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Abstract: In modern society, environmental sustainability is always a top priority, and thus electric
vehicles (EVs) equipped with lithium-ion batteries are becoming more and more popular. As a key
component of EVs, the remaining useful life of battery directly affects the demand of the EV supply
chain. Accurate prediction of the remaining useful life (RUL) benefits not only EV users but also
the battery inventory management. There are many existing methods to predict RUL based on state
of health (SOH), but few of them are suitable for real-world data. There are several difficulties:
(1) battery capacity is not easy to obtain in the real world; (2) most of these methods use the
individual data for each battery, and the computing processes are difficult to perform in the cloud;
(3) there is a lack of approaches for real-time SOH estimating and RUL predicting. This paper adopts
several statistical methods to perform the prediction and compars the results of different models on
experimental data (NASA dataset). Then, real-world data were implemented for an online process of
RUL prediction. The main finding of this research is that the required CPU time was short enough
to meet the daily usage after the real-world data was implemented for an online process of RUL
prediction. The feasibility and precision of the prediction model can help to support the frequency
control in power systems.

Keywords: big data analysis; remaining useful life; Lasso regression; ARIMA; Monte-Carlo simulation

1. Introduction

Rechargeable lithium-ion batteries have been widely used in applications ranging
from portable electronics to EVs in modern life due to their many advantages, such as their
high volumetric and gravimetric energy density and low self-discharge rate [1]. Therefore,
the growth of the EV market has been very rapid.

The safety and reliability of EVs compared to those of traditional vehicles are the top
concerns of EV users. However, both safety and reliability are subject to not only the battery
technology but also the management system for the battery [2]. The battery management
system (BMS) has become one of the chief components in EVs. It provides the capability to
monitor the working status of the battery and maintain all the cells within their operating
limits. In particular, a BMS is expected to provide information about the three critical
characteristics of a battery, namely the state of charge (SOC), the state of health (SOH),
and the remaining useful life (RUL) [3].

The SOC is a measure of the remaining capacity of the battery. Due to the inherent
chemical reactions of a battery, it is difficult to obtain a fully accurate value. There are
two approaches to determining the SOC. The first is the direct approach, such as coulomb
counting, which simply measures the remaining capacity by using the current integration [4].
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On the other hand, indirect methods usually investigate the relationship between the SOC
and some other electrical parameters such as open-circuit voltage (OCV) and impedance [5].

Traditional approaches to battery health management have mostly focused on SOC
problems. However, in recent years, attention has increasingly been paid to the SOH and
RUL. The SOH is a measure of a battery’s capability to deliver its specified output. Unlike
the SOC, there is no clear-cut definition of the SOH [2].

The RUL refers to the available service time left before a system degrades to an unac-
ceptable level [6], which is the EOL of the battery. It has also been suggested that when
using an EV battery, an indicator SOHEOL is 0% when the battery capacity decreases to
a certain level (70% or 80% of the nominal capacity is often considered to be the failure
threshold) [7]. Below is the equation.

SOHEOL =
Qact −Qthreshold
QR −Qthreshold

× 100% (1)

where QR is the rated capacity and Qact is the actual capacity of the battery that is degraded.
Qthreshold is the capacity of the failure threshold. Therefore, the RUL indicates the remaining
time or the number of load cycles until the battery reaches an SOHEOL of 0%.

A general definition of SOH is that it reflects the performance of a battery relative
to its fresh condition. Therefore, the SOH is defined as 100% for a fresh cell and 0% for
a cell that has reached the limitations of the end of life (EOL) [8]. Typically, the following
equation in percentage form is used:

SOH =
Qact

QR
× 100% (2)

We note that the capacity, which quantifies the available energy stored in a fully
charged Li-ion battery cell, is the indicator used most frequently to measure the SOH.
However, it is not the only one. For example, Zhou et al. [9] proposed a novel health
indicator that is formed by a series of battery discharging voltages.

