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Abstract: Deep eutectic solvents (DESs) is a newly developed green solvent with low cost, easy
preparation and regeneration. Because of its excellent solubility and swelling effect in lignocellulose,
it has received widespread attention and recognition. In this study, choline-based deep eutectic
solvents (DESs)—choline chloride-urea (CC-U), choline chloride-ethylene glycol (CC-EG), choline
chloride-glycerol (CC-G), choline chloride-lactic acid (CC-LA), and choline chloride-oxalic acid (CC-
OA)—were used to extract and separate bagasse. The effects of hydrogen bond donors on lignin
separation and the fiber and lignin structure were investigated. All five DESs could dissolve lignin
from bagasse; acidic DESs exhibited higher solubility than basic DESs. CC-OA effectively separated
lignin and hemicellulose. CC-LA showed weaker lignin separation ability than CC-OA. CC-G, CC-
EG, and CC-U were more inclined to selectively separate lignin than hemicellulose. The crystalline
cellulose II structure was retained after DES pretreatment. Acidic DESs effectively improved the
crystallinity of bagasse fiber; the crystallinities for CC-OA and CC-LA pretreatment were 62.26% and
61.65%, respectively. The lignin dissolved in DES was mainly syringyl lignin. The lignin dissolved in
CC-U, CC-LA, and CC-OA contained a small amount of guaiacyl lignin.

Keywords: deep eutectic solvent; bagasse; lignin; cellulose; chemical structure

1. Introduction

As a substitute for petrochemical resources, renewable resources have become an
important raw material for the green and sustainable development of industries. Ligno-
cellulose resources, which are rich in cellulose, hemicellulose, and lignin, are the most
widely distributed and abundant renewable resources on earth [1]. Bagasse, a cellulose
residue obtained after crushing and pressing sugarcane juice, is an important renewable
biomass resource. Sugarcane is an annual crop, and its fiber morphology is closer to that
of wood fiber than those of other grass fibers [2]. Therefore, bagasse is considered an
ideal fiber material. Bagasse is mainly composed of cellulose, hemicellulose, and lignin,
of which cellulose accounts for approximately 46–55% [3]. However, the short fiber, low
ratio between length and diameter, and presence of lignin and hemicellulose as fillers and
adhesives between cellulose hinder the penetration and diffusion of reagents [4]. A large
number of hydroxyl groups on the surface of bagasse leads to strong polarity and water
absorption and results in poor interfacial compatibility with most polymers [5]. Thus, the
rapid and effective removal of hemicellulose and lignin while maintaining the structure
and form of cellulose has been a challenge in the use of bagasse.

In 2001, Abbott et al. prepared a deep eutectic solvent (DES), which is widely used
because of its simple preparation process, low toxicity, low price, biodegradability, and
good biocompatibility [6]. Choline DES is a kind of solvent formed by covalent and
hydrogen bonds between the choline anion and coordination agent [7]. The hydroxyl
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group in the solvent can form hydrogen bonds with cellulose, making cellulose relatively
stable [8]. Thus, DES shows high solubility toward lignin, and negligible cellulose solubility.
Zhang et al. [9] found that DES synthesized by choline chloride with monobasic acid,
dibasic acid, and polyol can effectively remove hemicellulose and lignin from corncob.
Song et al. [10] extracted 50% lignin from poplar using aqueous gallic acid-based natural
deep eutectic solvent. Paula et al. [11] observed guaiacyl units of lignin in a study of two
shrub plants, Cistus ladanifer and Erica arborea. Guo et al. [12] extracted 63.4% lignin
with typical guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) structures from corncob
with benzyltrimethyl ammonium chloride/lactic acid. Gong Weihua et al. [13] used the
acetic acid method to extract lignin from the sunflower seed shell. In their study, the
extraction rate of lignin was 70.12%, and the lignin was mainly GS type lignin, in which the
content of the guaiac-based structural unit (G) was higher. Liu Liyang et al. [14] studied
the pretreatment of peanut straw, peanut shell, and rape straw with ionic liquid, and found
that the pretreated samples had few crystal regions and low crystallinity. A study on the
low eutectic modification of lignin with choline chloride/glycerol showed that the syrillic
group structure (S) of lignin was degraded [15], indicating that DES pretreatment could
improve the reactivity of lignin. Therefore, DES was an excellent reagent for the separation
of lignocellulose. Acidic DESs were employed in the pretreatment of a lignocellulosic oil
palm empty fruit bunch; extraction of higher than 60 wt% of lignin was achieved [16].
A maximum delignification of approximately 90.4% was achieved with lactic acid choline
chloride DES at 120 ◦C for 12 h [17]. When water was added to the lignin-dissolved DES,
the solubility of lignin increased by 163–474 times [18]. The lifetime and recyclability of the
DES solution showed a recovery yield higher than 90%. More importantly, the pretreatment
effect of delignification was largely maintained after recycling [19]. Thus, choline DES can
extract lignin from plant fibers with high efficiency and purity, and is an ideal solvent for
extracting plant fiber components.

