, which contained VMD technology to remove the
noise in original data. The experimental results showed that the hybrid model was more
accurate compared with other models.

Based on the analysis above, artificial intelligence methods have been the most ex-
tensive and successful approaches to short-term wind speed prediction, but the predic-
tion ability of a single artificial intelligence method is limited. Hybrid approaches have
shown better performance than single models. Therefore, it has gradually become a pop-
ular trend to apply data preprocessing techniques before sending wind speed data into
forecasting models.

In this study, a novel hybrid strategy is proposed that includes three portions: data
preprocessing, optimization and forecasting. Specifically, based on the decomposition
and integration strategy, VMD decomposition is used to decompose the original wind
speed series into several variational modes to filter out the noise in the original wind speed
time series. Then, the KELM prediction network is applied to the problem of wind speed
forecasting. At the same time, the improved seagull optimization algorithm is used to
optimize the kernel parameters of the KELM network, thereby forming a hybrid model.

The main contributions and innovations of this research are as follows: (1) data
preprocessing technology is included to reduce the volatility and randomness of wind
speed series and improve the accuracy of prediction. VMD decomposes the original
wind speed series into a set of relatively stable modes. (2) In the prediction phase, the
kernel function is added to ELM to map the one-dimensional wind speed sequence to the
high-dimensional space for prediction, which reduces the difficulty of prediction. (3) An
improved seagull optimization algorithm (ISOA) is proposed to determine the two best
parameters in KELM simultaneously. In the prediction phase, ISOA continuously searches
for the two parameters of the kernel function in KELM. At the same time, each search
can retain the optimal approximate solution, so that the KELM network can be optimized,
and the prediction accuracy and stability of the prediction are improved. (4) A systematic
assessment system is established to evaluate the forecasting ability of our developed
hybrid model. Four multistep prediction experiments and three performance indicators
are included in this study to compare and analyze the forecasting capacity of the proposed
hybrid model in each case.

2. Methods

The technologies used in the hybrid strategy are introduced in this section, including
the data preprocessing technology (VMD), the KELM network and the improved seagull
optimization algorithm. In the last part, the workflow of the hybrid strategy is presented.

2.1. Variational Mode Decomposition (VMD)

VMD is a novel signal decomposition method that was proposed by Dragomiretskiy
and Zosso in 2014 [32], which decomposes a one-dimensional signal into a limited number
of modes with a center frequency bandwidth through an iterative search. VMD has good
adaptive ability and can overcome modal aliasing. It can decompose nonstationary wind
speed time series into subseries called intrinsic mode functions (IMFs). Each subseries
contains rich information. The mathematical model of VMD can be expressed as follows:
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where f is the signal to be decomposed, δ(t) is the impulse function and uk and ωk are the
k-th mode component and the corresponding center frequency, respectively.

To solve the optimization problem of Formula (1), we introduce the terms of the
Lagrange multiplier operator λ and quadratic penalty factor α:
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The following shows the whole process of VMD decomposition:
Step 1: Set the initial values of {û1

k},
{

ω1
k
}

, {λ̂1} and n, where ˆ uses the Parse-
val/Plancherel Fourier equidistant transform for conversion to the frequency domain.

Step 2: Use Equations (3)–(5) to update {û1
k},
{

ω1
k
}

and {λ̂1}, respectively;

ûn+1
k (ω) =

f (ω)− ∑
i 6=k

ûi(ω) + λ(ω)
2

1 + 2α(ω−ωk)
2 , (3)

ωn+1
k (ω) =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
, (4)

λ̂n+1(ω) = λn(ω) + τ

(
f (ω)−∑

k
un+1

k (ω)

)
, (5)

Step 3: Go to step 2. until the iterative stop condition of Equation (6) is satisfied and
output the result.

∑
k

‖ûn+1
k − ûn

k ‖
2

‖ûn
k ‖

2 < e. (6)

2.2. Kernel Extreme Learning Machine

KELM is a single hidden layer feedforward neural network (SLFN). Traditional feed-
forward neural network training speed is slow and easily falls into local minimums, and
the selection of the learning rate is sensitive. ELM randomly generates the connection
weight between the input layer and the hidden layer and the threshold of the hidden layer
source to obtain a unique optimal solution. For N arbitrarily distinct samples (xi, oi), where
xi = [xi1, xi2, · · · , xim]

T ∈ Rn and oi = [oi1, oi2, · · · , oim]
T ∈ Rm, the output of an ELM with

L hidden neurons can be expressed as

Θ(xi) =
L

∑
i=1

βig(ai · xj + bi) = oj, j = 1, 2, . . . , N, (7)

where g(·) represents the activation function of the hidden layer, ai = [ai1, ai2, · · · , aim]
T

is the input weight vector, βι = [βi1, βi2, · · · , βim]
T is the output weight vector and bi is

the bias.
Equation (7) can be simplified as

Hβ = T, (8)
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where

H =

 h(x1)
...

h(xN)

 =

 g(a1 · x1 + b1) · · · g(aL · x1 + bL)
...