Most previous works in RUL prediction used Equation (2) to measure SOH such as
the NASA dataset we use in the following sections. We therefore use Equation (2) in this
paper and employ a failure threshold of 70%.

Figure 1 shows the relationship between the critical characteristics of a battery. The raw
data from BMSs can be used to estimate the parameters or create models for specific
purposes. Various studies focus on estimating the capacity and use it to estimate the
SOC and SOH. When the SOH is determined, there are many methods of computing
the probability density function (PDF) of the EOL so that the RUL can be predicted.
Moreover, this paper introduces some real-world parameters such as driving behavior and
environmental information that supplement SOH estimation and RUL prediction.

Figure 1. Relationships among the characteristics of a battery.

Barré et al. [10] divided the existing models for battery RUL prediction into five
types: (1) electrochemical models, (2) equivalent circuit-based models, (3) performance-
based models, (4) analytical models with empirical fitting, and (5) statistical approaches.
Zhao et al. [11] simplified them into three parts: (1) electrochemical models, which need



Processes 2021, 9, 2174 3 of 18

to use physical equations and are usually complex; (2) equivalent circuit-based mod-
els, such as particle filtering (PF) and other filtering methods; and (3) statistical models,
which use data-driven methods without needing any prior knowledge about the battery
aging mechanisms.

It is difficult to use physical equations and electrochemical reactions to obtain a reliable
model. Most recent studies have focused on the last two types, namely model-based
methods and data-driven methods. Model-based methods can be divided into two types:
empirical equations and electrochemical principles [12]. Data-driven methods can be
divided into two categories according to type of data. One is direct condition monitoring
data, which are the data that can describe the underlying state of the system directly. We
can use regression-based models, Wiener processes, gamma processes, and Markovian-
based models to deal with them. On the other hand, for models based on indirect condition
monitoring data, we include stochastic filtering-based models, covariate-based hazard
models, hidden Markov models (HMMs), and hidden semi-Markov models (HSMMs) [13].

Zheng and Fang [14] indicated that the approaches that are purely model-based
filtering and those that are purely data-driven have their respective limitations. They
proposed hybrid approaches that incorporate model-based filtering approaches and data-
driven approaches and classified them into three types: (1) models that compensate for the
physical state/measurement model, (2) approaches to predict future trends in measurement
values, and (3) methods to estimate the model parameters for the physical-based methods
to predict.

Rather than data-driven methods, the model-based filtering techniques that fea-
ture closed-loop expressions can self-correct and overcome unexpected disturbances [15].
A Kalman filter–based prognostic method was developed to predict the battery RUL in
2009 [16]. Dong et al. [17] improved the standard particle filter and developed an SVR-PF
that introduced novel capacity degradation parameters to determine the battery health
in real time in 2014. Zhang et al. [18] proposed an improved unscented particle filtering
(IUPF) method for lithium-ion battery RUL prediction based on the Markov chain Monte
Carlo (MCMC) method in 2017. Duong and Raghavan [19] introduced a Heuristic Kalman
algorithm in 2018, a metaheuristic optimization approach, that was combined with particle
filtering to tackle sample degeneracy. Zhang et al. [20] presented an improved PF algorithm
in 2018 based on linear optimizing combination resampling (U-LOCR-PF) to improve
prediction accuracy. Ma et al. [21] developed a Gauss–Hermite particle filter (GHPF) to
update the parameters of the capacity degradation model in real time and predict the
RUL in 2019. Li et al. [22] developed an inheritance PF by using the genetic algorithm
framework in 2019.