Currently, research on DES mainly focuses on the combination screening of choline
chloride and different hydrogen bond donors. Poplar, eucalyptus, and other fiber-rich
materials are the primarily used raw materials; there is little research on bagasse. The com-
position of bagasse materials varies depending on the geographical location and growth
environment. The crystallinity of cellulose has a significant influence on the dimensional
stability, strength, and heat resistance of the materials [20]. In this study, the fiber mor-
phology, crystallinity, and crystal and chemical structure of bagasse pretreated with five
different DESs were examined. The change in the chemical structure of the regenerated
lignin was studied to provide a theoretical basis for the processing and application of
bagasse biomass.

2. Materials and Methods
2.1. Material and Reagents

Material: bagasse (obtained from Guangxi province, China) was washed with distilled
water at least three times to remove water-soluble impurities. Then, the bagasse was
dried in an air-blast drying oven at 60 ◦C for 24 h. The dried bagasse was comminuted
by ultramicro pulverizer (Purchased from Yongkang hongtaiyang electromechanical Co.,
Ltd, Yongkang, China) and then passed through 60–80 mesh. The screened bagasse was
extracted in benzene/ethanol (2:1, v/v) solution (100 ◦C water bath) for 6 h, then placed in
an air-blast drying oven at 60 ◦C for 12 h, and finally stored in a sealed bag for later use.

Reagents: choline chloride, oxalic acid dehydrate, urea, and lactic acid were pur-
chased from Damao Chemical Reagent Factory (Tianjin, China). Glycerol and glycol were
purchased from Tianjin Zhiyuan Chemical Reagent Co., Ltd. (Tianjin, China). KBr was pur-
chased from Merck Chemical Technology (Shanghai, China) Co., Ltd. Deuterated methanol
was purchased from Aladdin Industrial Co. (Shanghai, China). All other reagents were of
analytical grade and used without further purification.
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2.2. Compositional Analysis of Bagasse

The contents of total cellulose, lignin, ash, and moisture from bagasse were determined
according to GB/T2677.10-1995, GB/T10337-1989 and GB/T2677.8-1994, GB/T2677.3-
1993, and GB/T2677.2-1993 respectively. The content of cellulose was determined by the
nitroethanol method [3,21].

2.3. Preparation of DES

The molar ratio of choline chloride to urea (CC-U), ethylene glycol(CC-EG), glycerol
(CC-G), and lactic acid (CC-LA) was 1:2, and the molar ratio of choline chloride to oxalic
acid (CC-OA) was 1:1, and then mixed at 80 ◦C until uniform and transparent liquid was
formed. Choline chloride, urea, and oxalic acid were placed in a vacuum drying oven for
48 h before use.

2.4. Pretreatment of Bagasse Using DES

Bagasse powder (1 g) and DES (20 g) were added into a 50 mL round-bottomed conical
flask and placed in an oil bath at 100 ◦C. Mechanical stirring was performed, and the timer
was started when the temperature of the solution reached the 100 ◦C mark. After 4 h,
the conical flask was placed in cold water to stop the reaction. When cooled to room
temperature (25 ± 2 ◦C), 50 mL of absolute ethanol was added to the conical flask, and
vacuum filtration was performed using a G2 funnel. The filter cake was washed multiple
times with anhydrous ethanol until the filtrate became colorless. The filter cake was dried
in a 105 ◦C oven for 6 h. The excess alcohol was removed by rotary evaporation of the
filtrate, the recovered DES can be obtained and 4–5 times volume of distilled water was
added to the filtrate. After 48 h of precipitation, the supernatant was removed, and the
lignin solid was obtained by centrifugation. The solid was dried in vacuum drying oven at
60 ◦C for standby.