...
...

g(a1 · xN + b1) · · · g(aL · xN + bL)


N×L

, (9)

β =

 βT
1
...

βT
L


L×m

and T =

 tT
1
...

tT
L


L×m

, (10)

where H is called the ELM hidden layer output matrix. Training a network of ELMs can be
understood as finding a suitable set of â, b̂ and β̂ satisfying:

‖H(â, b̂)β̂− T‖ = min
a,b,β
‖H(a, b)β− T‖, (11)

The regularization coefficient C is introduced and the regularized least square solution
is obtained:

β̂ = HT(I/C + HHT)
−1

T, (12)

Thus, the output function of the ELM model is transformed into:

Θ(x) = h(x)β̂ = Hβ̂, (13)

KELM combines the ELM algorithm with a kernel function. The idea of the kernel
function is to map the input spatial sample data to the high-dimensional feature space, and
replace the inner product operation in the transformed high-dimensional space with the
kernel function operation in the original input space.

In the KELM, the HHT of Equation (12) is constructed as follows:

HHT(i, j) = K(xi, xj), (14)

Then, we can deduce Equation (15),

HHT = ΩELM = h(xi) · h(xj) = K(xi, xj), (15)

where K(·, ·) denotes the kernel functions. It can be seen that KELM’s output function Θ(x)
and the output layer β are as follows:

Θ(x) = h(x) · β =

 K(x, x1)
...

K(x, xN)

(I/C + ΩELM)−1T

β = (I/C + ΩELM)−1T

, (16)

It is worth noting that the Gaussian kernel function is employed in this paper according
to the Mercer theorem as follows:

K(xi, xj) = e
−
‖xi−xj‖

2

γ2 , (17)

where γ2 represents the parameter of the kernel function. Therefore, there are two param-
eters that need to be adjusted in KELM, and the accuracy of KELM can be improved by
adjusting C and γ.

2.3. The Proposed ISOA Algorithm
2.3.1. Seagull Optimization Algorithm

An increasing number of scholars have become committed to the design and develop-
ment of new intelligent optimization algorithms. Dhiman G and Kumar V [33] developed
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a new type of bioinspired optimization algorithm, the seagull optimization algorithm,
by studying the biological characteristics of seagulls. Seagulls live in groups, using their
intelligence to find and attack their prey. The most important characteristics of seagulls are
migration and aggressive behavior. The mathematical expression of the natural behavior
of seagulls is as follows.

During the migration process, seagulls move from one position to another and meet
three conditions:

• Avoid collision: To avoid collisions with other seagulls, variable A is employed to
calculate the new position of the search seagull.

Cs(t) = A× Ps(t), (18)

where Cs(t) represents a new position that does not conflict with other search seagulls,
Ps(t) represents the current position of the search seagull, t represents the current itera-
tion and A represents the motion behavior of the search seagull in a given search space.

A = fc − (t× ( fc/Maxiteration)), (19)

where t = 0, 1, 2, . . . , Maxiteration, fc can control the frequency of the variable, and its
value drops from 2 to 0.

• Best position: After avoiding overlapping with other seagulls, seagulls will move in
the direction of the best position.

Ms(t) = B× (Pbs(t)− Ps(t)), (20)

where Ms(t) represents the positions of the search seagull. B is the random number
responsible for balancing the global and local search seagull.

B = 2× A2 × rd, (21)

where rd is a random number that lies in the range of [0, 1].
• Close to the best search seagull: After the seagull moves to a position where it does

not collide with other seagulls, it moves in the direction of the best position to reach
its new position.

Ds(t) = |Cs(t) + Ms(t)|, (22)

where Ds(t) represents the best fit search seagull.

Seagulls can constantly change their attack angle and speed during their migration.
They use their wings and weight to maintain height. When attacking prey, they move in a
spiral shape in the air. The motion behavior in the x, y and z planes is described as follows:

x = r× cos(θ), (23)

y = r× sin(θ), (24)

z = r× θ, (25)

r = u× eθv, (26)

where r is the radius of the spiral and θ is a random angle in the range of [0, 2π]. u and v
are the correlation constants of the spiral shape, and e is the base of the natural logarithm.
The attack position of seagulls is constantly updated.

Ps(t) = Ds(t)× x× y× z + Pbs(t), (27)

where Ps(t) saves the best solution and updates the position of other search seagulls.
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2.3.2. Improved Seagull Optimization Algorithm (ISOA)

The SOA algorithm has the advantages of solving large-scale constrained problems,
low computational cost, and fast convergence speed. Compared with other optimization
algorithms, it has strong advantages. However, the global optimization search process of
SOA is linear as shown in Equation (19). This linear search method means that the global
search capability of SOA cannot be fully utilized. Therefore, we propose a nonlinear search
control formula as shown in Equation (28), which can target the seagull group exploration
process stage and improve the speed and accuracy of the algorithm.