Data-driven methods can capture the inherent relationships and learn the trends
present in the data to provide RUL predictions. They do not require specific knowledge
of material properties, constructions, or failure mechanisms, and they do not involve
the development of high-level physical models of the system; therefore, they have be-
come increasingly popular for Li-ion battery RUL prediction [23]. Ng et al. [24] proposed
a naive Bayes (NB) model for the RUL prediction of batteries under different operating
conditions in 2014. Patil et al. [25] transformed the RUL into a classification problem in
2015 so that some machine learning methods could be used to estimate the RUL level.
Zhou and Huang [26] proposed a novel approach that combines empirical mode decom-
position (EMD) and the autoregressive integrated moving average (ARIMA) model in
2016. Zhang et al. [27] developed an RUL-prediction method in 2019 based on the Box–Cox
transformation (BCT) and Monte Carlo (MC) simulation.

In recent years, deep learning has become very popular in all fields. Wu et al. [28]
investigated the relationship between the RUL and the charge curve and simulated it in
2016 using a feed-forward neural network (FFNN) due to its simplicity and effectiveness.
Zhang et al. [29] employed the long short-term memory (LSTM) recurrent neural network
(RNN) in 2018 to learn the long-term dependencies among the degraded capacities of
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lithium-ion batteries. Khumprom and Yodo [30] presented a deep neural network (DNN)
approach in 2019 to predict the SOH and the RUL.

In addition to the general parameters extracted from monitoring data, some other
methods deserve attention. Chen et al. [31] presented a geometrical approach to Li-ion bat-
tery capacity estimation in 2014. They utilized four geometrical features that are sensitive
to slight changes and degradation in performance. Wang et al. [32] found that different
discharge rates (DDRs) affect both usable battery capacity and battery degradation rates.
They designed an experiment to collect accelerated battery life testing data for DDRs in
2017, which were used to investigate how DDRs influence usable battery capacity.

Besides the aging of batteries, calendar aging (i.e., aging at rest) is also very important
since parking time can reach 90% of the total vehicle lifetime. Eddahech et al. [33] presented
a method for the calendar aging quantification of power batteries taking into account the
SOC and temperature effects.

In the real world, the relation between battery parameters and the RUL is more com-
plicated. The condition of a Li-ion battery is affected by the road conditions, environmental
temperatures, charge modes, and even the driver’s behavior. Nuhic et al. [34] used real-
word data to estimate SOH and RUL but lack applicable data and thus are based on uniform
tests. Canals et al. [35] extracted temperature, voltage, current, and energy exchanges data
from on-board data-loggers installed in an EV and calculated the internal resistance and
voltage recovery, so that the SOH can be estimated.

However, few of them are suitable for real-world data. There are several difficulties:
(1) battery capacity is not easy to obtain in the real world; (2) most of these methods use
individual data for each battery, and the computing processes are difficult perform in the
cloud; (3) there is a lack of approaches for real-time SOH estimating and RUL prediction.

Many studies mentioned above focused on creating models for batteries separately.
Indeed, these are accurate approaches if data are sufficient. Most automobiles do not have
enough computing power to improve computing speed and save resources. This paper
proposes to create an aggregated model for all of the vehicle data and use personalization
parameters to reflect the individual characteristics.

This paper attempts to introduce more influencing factors for RUL prediction based
on real-world data and proposes an online data-driven approach to rapidly estimating
the SOH and RUL. The required CPU time was short enough to meet the daily usage
after the real-world data were implemented for an online process of RUL prediction.
Alhelou et al. [36] discussed the contribution of EVs in supporting the frequency control in
power systems, and the feasibility and precision of the RUL prediction model of EVs can
help to overcome the uncertainties of the electric demands.

2. Materials and Methods
2.1. Overview

Figure 2 shows the process structure of RUL prediction based on real-world data.
The raw data usually come from a BMS and do not contain accurate SOH value, so we
need to calculate rough SOH at first and then create a statistical model using real-world
parameters. When we successfully forecast or simulate the future parameters, this statistical
model could be used to predict the future SOH and RUL.

Figure 2. Process of RUL prediction based on real-world data.
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In this study, we first use the NASA Ames Li-ion battery cycle life test data [37] since
they contain accurate capacity values, allowing us to train precise models and compare the
methods. Figure 3 shows the process using NASA data.