2.5. Materials Characterizations
2.5.1. Amount of Lignin Dissolved in DES

Based on the literature [21], the lignin content of bagasse pretreated with DES was
determined. Then, the lignin solubility of bagasse in DES was shown in Equation (1):

X% =
X1 − X2

X1
× 100% (1)

where X1 is the content of lignin in bagasse raw material, and X2 is the lignin content in
bagasse residue after DES pretreatment.

2.5.2. Scanning Electron Microscopy (SEM)

The morphology of the samples was analyzed using the F16502 scanning electron
microscope (Phenom, The Netherlands). All samples were sputter-coated with gold to
prevent charging. The accelerating voltage during imaging was 0.5 kV.

2.5.3. X-ray Diffraction (XRD)

XRD patterns of the treated bagasse cellulose were characterized using an X-ray
diffractometer (Rigaku D/MAX2500V, Japan Science Corporation, Tokyo, Japan) with
Ni-filtered Cu Kα1 radiation at 40 kV and 30 mA at room temperature (25 ± 2 ◦C). The
range of scatter in angle (2θ) was from 5 to 40◦ at a scan rate of 4 ◦/min. The crystallinity
index (CrI) was calculated by the peak height method based on the diffraction intensity
of crystalline and amorphous regions using the following equation [22,23] as shown in
Equation (2):

CrI(%) =
I2 − I1

I2
× 100%, (2)
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where I2 is the diffraction intensity at 2θ≈ 22◦, which corresponds to the (020) lattice diffrac-
tion and I1 is the minimum intensity at 2θ ≈ 18◦, which corresponds to the amorphous
region.

2.5.4. Fourier Transform Infrared (FTIR) Spectroscopy

Chemical transformations of bagasse treated under different conditions were recorded
on a VERTEX 70 FTIR spectrometer (Bruker, Germany) with samples as KBr pellets.
The samples were oven-dried and scanned over the spectral range of 4000–400 cm−1

with 32 scans per spectrum.

2.5.5. NMR Determination of Lignin Dissolved in DES

Dissolve 10 µL recovered DES in 0.5 mL deuterium methanol and gently shake it to
dissolve. The 1H spectra were recorded by Bruker DPX-300 NMR spectrometer at 25 ◦C.
The scanning times were 128, the sampling time was 3.17 s, and the relaxation time was 1 s.
The methanol solvent peak was used as the internal standard to correct and determine the
chemical shifts of other signal peaks.

2.5.6. Thermogravimetric Analysis (TGA)

The thermal properties of the samples were analyzed using the TA25 (TA Instruments
Corporation, New Castle, DE, USA). Approximately 10 mg of the sample was placed in
an Al crucible under a temperature range of 40 to 800 ◦C and heated at a rate of 10 ◦C/min
in a nitrogen atmosphere.

3. Results
3.1. Chemical Compositions of Bagasse Fiber

Bagasse was used as the raw lignocellulosic material, its composition is shown in Table
1. The contents of cellulose, hemicellulose, and lignin were 55.07 ± 1.27%, 15.19 ± 0.43%,
and 19.84 ± 0.17%, respectively. The contents of acid-soluble lignin and acid-insoluble
lignin were 1.57 ± 0.12% and 18.27 ± 0.17%, respectively. The composition obtained in this
study varied slightly from that reported in a previous study [3] possibly because of the
difference in the geographical location of the raw bagasse.

Table 1. Content of bagasse biomass (%).

Cellulose Hemicellulose Lignin Ash Moisture Extract

55.07 25.19 19.84 0.89 8.36 1.53
±1.27 ±0.43 ±0.17 ±0.01 ±0.12 ±0.08

3.2. Solubility Analysis of Lignin in Different DESs

The lignin solubility after DES pretreatment is shown in Figure 1. The solubility varies
significantly with DES formed by different hydrogen bond donors. A maximum solubility
of 47.85% is shown by the CC-OA donor, and a minimum solubility of 8.60% is exhibited
by the CC-EG donor. The existence of hydrogen bonds in eutectic solvents had an effect on
the ether bonds in lignin, which reduced the energy required for their cleavage [8], and
the lignin molecules dissolved in the solvent. The solubility of lignin in acidic DES was
higher than that in basic DES because the hydrogen bonding is stronger in the former. The
hydrogen bonds between the carboxylic acid and chloride ion in the CC-LA and CC-OA
solvents were strong. In addition, the carboxyl group (-COOH) can easily react with the
hydroxyl group (-OH) on cellulose to form monoesters or cross-linked diesters. Diesters
can prevent cellulose from dissolving during acid hydrolysis [24]. CC-LA and CC-OA
inhibited the dissolution of cellulose and enhanced the degradation of lignin. In the other
three solvents, the hydrogen bond formed between the hydroxyl group and chloride ion
was weak; thus, the solubility of lignin was low. However, the solubility of lignin in CC-U
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(10.53%) was significantly higher than that reported earlier (2.5%) [25]. This may be because
bagasse and wood have different structures.
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Figure 1. Solubility of lignin in deep eutectic solvents (DESs).