A = fc ×
1

e4·( t
Maxiteration

)
4 , (28)

where e represents the base of natural logarithm.
The specific implementation procedures of the proposed ISOA are shown as below:
Step 1: Set the initial parameters of the SOA, including A, B, Maxiteration, fc = 2, u = 1,

and v = 1.
Step 2: Initialize the seagull population.
Step 3: Use the calculated fitness function to calculate the fitness value of each seagull

and select the current best seagull position.
Step 4: Choose different strategies to update seagull migration and attack positions

according to the description in Section 2.3.2.
Step 5: Repeat steps 3 and 4 to update the best seagull position and fitness value until

the maximum number of iterations is reached.
Step 6: Obtain the final best seagull position and fitness value.

2.4. Workflow of the Hybrid Model

Through decomposition-based data preprocessing technology, VMD, SOA and KELM
were combined to establish a hybrid method for wind speed prediction. To improve
the prediction accuracy and search speed, an improved seagull algorithm was used to
synchronously search the optimal parameters C and σ2 of KELM. The root mean square
error was used as the fitness function. The workflow of this study is provided in Figure 1
and detailed explanations are given below.

2.4.1. Data Preprocessing

The original wind speed sequence was volatile and random. At this stage, VMD
technology was used to decompose the complex wind speed data. The modes decomposed
by VMD had their own center frequencies, which were stable relative to the original wind
speed time series.

2.4.2. Hybrid Models Forecasting

The KELM model was used as the basic predictive model of the system because of
its advantages of fast learning and a super-nonlinear description ability. The decomposed
subseries were respectively predicted by the KELM model. ISOA was used to find the two
best parameters of KELM at the same time in the subseries prediction process to ensure
that the prediction of each subseries was optimal. The two parameters of each subseries
reached the optimal value when the number of iterations reach the maximum. Then, the
forecasting results of these models were combined together to obtain the final wind speed
forecasting result. The ISOA-KELM process is shown in Figure 1.

2.4.3. Multi-Step ahead Forecasting

The developed combined model was employed in this study to forecasting short-term
wind speed. One-step, two-step and three-step forecasts were included in this study. Multi-
step forecasting was conducted to evaluate the predictive ability of the proposed strategy.
The description of multi-step ahead forecasting is as follows: assume that the input datasets
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are {x(t− 5), x(t− 4), · · · x(t− 1), x(t)} and the output datasets are {x(t + l)}, where t
donates a certain moment and l donates the forecast horizon. When l is equal to a positive
integer, set the output data to ŷ(l) = x(t + l). At this time, ŷ(l) is the l-step ahead forecast
value of the original x(t + l).
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3. Experimental Design
3.1. Data Description

The experimental data for this study were taken from the Shanghai (SH) wind farm,
which possesses rich wind energy resources. These data sets were collected on 8 April,
4 July, 20 October and 15 January 2019. All data sets included 1006 points, which were
recorded every 10 min and lasted approximately a week. The first six datasets were used
for preheating, and the entire dataset was divided into a training set and a test set before
the experiment. The first 80% was used for training, and the last 20% was used for testing.
The maximum (Max.), minimum (Min.), mean, median (Med.), standard deviation (SD),
kurtosis (Kurt.) and skewness (Skew) of the four data sets were also recorded, as shown in
Table 1.

Table 1. Statistical indicators of the four datasets.

Dataset Period
Statistics Indicator

Max.
(m/s)

Min.
(m/s)

Mean
(m/s)

SD
(m/s) Skew. Kurt.

Spring 8–14 April 15.17 0.37 6.97 2.79 0.19 2.31
Summer 4–10 July 21.39 0.12 7.36 4.32 1.27 4.14
Autumn 20–26 October 12.58 0.76 5.63 2.14 0.25 2.77
Winter 15–21 January 12.34 0.93 6.45 1.97 −0.11 3.07

3.2. Performance Metrics

The value predicted by the model often had an error with regard to the true value. The
performance indicator evaluates the prediction effect of different models by evaluating the
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error between the observed value and the predicted value. Different evaluation indicators
have different evaluation capabilities. In this study, the mean absolute error (MAE), root
mean square error (RMSE) and mean absolute percentage error (MAPE) were calculated.
The calculation methods of MAE and RMSE offset the positive and negative prediction
errors, taking into account the average degree of error between the predicted value and
the observed value. MAPE is the average value of absolute error and is the most widely
implemented indicator used to reflect the effectiveness and reliability of aproposed new
model. To explain the performance indicators more clearly, Table 2 lists the definitions
and specific formulas of the four error indicators. Here Yo(i) and Ŷp(i) represent the actual
value and the predicted value, respectively, and N is the sample size.

Table 2. Three error metrics.