Figure 3. Process of RUL prediction based on NASA data.

2.2. Introduction to NASA Dataset

There are four Li-ion batteries (#5, #6, #7, and #18), which were run through 3 different
operational profiles (charge, discharge, and impedance) at room temperature. Charging
was carried out in constant current (CC) mode at 1.5 A until the battery voltage reached
4.2 V and then continued in a constant voltage (CV) mode until the charge current dropped
to 20 mA. Discharge was carried out at a constant current (CC) level of 2 A until the battery
voltage fell to 2.7 V, 2.5 V, 2.2 V, and 2.5 V for batteries #5, #6, #7, and #18, respectively.
The experiments were stopped when the batteries reached the EOL criterion, which was
a 30% fade in rated capacity (from 2 Ahr to 1.4 Ahr). Figure 4 shows the relationship
between the capacity and cycle number. The number of cycles are 168, 168, 168, 132, for
batteries #5, #6, #7, and #18.
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Figure 4. Plots of the data: battery capacity based on the cycle number.

According to Equation (2), we can compute the SOH value at each point, and the
results are shown in Figure 5.
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Figure 5. Plots of the data: SOH based on the cycle number.
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Table 1 shows some sample records of NASA dataset.

Table 1. Sample of NASA dataset.

Type Time_Start Time_End Capacity v1 · · · i1 · · · t1 · · ·
charge 2008/4/2 13:08 2008/4/2 15:14 4.187 0.643 25.32
discharge 2008/4/2 15:25 2008/4/2 16:27 1.856487 3.530 −1.819 32.57
charge 2008/4/2 16:37 2008/4/2 19:33 4.059 0.949 26.64
discharge 2008/4/2 19:43 2008/4/2 20:45 1.846327 3.537 −1.818 32.73
charge 2008/4/2 20:55 2008/4/2 23:50 4.058 0.951 26.78
discharge 2008/4/3 0:01 2008/4/3 1:01 1.835349 3.544 −1.816 32.64

vi, ii, and ti mean the voltage, output current, and temperature of a battery at the i-th
time point, respectively.

2.3. SOH Estimation

The NASA dataset contains an accurate capacity in each discharge cycle; therefore,
we can calculate the accurate SOH and use it as the response variable. We extracted some
features from the internal battery parameters (voltage, output current, and temperature)
in each discharge cycle. Table 2 shows the variables in the dataset. There is only one real-
world parameter: ambient temperature. In this dataset, the ambient temperature remains
unchanged, so it will not be selected in the final models.

Table 2. Variables in each discharge cycle.

Variable Description Variable Description

soh SOH in each discharge cycle imin minimum of output current
cycle cycle number iavg average of output current
tambient ambient temperature isd standard deviation of output current
vmax maximum of voltage tmax maximum of temperature
vmin minimum of voltage tmin minimum of temperature
vavg average of voltage tavg average of temperature
vsd standard deviation of voltage tsd standard deviation of temperature
imax maximum of output current

We will try some regression models to predict SOH. The voltage, output current, and
temperature measurements in each discharge cycle were selected as independent variables.
To obtain more features, we conducted feature engineering by extracting the maximum,
minimum, mean, and standard deviation from all of the measurements. We defined these
3 models according to different data scenarios.

• Model 1: Use the individual data for each battery to predict that battery’s SOH.
• Model 2: Use all of the data to create an aggregate model to predict each battery.
• Model 3: Use the data for the other batteries to predict the SOH for another battery.

For example, we combine the data for batteries #5, #6, and #7 to predict battery #18.

Linear regression is the simplest model, but there may be correlation and linear depen-
dence between explanatory variables. We will also therefore try Lasso and ridge regression.