3.3. Analysis of Surface Morphology of Bagasse

The morphological changes of bagasse fiber under DES pretreatment were observed by
SEM. As shown in Figure 2a, cellulose was well-coated with lignin and hemicellulose, and
a major portion of the cellulose was unexposed. The bagasse showed long fiber bundles.
The rigid connecting structure between lignin and hemicellulose in bagasse was destroyed
after DES pretreatment; the fiber bundles became “fragmented,” and there were irregular
sheet cells, wherein cellulose was exposed. A particularly high amount of cellulose was
exposed after the CC-OA treatment. As shown in Figure 2b, the middle lamella of untreated
fibers did not fall off completely; the fibers retained a relatively complete and ordered fiber
structure, and the surface of the fiber was relatively clean without distinct fuzzing. After
DES pretreatment, the intercellular layer of the fibers degraded to different degrees. The
fiber surface treated by CC-G and CC-EG exhibited a distinct fuzzing phenomenon. The S1
layer of the fiber was exposed; however, the overall geometric status of the fiber did not
change significantly. After pretreatment with CC-U, CC-OA, and CC-LA, the intercellular
layer of fiber almost completely fell off, and numerous holes were exposed on the surface
of the fiber. As the specific surface area of the fiber increased, the fiber showed different
degrees of bending, torsion, and deformation, and the overall geometric status changed
significantly. Overall, the surface of the treated fiber exhibited evident peeling off and
fine fibrosis.
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(b) 3000×.

3.4. Crystallinity Analysis

The crystal structure and relative crystallinity of the bagasse residue were investigated
using XRD (Figure 3). Based on previous studies [26–28], the (110), (110), (200), and (004)
crystal planes of cellulose I are generally located at 2θ = 15.0◦, 16.4◦, 22.5◦, and 34.5◦.
Before and after pretreatment, the samples exhibited a certain absorption at these positions,
showing the presence of cellulose I. The (110), (110), and (020) crystal planes of cellulose II
are generally located near 2θ = 13.0◦, 20.0◦, and 22.0◦. The major peak in the absorption
spectra of the samples was observed at 22.0◦; thus, cellulose II was the main crystal form.
After CC-U, CC-OA, and CC-LA pretreatment, the crystallinity of bagasse increased. In the
CC-OA- and CC-LA-treated samples, the crystallinity increased to 62.26% and 61.65%,
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respectively. The increase in crystallinity for the CC-U pretreatment was relatively small.
In contrast, after CC-G and CC-EG pretreatment, the crystallinity of bagasse decreased
slightly. This may be because of the dissolution of some substances in the crystallization
zone during pretreatment [29]. After further analysis, CC-LA was found to be more inclined
to separate hemicellulose, and CC-U, CC-G, and CC-EG were more inclined to separate
lignin.
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3.5. Chemical Composition Analysis of Bagasse

Figure 4 shows the FTIR spectra of the original and DES-treated samples. The broad
peak at 3300–3500 cm−1 in the spectra represents the hydroxyl stretching vibration in lignin
or carbohydrate (cellulose or hemicellulose). As the non-fibrous material was removed and
more hydroxyl groups were released, the peak moved toward higher frequencies. Generally,
the vibration absorption peaks of aromatic ring skeleton are between 1400–1600 cm−1. The
peaks at 1600, 1510, 1456, and 826 cm−1 are the characteristic absorption peaks of lignin.
Among them, the peaks at 1600, 1510, and 1456 cm−1 are the skeleton vibration absorption
peaks of the benzene ring, and this at 826 cm−1 is the vibration absorption peaks of C-H
linked with the benzene ring [30]. Compared with the untreated bagasse, the absorption
peaks of the pretreated samples were weakened, indicating that DES could effectively
remove lignin from bagasse. After pretreatment with CC-OA, the peak at 1600 cm−1