Metrics Definition Equation

MAE Mean absolute error MAE = 1
N

N
∑

i=1

∣∣Yo(i)− Ŷp(i)
∣∣

RMSE Root-mean-square error RMSE =

√
1
N

N
∑

i=1

(
Yo(i)− Ŷp(i)

)2

MAPE Absolute percentage error MAPE = 1
N

N
∑

i=1

∣∣∣∣Yo(i)−Ŷp(i)
Yo(i)

∣∣∣∣× 100%

4. Different Experiments and Relative Analysis

In this section, a detailed evaluation and analysis of the proposed model are carried
out. Two sets of experiments are designed, and the graphs and tables visually show the
corresponding prediction results and evaluation indicators. The experimental setup and
results are as follows.

4.1. Experimental Setup

Two sets of comparative experiments were used to compare the forecasting ability
between the proposed model and other comparable models. Experiment 1 compared
the proposed combined model with five independent models to investigate its prediction
performance. Experiment 2 compared the forecasting accuracy between the proposed
model and models using various data preprocessing technologies. The four data sets were
tested by all models. The results of multistep ahead forecasting further illustrated the
forecasting capability of different models. Three error evaluation indicators were used
to quantify the predictive ability. The smaller the value of error criteria, the better the
predictive performance.

In Experiment 1, we selected five widely used individual models (BP, SVM, LSTM,
ELM and KELM) as the control group of the comparative experiment. In order to compare
the developed strategy with the prediction ability based on different data preprocess-
ing technologies, such as discrete wavelet transform (DWT), EMD and complementary
ensemble empirical mode decomposition (CEEMD), we conducted experiment 2.

4.2. Experiment I: Comparison with Other Individual Models

Table 3 shows the comparison of the results of the proposed model and the other
individual models in the four seasons datasets. Figures 2–4 show the forecasting results of
individual forecasting models in SH in April. At the top of the chart, the predicted results
versus 10 min interval sampling points for all forecasting models are shown. Below, the
error distribution diagram of forecasting and the scatter diagram of each individual model
are presented.

For SH Apr, in the one-step forecasting, the proposed model showed the best MAE,
RMSE and MAPE scores at 0.315, 0.408 and 6.606% respectively, followed by the KELM
model, whose values for MAE, RMSE and MAPE were 0.888, 1.190 and 17.373% respectively.
The worst was the BP neural network, with MAE, RMSE and MAPE scores of 1.247, 1.642
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and 30.167%, respectively. When the model forecasting was two-step, the developed model
had the best accuracy with an RMSE of 0.436. In the three-step, the proposed model still
had the best predictive ability with an RMSE of 0.496, but the second most accurate model
was the BP network. Figures 4–6 shows the prediction results of the proposed model and
the individual model in the spring experimental series (SH Apr).
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For SH July, when the forecasting is one-step, the proposed VMD-ISOA-KELM hybrid
model achieves the highest accuracy with a MAPE value of 3.140%. Comparatively, the
individual models have fairly lower MAPE values of 9.792%, 7.434%, 8.561%, 7.355% and
7.342%, respectively. In the two-step and three-step forecasting, the developed combined
model is more effective than the other methods for wind speed forecasting. Meanwhile,
KELM has the lowest MAPE values at 7.342% and 9.883% in the one-step and two-step
among the remaining four individual models.
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For SH Oct, according to the evaluation criteria shown in Table 3, the proposed model
still outperformed the individual models in the three steps, with MAPE values of 2.367%,
2.541% and 2.844%. According to the obtained MAPE, long short-term memory (LSTM) is
ranked as the second most effective model in the three forecasts, with lower MAPE values
of 7.731%, 10.557% and 11.753%.

For SH Jan, in all forecasting steps, the developed combined model exceeded the five
benchmark models with MAPE values of 3.894%, 4.276% and 4.737%. In the two-step and
three-step forecasting, the five individual models performed poorly, and their RMSE values
were all over 1.

Table 3. Comparison of forecasting performances of the proposed model and other independent models. BP: backpropa-
gation; SVM: support vector machine; LSTM: long short-term memory; ELM: extreme learning machine; KELM: kernel
extreme learning machine.

Datasets Models
One-Step Two-Step Three-Step

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
(m/s) (m/s) (%) (m/s) (m/s) (%) (m/s) (m/s) (%)

SH Apr

BP 1.247 1.642 30.167 1.273 1.747 33.836 1.274 1.713 31.622
SVM 0.919 1.248 23.690 1.202 1.648 31.104 1.338 1.796 35.701

LSTM 1.014 1.331 21.583 1.496 1.919 29.888 1.516 1.961 36.335
ELM 0.954 1.303 21.051 1.340 1.890 35.802 1.576 2.281 46.062

KELM 0.888 1.190 17.373 1.156 1.568 23.916 1.270 1.731 29.056
Proposed 0.315 0.408 6.606 0.330 0.436 6.837 0.378 0.496 7.512
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Table 3. Cont.