The Lasso [38] (least absolute shrinkage and selection operator) is a regression with
an `1-norm penalty, which minimizes the residual sum of squares subject to the sum of the
absolute value. Because of its good performance in both variable selection and prediction
accuracy, Lasso is popular for predicting continuous variables. Mansouri et al. [39] dis-
cussed how to use Lasso to predict the RUL of a battery. To improve computing efficiency,
Friedman et al. [40] developed fast algorithms to estimate generalized linear models with
convex penalties.



Processes 2021, 9, 2174 7 of 18

A general form of the Lasso is elastic net. Suppose that we have observations xi ∈ Rp

and the responses yi ∈ R, i = 1, . . . , N. The objective function is

min
(β0,β)∈Rp+1

1
2N

N

∑
i=1

(yi − β0 − xT
i β)2 + λ

[
(1− α)||β||22/2 + α||β||1

]
, (3)

where λ ≥ 0 is a complexity parameter and 0 ≤ α ≤ 1 is a compromise between the
`1-norm and `2-norm. α = 0 means the ridge regression, and α = 1 means the Lasso.
The elastic net is a regularized regression method that linearly combines the `1-norm and
`2-norm penalties of the Lasso and ridge methods.

We use the root mean square error (RMSE) to compare the performance of the methods:

RMSE =

√
m

∑
k=1

(ŜOHk − SOHk)2/m (4)

where SOHk is the SOH value at cycle number k, and ŜOH represents the predicted value.
This approach is based on the internal battery parameters and predicts the current

SOH value. It cannot be directly used to predict the future SOH and thus predict the RUL.
Although there are many methods to estimate the SOH and predict the RUL at the same
time, these methods usually have high requirements for data and have time-consuming
calculation processes. In the real world, there are often missing values, and batteries are
seldom fully discharged. Using this approach, we need only the internal battery parameters
and other parameters of the current state to estimate the value of the current SOH, which
is meaningful for the residual value evaluation of the battery. In addition, the calculation
process is both simple and fast, which is suitable for real-time computing on the cloud.
Finally, the estimated SOH value can be combined with other methods, such as ARIMA,
to predict the RUL.

2.4. RUL Prediction
2.4.1. RUL Prediction by Using Time Series Method Directly

A time series is a set of observations xt, each one being recorded at a specified time
t [41]. Time series forecasting involves using existing data to make predictions about future
events. The autoregressive integrated moving average (ARIMA) method is a popular model
to identify complex patterns in data and to generate forecasts [42].

Hyndman and Khandakar [43] developed a step-wise algorithm for automatic forecast-
ing with ARIMA models. By using this algorithm, we can select the model that minimizes
the Akaike’s information criterion (AIC) or Bayesian information criterion (BIC) among all
of the models that are appropriate for the data.

The ARIMA method can be used to predict the RUL based on the historical data,
and Zhou and Huang [26] have discussed the approaches to predict the battery RUL by
forecasting the next step SOH.

If we obtain historical SOH series, we can apply the ARIMA model to predict the
future SOH. First, we make the SOH prediction at 4 different starting points for each battery.
For example, starting at point 60 means that we use data from cycle 1 to cycle 59 as the
training dataset and then forecast the future values of the SOH. The RMSE is used as the
evaluation criterion to evaluate the performance of SOH prediction.

2.4.2. RUL Prediction by the Regression Methods

When we use time series methods, a smaller number of data results in lower prediction
accuracy. There is another strategy to determine the future parameters at first and then
predict the SOH, which is using regression methods.

If the parameters have time trends, we can use the ARIMA model to predict the future
values. If the parameters are random or unpredictable, such as driving behaviours, we can
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use a Monte Carlo simulation to determine the future values. Then, regression models can
be used to predict the SOH.

If simulated data are used, we can obtain the PDF of the RUL. For the sake of simplicity,
we use the ARIMA model to predict the internal battery parameters, and we then use the
Lasso regression to predict the SOH and RUL.

2.5. Results
2.5.1. SOH Estimation by Regression Models

First, we employ a linear regression to predict the SOH for each battery. Figure 6
shows the prediction result of each model for each battery.
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Figure 6. Prediction by using linear regression. ‘Ref.’ means the actual data.