disappeared, implying that CC-OA pretreatment could remove lignin from bagasse more
effectively than the other DES pretreatments. The absorption peak at 1730 cm−1 was formed
by the vibrations of acetyl groups in hemicellulose/ferulic acid and carboxyl groups in
lignin/hemicellulose; the peaks of samples treated with different DESs were weak or absent.
This was due to the change in the carboxyl group in hemicellulose, indicating that part of
the hemicellulose was lost. After pretreatment with CC-LA and CC-OA, the absorption
peak at 1245 cm−1 was weakened or absent, implying that the ester bond between lignin
and hemicellulose was broken [10]. After DES pretreatment, the vibration absorption
peak of the bagasse residue shifted to a higher wavelength at 3400 cm−1, indicating that
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pretreatment increased the surface hydroxyl groups of cellulose. Based on the FTIR analysis,
it was found that DES pretreatment can effectively break the rigid structure between lignin
and hemicellulose, such that the bagasse components are separated.
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Based on Figure 4, macro changes in bagasse powder after CC-G, CC-EG, and CC-
U treatments are not evident; the dispersed granular form is retained. However, after
treatment with CC-LA and CC-OA, the structure is not granular, but flake-like or massive.
It was concluded that acidic DES treatment can dissolve lignin more effectively and release
a higher number of hydroxyl groups. The presence of hydroxyl groups makes it easier for
the original particles to form hydrogen bonds with each other, thus turning the particles
into flakes. The carbonization of bagasse after pretreatment with CC-OA can also be
observed. Therefore, CC-LA was more suitable for the separation and extraction of bagasse
cellulose.

As shown in Figure 5, the stretching vibration of hydroxyl was observed at 3436 cm−1.
The strong absorption peaks at 1600, 1504, and 1422 cm−1 represent the characteristic
absorption peaks for the vibrations of the benzene ring skeleton of lignin [31]. The peak at
1463 cm−1 is attributed to the C–H deformation combined with aromatic ring vibration,
which indicates that the separated part was indeed a lignin component [12]. Thus, the
benzene ring skeleton structure was undamaged and well-protected. At approximately
1325 and 1220 cm−1, the absorption peaks of the Syringa core and C-H were observed,
which indicated that the lignin structural units isolated from bagasse contained several
syringyl units (S). The weak peak at 1263 cm−1 corresponds to the stretching vibration of
C–O in guaiacyl [32]. After treatment with CC-G, CC-U, CC-LA, and CC-OA, the extracted
lignin contained a small amount of guaiacyl structural units (G), indicating that the lignin
extracted by DES belonged to the G and S types. The absorption peak of the ether bond
C-O-C was observed at approximately 1162 cm−1. The aryl ether bond between lignin
structural units did not break during the DES treatment of bagasse cellulose. When DES
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reacted with bagasse components, there was no shear effect on the ether bond of lignin [33].
At 1033 cm−1 (corresponding to C-H bending vibration in carbohydrate), the peak of lignin
extracted by DES was weak or absent, indicating that the content of carbohydrate was less
and the lignin purity was significantly high.
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3.6. NMR Analysis of Lignin

According to a previous study, 0.8–1.4 ppm corresponds to the hydrogen content of
aliphatic branched chain in lignin [34]. The signals at 3.7 and 2.5 ppm correspond to the
protons of methoxy groups in aromatic rings and aliphatic carbon chains, respectively,
while 3.3 ppm represents H3 of β-D-xylopyranose. The 4.3 ppm signal corresponds to the
γ-acylation of lignin, and the 4.94 ppm signal is in the form of β-β connection, which is the
tetrahydrofuran structure [35]. The signal peak of 5.3 ppm corresponds to the hydrogen
proton on the α-site carbon of the α-O-4 junction unit [36]. The signal peak of 6.3 ppm
corresponds to the hydrogen proton on the α-site carbon of the β-O-4 junction unit [37].
As shown in Figure 6, the lignin dissolved in the five kinds of recovered DESs all had
corresponding signal peaks at the position of 0.8–1.4 ppm. Methoxyl protons at 3.7 ppm
signal peak can be detected in all samples, the peak signal at 4.3 ppm was detected after
CC-LA and CC-OA treatment, which indicated that the activity of DES increased after acid
DES pretreatment. The signal peak at 5.3 ppm was only detected in CC-LA and CC-G
samples. The signal peaks above 6.0 ppm were very weak or even absent. It shown that
the content of lignin and its degradation products was too low, or lignin was decomposed
into polysaccharides with smaller molecular weight. This result was similar to that of
XiaoJunShen et al. [19].
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Figure 6. 1H-NMR spectra of lignin.