Datasets Models
One-Step Two-Step Three-Step

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
(m/s) (m/s) (%) (m/s) (m/s) (%) (m/s) (m/s) (%)

SH Jul

BP 0.677 0.864 9.792 0.770 0.961 11.105 1.002 1.228 14.638
SVM 0.519 0.678 7.434 0.687 0.858 9.956 0.767 0.931 11.197

LSTM 0.638 0.819 8.561 0.761 0.946 11.168 0.765 0.952 10.830
ELM 0.521 0.684 7.355 0.693 0.856 9.931 0.787 0.969 11.431

KELM 0.515 0.672 7.342 0.680 0.839 9.883 0.739 0.900 10.853
Proposed 0.221 0.270 3.140 0.226 0.276 3.205 0.237 0.288 3.361

SH Oct

BP 0.676 0.886 8.966 1.055 1.326 13.731 0.853 1.120 11.471
SVM 0.749 1.079 8.763 0.937 1.243 11.468 1.070 1.393 13.285

LSTM 0.616 0.823 7.731 0.823 1.073 10.557 0.937 1.221 11.753
ELM 0.671 0.947 8.184 0.897 1.219 11.145 1.045 1.396 12.996

KELM 0.750 1.018 8.981 0.941 1.210 11.672 1.056 1.348 13.268
Proposed 0.182 0.235 2.367 0.198 0.257 2.541 0.223 0.287 2.844

SH Jan

BP 0.809 1.095 11.848 0.880 1.179 13.159 0.985 1.347 14.676
SVM 0.629 0.903 9.066 0.828 1.112 12.333 0.942 1.262 14.244

LSTM 0.655 0.940 9.485 0.875 1.161 12.714 0.902 1.223 13.556
ELM 0.739 1.120 10.279 0.970 1.374 14.066 1.092 1.539 15.869

KELM 0.632 0.891 9.179 0.823 1.104 12.239 0.916 1.239 13.783
Proposed 0.252 0.333 3.894 0.280 0.372 4.276 0.314 0.418 4.737

4.3. Experiment II: Comparsion with Other Models Using Different Data Preprocessing Methods

This experiment demonstrated the forecasting performance of the wind speed time
series by comparing the VMD-ISOA-model with models using different data preprocessing
methods, namely DWT, EMD and CEEMD. The comparison results are listed in Table 4
and Figures 5–8. More details of the experiment are given below:

For SH Apr, in the one-step forecasting, the proposed model showed the best per-
formance with a MAPE value of 6.606%. In comparison, the model after pretreatment
of VMD ranked as the second most effective model among the other data preprocess-
ing technologies, with MAPE values of 7.089%, 7.412% and 8.340%, respectively, from
one-step to three-step forecasting. Correspondingly, the DWT-Model showed the worst
forecasting accuracy with MAPE values of 18.12%, 28.585%, and 36.064% from one-step to
three-step forecasting.

For SH July, according to the evaluation criteria shown in Table 4, the proposed model
still outperformed the individual models in one-step forecasting, with the lowest MAE,
RMSE and MAPE values of 0.221, 0.270 and 3.140%. According to the obtained MAPE,
LSTM ranked as the second most effective model in the three forecasting, with lower MAPE
values of 7.731%, 10.557% and 11.753%.

For SH Oct, when the forecasting was one-step, the proposed VMD-ISOA-KELM
hybrid model achieved the highest accuracy with a MAPE value of 3.140%. Comparatively,
the DWT-Model, EMD-Model, CEEMD-Model and VMD-Model had MAPE values of
5.981%, 6.744%, 3.452%, 7.355% and 7.342%, respectively, which wereinferior to our devel-
oped hybrid model. The comparison results of our forecasting strategy and DWT-Model,
EMD-Model and CEEMD-Model are shown in Figure 7.

For SH Jan, when the model forecasting is one-step, the prediction accuracy of the
hybrid model, which has the lowest MAE, RMSE and MAPE values of 0.252, 0.333 and
3.894% respectively, was still superior compared to the other models using different prepro-
cessing methods. In addition, the CEEMD -Model showed a better forecasting performance
than EMD, with MAPE values of 6.807%, 7.601% and 8.246% respectively when the model
forecasting changed from one-step to three-step.
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Table 4. Comparison of forecasting performances of the combined model and other models using different data preprocess-
ing methods. DWT: discrete wavelet transform; EMD: empirical mode decomposition; CEEMD: complementary ensemble
empirical mode decomposition; VMD: variational mode decomposition.

Datasets Models

One-Step Two-Step Three-Step

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
(m/s) (m/s) (%) (m/s) (m/s) (%) (m/s) (m/s) (%)