We find that most of the results are good, except for model 3 on batteries #6 and #18.
Using the same definition of the 3 models, we employ a ridge regression to predict the

SOH. The results are shown in the Figure 7.
Model 3 on battery #5 seems to obtain better performance, but the others are not as

good as the linear regression.
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Figure 7. Prediction using a ridge regression. ‘Ref.’ means the actual data.
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Then, we employed the Lasso regression. The results are shown in the Figure 8.
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Figure 8. Prediction using the Lasso regression. ‘Ref.’ means the actual data.

Model 3 on battery #6 seems to be a little bit better than the linear regression, and the
others do not seem to be worse.

Table 3 shows the RMSE results of each method used for each battery, and we find
that the linear regression model is the best in most cases. To prevent overfitting, we mainly
refer to model 3. We find that the ridge regression has the best prediction result for battery
#6, but it has poor performance on the other batteries. The Lasso has similar performance
as the linear regression.

Table 3. RMSE (%) results of all the models.

Battery Linear Regression Ridge Regression Lasso Regression
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

#5 0.4 0.93 1.04 0.91 1.42 1.6 0.41 0.94 1.02
#6 0.63 1.22 5.57 1.09 1.45 4.44 0.77 1.2 5.64
#7 0.39 0.84 1.87 0.85 1.68 3.78 0.41 0.88 1.98
#18 0.32 1.24 3.2 0.55 1.72 4.95 0.33 1.23 3.33

2.5.2. RUL Prediction When SOH Is Determined

In this paper, we set 70% of the SOH as the failure threshold. Thus, we can predict
the RUL by counting the remaining life (in number of cycles) before the battery reaches
the EOL. The absolute error (AE) is used to evaluate the performance of RUL prediction.
The RMSE of SOH is computed according to Equation (4). Since the SOH prediction before
the EOL is more important, we also list the RMSE when SOH > 70%. The results are
shown in Figure 9 and Table 4.

Since the degradation of battery #7 does not reach the failure threshold, the RMSE
of the overall data is the same as the RMSE of the data when SOH > 70%. For the other
batteries, the predictions are better when SOH > 70%.
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Figure 9. RUL prediction by ARIMA at different starting points. ‘Ref.’ means the actual data.

Table 4. Prediction results of ARIMA.

Battery Starting ARIMA Actual Predicted AE RMSE of SOH % RMSE of SOH %
Point (p, d, q) RUL RUL (Overall) (SOH > 70%)

#5

60 (0, 1, 0) 65 111 46 5.32 4.44
70 (0, 1, 0) 55 70 15 2.09 2.00
80 (0, 1, 0) 45 48 3 1.01 0.92
90 (0, 1, 0) 35 30 5 1.99 1.34

#6

60 (0, 1, 0) 49 35 14 7.67 3.05
70 (0, 1, 3) 39 21 18 9.58 4.28
80 (0, 1, 3) 29 12 17 9.65 4.64
90 (0, 1, 3) 19 4 15 9.05 4.80

#7

60 (0, 1, 0) 109 129 20 2.90 2.90
70 (0, 1, 0) 99 88 11 0.99 0.99
80 (0, 1, 0) 89 69 20 1.84 1.84
90 (0, 1, 0) 79 55 24 2.47 2.47

#18

60 (0, 1, 3) 37 50 13 2.43 2.73
70 (0, 1, 0) 27 19 8 5.09 1.61
80 (2, 1, 3) 17 12 5 4.68 1.23
90 (2, 1, 3) 7 5 2 4.04 0.67

2.5.3. RUL Prediction When SOH Is Not Determined

In the real world, battery capacity is not easy to obtain, so there is no accurate SOH
value available when we predict the RUL. A feasible way would be forecasting the battery
parameters at first and then predicting the RUL by regression model.