3.7. Thermal Stability

According to a previous study, the major thermal degradation stages of hemicellulose,
cellulose, and lignin fall in the ranges 275–310 ◦C, 310–390 ◦C, and 390–515 ◦C, respec-
tively [38]. As shown in Figure 7, the samples pretreated by DES have four pyrolysis
stages. The first stage occurs at 40–100 ◦C, and represents the evaporation of water. The
second stage occurs at 150–300 ◦C, and denotes the thermal degradation of hemicellulose.
The third stage at 300–400 ◦C represents the thermal degradation of cellulose; it includes
the breaking of the cellulose molecular chains (depolymerization, decomposition, and
dehydration of cellulose glycogroups). The fourth stage occurring at 400–550 ◦C represents
the thermal degradation of lignin.
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After CC-OA treatment, the weight loss rate in the second stage of pyrolysis was low
(approximately 3.5%), indicating that the hemicellulose had been separated. The highest
value of weight loss was approximately 60% at 338 ◦C, which was the pyrolysis temperature
of cellulose. According to a previous study, a higher crystallinity of cellulose leads to
better thermal stability [39]. Based on the XRD and SEM analyses, the crystallinity of the
pretreated sample was higher, and the exposure rate of cellulose was higher. Therefore,
the weight loss rate was mainly concentrated in the pyrolysis stage of cellulose, and the
thermal stability was improved. The weight loss rate of CC-OA in the fourth stage was
almost zero, indicating that lignin had been successfully separated, which is consistent with
the previous FTIR analysis. After CC-LA pretreatment, the weight loss rate of the sample
in the second stage of pyrolysis was low, indicating that hemicellulose had been separated
from the sample. The pyrolysis range of the third stage was narrow, and the pyrolysis of
cellulose in the crystalline region was mainly in this stage. In the fourth stage, the weight
loss rate was approximately 22%. A large amount of lignin remained, illustrating that
CC-LA mainly caused the separation of hemicellulose, and that of lignin was low. After
pretreatment by CC-G, CC-EG, and CC-U, the crystallinity was low and the weight loss
rate of pyrolysis was mainly concentrated in the second and third stages, and the fourth
stage was significantly small. These results show that these DESs can effectively separate
lignin from bagasse and retain most of the hemicellulose and cellulose.

The thermochemical degradation of lignin helps to understand the relationship be-
tween its chemical structure and properties. Figure 8 shows the TGA and derivative
thermogravimetric (DTG) curves of lignin extracted under different treatment conditions.
As shown in Figure 8, the degradation curves of lignin extracted by the five DESs essen-
tially coincide, indicating that the degradation behaviors of the five lignin types were
consistent. According to the thermogravimetric behavior of lignin, the lignin degradation
can be divided into three stages: initial degradation stage (80–160 ◦C), main degradation
stage (200–470 ◦C), and carbonization stage (470–600 ◦C). The initial degradation stage
of lignin is the evaporation of water and partial degradation of lignin molecules. The
main degradation stage of lignin is the pyrolysis of the lignin network phenylpropane
polymer to form small molecular substances [40–42]. During the carbonization stage of
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lignin, cleavage of the lignin molecular bond occurred and the residue reacted with coke as
the temperature increased; the coke quality was essentially stable after 600 ◦C.
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4. Conclusions

In this study, bagasse biomass was used as a raw material to investigate the effect of
hydrogen bond donors on the separation of fiber components and its structure.

The five hydrogen bond donors showed different effects on the separation of bagasse
biomass components. The separation effect of the acidic DES was higher than that of the
basic DES. The solubility of lignin in CC-OA was the highest (47.85%).

CC-OA can effectively separate lignin and hemicellulose. The lignin separation
ability of CC-LA was slightly weaker than that of CC-OA. But after CC-OA pretreatment,
bagasse was carbonized, CC-LA was more suitable for the separation and extraction of
bagasse cellulose.

CC-G, CC-EG, and CC-U were more inclined to selectively separate lignin than
hemicellulose.

After DES pretreatment, the crystalline form of cellulose (mainly cellulose II) was
retained. Acidic DES effectively improves the crystallinity of bagasse fiber, but basic DES
had little effect on the crystallinity of cellulose.

The lignin dissolved in DES was mainly syringyl lignin; traces of guaiacyl lignin were
also dissolved by some DESs.
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