SH Apr

DWT 0.639 1.074 18.12 1.121 1.532 28.585 1.377 1.808 36.064
EMD 0.606 0.768 13.779 0.764 0.999 19.892 0.856 1.156 23.910

CEEMD 0.552 0.731 14.308 0.634 0.860 14.796 0.699 0.951 16.466
VMD 0.331 0.437 7.089 0.353 0.471 7.412 0.404 0.528 8.340

Proposed 0.315 0.408 6.606 0.330 0.436 6.837 0.378 0.496 7.512

SH Jul

DWT 0.427 0.589 6.116 0.649 0.825 9.301 0.759 0.917 11.002
EMD 0.441 0.555 6.031 0.494 0.630 6.817 0.531 0.671 7.346

CEEMD 0.288 0.374 4.114 0.334 0.436 4.682 0.388 0.503 5.464
VMD 0.289 0.353 4.098 0.248 0.302 3.533 0.279 0.340 4.002

Proposed 0.221 0.270 3.140 0.226 0.276 3.205 0.237 0.288 3.361

SH Oct

DWT 0.521 0.848 5.981 0.875 1.206 10.587 1.043 1.388 12.927
EMD 0.505 0.677 6.744 0.565 0.768 7.452 0.635 0.844 8.293

CEEMD 0.266 0.372 3.452 0.350 0.485 4.559 0.410 0.561 5.412
VMD 0.251 0.316 3.114 0.337 0.423 4.154 0.365 0.458 4.529

Proposed 0.182 0.235 2.367 0.198 0.257 2.541 0.223 0.287 2.844

SH Jan

DWT 0.416 0.701 6.016 0.780 1.042 11.552 0.917 1.216 13.738
EMD 0.51 0.672 7.569 0.579 0.764 8.661 0.634 0.838 9.448

CEEMD 0.442 0.596 6.807 0.489 0.669 7.610 0.531 0.727 8.246
VMD 0.273 0.364 4.200 0.308 0.410 4.690 0.336 0.445 5.077

Proposed 0.252 0.333 3.894 0.280 0.372 4.276 0.314 0.418 4.737

5. Discussion

This section presents an insightful discussion of the experiment results, namely the
main contributions, the performance of the employed optimization algorithm, the effec-
tiveness of the proposed model and improvements of the proposed model. The concrete
details are as follows.

5.1. Main Achievements and Results

Considering the noisy and highly nonlinear features of real wind speed data, this
paper mainly proposes an optimized hybrid forecasting strategy based on VMD, KELM
and ISOA for short-term wind speed forecasting. VMD decomposition technology has
advantages in terms of weakening the non-stationarity of wind speed data, which were
found by comparing and analyzing the experimental results of VMD-KELM, EMD-KELM,
CEEMD-KELM and DWT-KELM techniques. With regard to wind speed forecasting, KELM
is used as a powerful regression core to characterize the relationship between the samples
in each subsequence and the expected output. Experiment 1 showed that KELM has a
certain advantage in several widely used individual models. However, the prediction
accuracy of KELM is sensitive to parameters. For this purpose, a novel algorithm ISOA
was proposed to solve optimization issues, transforming the global optimization strategy
from linear to non-linear. In order to further improve the prediction, the two parameters of
KELM were optimized by the proposed ISOA algorithm. The superiority of the proposed
prediction strategy was shown through relative experiments and contrastive analysis.

5.2. Performance of the Employed Optimization Algorithm

In this subsection, eight typical benchmark functions were used to measure and verify
the proposed ISOA algorithm, including three unimodal functions and five multimodal
functions. The unimodal function was used to test the development ability, and the
multimodal function was used to test the development ability and avoid falling into the
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local optimum. These benchmark functions are shown in Table 5. Peak donates the features
of the function, Dim donates the dimension of the function, Range donates the definition
domain of the function and fmin donates the optimal value of the function.

Table 5. Description of unimodal, multimodal and fixed-dimension benchmark functions.

Function Peak Dim Range fmin

f1 = ∑n
i=1 x2

i Unimodal 30 [−100, 100] 0

f2 = ∑n
i=1|xi |+

n
∏
i=1
|xi | Unimodal 30 [−10, 10] 0

f5 = ∑n
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

Unimodal 30 [−30, 30] 0

f8 = ∑n
i=1−xi sin(

√
|xi |) Multimodal 30 [−500, 500] −12,569.5

f9 = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

Multimodal 30 [−5.12, 5.12] 0

f10 = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e Multimodal 30 [−32, 32] 0

f11 = 1
4000 ∑n

i=1 x2
i −

n
∏
i=1

cos
(

xi√
i

)
+ 1 Multimodal 30 [−600, 600] 0

f15 = ∑11
i=1

[
ai −

x1(b2
i +biz2)

b2
i +biz3+z4

]2
Fixed-dimension 4 [−5, 5] 0.0003

In addition, seven classic optimization algorithms were selected for comparison with
the new algorithm, namely particle swarm optimization (PSO), differential evolution (DE),
seagull optimization algorithm (SOA), gray wolf optimizer (GWO), sine cosine algorithm
(SCA), moth flame optimization (MFO) and the multiverse optimizer (MVO). All algorithms
were run 50 times on each benchmark function and with a maximum of 200 iterations.
Figure 9 shows the convergence curve of ISOA and other comparison algorithms with
the same dimensions. Compared with SOA, ISOA was closer to the optimal value with
the same number of iterations. Among all comparative functions, ISOA had the fastest
convergence speed, reflecting ISOA’s efficient exploration capability. In order to measure
the experimental results, the average value (AVG) and standard deviation (STD) were used
to evaluate the results. Note that the best results are presented in bold. The data in Table 6
demonstrate that the optimization result of ISOA was the best among all optimization
algorithms. At the same time, the STD values of the solutions were still the smallest,
indicating the stability of the ISOA.

Table 6. Test results of 50 trials of ISOA and other algorithms.

ID Metric ISOA SOA PSO DE GWO SCA MFO MVO

F1 AVG 1.80 × 10−96 9.18 × 10−72 3.90 × 10−1 2.64 × 10−6 8.70 × 10−9 6.87 × 102 3.98 × 104 8.41 × 100

STD 1.27 × 10−95 6.49 × 10−71 2.75 × 10−1 2.15 × 10−6 8.14 × 10−9 7.40 × 102 5.13 × 103 2.60 × 100

F2 AVG 9.45 × 10−68 9.40 × 10−63 1.23 × 100 1.05 × 10−4 5.61 × 10−6 1.50 × 100 3.95 × 101 4.28 × 101

STD 4.51 × 10−67 3.97 × 10−62 4.62 × 10−1 3.42 × 10−5 2.91 × 10−6 1.41 × 100 1.90 × 101 8.35 × 101

F5 AVG 2.88 × 101 2.88 × 101 4.17 × 102 3.17 × 101 2.78 × 102 2.05 × 106 5.54 × 106 1.07 × 103

STD 2.95 × 10−2 4.62 × 10−2 5.17 × 102 1.84 × 101 7.76 × 101 4.70 × 106 1.91 × 107 1.59 × 103

F8 AVG −1.25 × 104 −1.25 × 104 −3.40 × 103 −4.18 × 103 −5.81 × 103 −3.51 × 103 −8.31 × 103 −7.51 × 103

STD 5.07 × 101 7.95 × 101 5.23 × 102 3.57 × 101 1.16 × 103 2.71 × 102 8.04 × 102 5.74 × 102

F9 AVG 0.00 × 100 0.00 × 100 1.08 × 102 4.72 × 100 1.47 × 101 1.03 × 102 1.73 × 102 1.35 × 102

STD 0.00 × 100 0.00 × 100 3.25 × 101 2.11 × 100 8.63 × 100 4.94 × 101 2.72 × 101 3.23 × 101

F10 AVG 8.89 × 10−16 8.89 × 10−16 1.51 × 100 7.09 × 10−4 1.67 × 10−6 1.47 × 101 1.57 × 101 2.70 × 100

STD 0.00 × 100 0.00 × 100 5.16 × 10−1 3.08 × 10−4 9.73 × 10−6 7.21 × 100 4.69 × 100 5.79 × 10−1

F11 AVG 0.00 × 100 2.02 × 10−2 5.96 × 100 9.69 × 10−2 1.03 × 10−2 6.89 × 100 2.55 × 101 1.07 × 100

STD 0.00 × 100 1.43 × 10−1 3.09 × 100 5.57 × 10−2 1.48 × 10−2 5.44 × 100 3.35 × 101 1.98 × 10−2

F15 AVG 3.70 × 10−4 4.40 × 10−3 9.10 × 10−4 3.67 × 10−2 4.20 × 10−3 1.10 × 10−3 1.90 × 10−3 6.70 × 10−3

STD 2.90 × 10−4 4.80 × 10−3 2.19 × 104 4.24 × 10−2 7.71 × 10−3 3.96 × 10−4 4.00 × 10−3 8.81 × 10−3
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ferential evolution (DE), gray wolf optimizer (GWO), sine cosine algorithm (SCA), moth flame optimization (MFO) and
multiverse optimizer (MVO) tested on various benchmark functions. (a) F1; (b) F2; (c) F5; (d) F8; (e) F9; (f) F10; (g) F11;
(h) F15.

5.3. Effectiveness of the Developed Strategy

To investigate the different effectiveness of the developed model and other comparison
models, the Diebold-Mariano (DM) test was employed, which is a statistical hypothesis
test. The null hypothesis H0 and alternative hypothesis H1 are written as follows:

H0 : E
[

F
(

e1
i

)]
= E

[
F
(

e2
i

)]
(29)

H1 : E
[

F
(

e1
i

)]
6= E

[
F
(

e2
i

)]
(30)

where F is the loss function of forecasting errors, e1
i and e2

i are forecasting errors between
actual values and forecasted values of the different forecasting models. Then, implementing
statistical reasoning by DM test statistics, the DM test statistic values can be computed by

DM =
∑n

i=1
(

F(e1
i )− F(e2

i )
)
/n√

τ2/n
τ2 (31)

where τ2 denotes the estimation for the variance of F(e1
i )− F(e2

i ).
Table 7 lists the mean DM values from one- to three-step forecasting. Regardless

of the DM values for one-step, two-step and three-step forecasting, the DM values of
the nine comparison models were all obviously significant. For some classic individual
models, all DM values were much larger than the upper limits at a 1% significance level.
Moreover, when comparing with models applying different data pretreatment technologies,
the proposed hybrid model similarly obtains showed a improvement.
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Table 7. Diebold–Mariano (DM) test of different models.

Model 1-Step 2-Step 3-Step

BP 7.9252 8.6438 8.6631
SVM 6.3969 7.9864 8.4509

LSTM 7.0239 8.2106 8.6123
ELM 6.9602 7.0022 7.3714

KELM 6.6534 8.1960 8.7345
DWT 6.3367 6.6578 7.5850
EMD 4.2412 6.6594 6.8246

CEEMD 5.5755 5.4812 5.6415
VMD 3.6386 4.6848 4.1407

5.4. Improvements of the Proposed Model

To further discuss and evaluate the degree of improvement in forecasting when com-
paring a selected model with the proposed mode, we adopted an improvement percentage
of the MAPE criteria (PMAPE), which enabled a comprehensive analysis of the proposed
hybrid model. It is defined as

PMAPE =

∣∣∣∣MAPE1−MAPE2

MAPE1

∣∣∣∣× 100% (32)

According to the definition of PMAPE, the larger the PMAPE, the better the forecasting
accuracy of our developed model relative to the selected models. Table 8 presents the
improvement percentages of MAPE for the proposed model and other forecasting models.
From further analysis of the results shown in Table 8, we are able to state the following.

1. The improvement ratios of the evaluation indicators of the proposed strategy com-
pared with individual models are greater than 50%. Among the classic individual
models, the maximum improvement percentages of MAPE for the three steps fore-
casting are 78.01% (SH Apr, one-step), 81.49% (SH Oct, two-step) and 83.69% (SH
Jan, three-step), which shows the developed model’s significant improvements to
multi-step forecasting.

2. Similar to previous research, when compared with other models using different data
preprocessing technologies, the improvements in the forecasting effectiveness of the
proposed model are fairly evident. For instance, in comparison with DWT-KELM,
EMD-KELM, CEEMD-KELM and VMD-KELM, the proposed model leads to 63.54%,
52.06%, 53.83% and 6.81% reductions for one-step forecasting, respectively. Thus, the
developed combined model can obtain satisfactory forecasting effectiveness.

3. These results show that there is still much room for individual models to improve
forecasting accuracy. Adding a data preprocessing technique can significantly im-
prove the forecast precision. However, the use of optimization algorithms can further
improve the accuracy and stability of short-term wind speed forecasting.
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Table 8. Improvement percentages of the proposed model.

Model
SH April SH July SH October SH January

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

BP 78.10 79.79 76.24 67.93 71.14 77.04 73.60 81.49 75.21 67.13 67.51 67.72
SVM 72.11 78.02 78.96 57.76 67.81 69.98 72.99 77.84 78.59 57.05 65.33 66.74

LSTM 69.39 77.12 79.33 63.32 71.30 68.97 69.38 75.93 75.80 58.95 66.37 65.06
ELM 68.62 80.90 83.69 57.31 67.73 70.60 71.08 77.20 78.12 62.12 69.60 70.15

KELM 61.98 71.41 74.15 57.23 67.57 69.03 73.64 78.23 78.56 57.58 65.06 65.63
DWT 63.54 76.08 79.17 48.66 65.54 69.45 60.42 76.00 78.00 35.27 62.98 65.52
EMD 52.06 65.63 68.58 47.94 52.99 54.25 64.90 65.90 65.71 48.55 50.63 49.86

CEEMD 53.83 53.79 54.38 23.68 31.55 38.49 31.43 44.26 47.45 42.79 43.81 42.55
VMD 6.81 7.76 9.93 23.38 9.28 16.02 23.99 38.83 37.20 7.29 8.83 6.70

Note: The units of all values revealed in the table are (%).

6. Conclusions

To follow the trend of clean energy development, strive to achieve low-carbon environ-
mental protection, and vigorously develop wind energy resources, this paper proposes a
hybrid forecasting model based on VMD, an improved seagull optimization algorithm and
KELM. Firstly, VMD is applied to decompose the given non-stationary wind speed data
into several subseries with various scales. Then, KELM is used as a powerful regression
core to characterize the relationship between the samples in each subsequence and the
expected output. To enhance the prediction performance, the proposed ISOA is designed
by including a nonlinear formula, which controls the population migration process and
attack process of SOA. Subsequently, the proposed ISOA algorithm is applied to the simul-
taneous optimization of two parameters in the KELM model. Finally, the final predicted
value is obtained by summing the results of all subseries. Furthermore, to evaluate the
effectiveness and applicability of the developed combined model, different forecasting
models are implemented on four datasets. The selected forecasting models includes five
classic individual models and four hybrid models. The experimental results of the three
metrics show that (1) the VMD is effective in improving the accuracy and stability of the
wind speed predictions; (2) compared with the common ANN and SVM models, the KELM
models show advantages in capturing the nonlinear characteristics of the wind speed
time series; (3) regardless of the forecasting step or the observation datasets, the proposed
combined strategy was superior to all of the selected methods with average MAPE values
of 3.865%, 4.213% and 4.614% for one- to three-step forecasting.
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