Firstly, we forecast the future parameters listed in Table 2 by the ARIMA model. Then,
we use Model 2 of Linear/Ridge/Lasso regression to predict RUL. After comparing the
results, we choose the Ridge regression model. The results are shown in Figure 10 and
Table 5.
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Figure 10. RUL prediction by the Ridge regression at different starting points. ‘Ref.’ means the
actual data.

Table 5. Prediction results of regression models.

Battery Starting Actual AE AE AE RMSE % RMSE %
Point RUL (Linear) (Lasso) (Ridge) (Overall) (SOH > 70%)

#5

60 65 85 84 112 8.44 6.37
70 55 29 28 9 1.42 1.53
80 45 35 33 1 1.70 0.87
90 35 22 21 8 3.23 1.38

#6

60 49 54 54 78 7.84 4.44
70 39 29 28 15 5.45 3.26
80 29 23 22 14 5.38 3.61
90 19 7 6 14 6.57 4.46

#7

60 109 87 84 104 6.75 6.75
70 99 50 49 27 2.62 2.62
80 89 62 60 26 2.55 2.55
90 79 52 51 29 3.26 3.26

#18

60 37 10 14 34 3.76 4.07
70 27 10 10 18 1.99 2.25
80 17 10 10 18 1.97 2.36
90 7 4 4 12 1.83 1.70

We find that the predictions at starting point 60 are not good. Compared with the
ARIMA model with determined SOH, this model has better prediction results for battery
#5 and #6 at starting points 70/80/90, and the others do not seem too bad. So when we do
not have accurate SOH value in the real world, we can use this process to predict the RUL.

3. Application Study with Data from the Real World
3.1. Data Description

Table 6 shows some sample records of real-world data from a BMS. Each record con-
tains the status informations of an EV at a time point, such as cell voltage, cell temperature,
charge mode, mileage, and a rough SOC value.
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Table 6. Sample of real world data.

vin Time Mode soc i v1 · · · t1 · · · lon lat odomileage

test1 2016/9/22 20:29:01 2 61.6 1.64 3.28 25 0 0 192
test1 2016/9/22 20:29:11 1 61.6 0 3.28 25 0 0 192
test1 2016/9/23 01:31:01 1 61.6 0 3.28 25 0 0 192
test1 2016/9/26 06:15:01 4 61.6 −8.58 3.3 26 0 0 192
test1 2016/9/26 06:15:11 4 61.6 −8.58 3.3 26 121.446 31.218 192
test1 2016/9/26 06:15:21 4 61.6 −8.48 3.32 26 121.446 31.218 192

The variable mode means charge mode; soc means the rough SOC value; i means charge
or discharge current; vk means voltage of the k-th battery cell; tk means temperature of the
k-th battery cell; lon means longitude; lat means latitude; odomileage means ODO mileage.

We need to estimate battery capacity based on these values to calculate the SOH.
From time point t1 (the start time of a discharge cycle) to t2 (the end time of a discharge
cycle), the total capacity of the battery cell is [44]:

C = C1,2 =
Q1 −Q2

SOC1 − SOC2
=

∫ t2
t1

I(t)dt

SOC(t1)− SOC(t2)
(5)

In the real world, the number of BMS data is huge: there are usually several records in
1 s. Sometimes there are errors in the data, which need to be cleaned.

The data come from a BMS that contains 363 vehicles samples. The data contain
real-time current, voltage, temperature, and other information, as well as a rough estimate
of the SOC.

We use Equation (5) to estimate the rough value of capacity and use it to compute
the SOH value by following the Equation (2). Figure 11 shows the SOH details of all the
vehicles. It is a smoothed color density representation of a scatterplot, obtained through
a kernel density estimate. Dark area means high density of data points.
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Figure 11. Real-world data—SOH based on the cycle number.

3.2. SOH Estimation

We found that the maximum number of cycles was only 300, and the batteries of these
vehicles are far from the EOL; therefore, there is no way to obtain exact future SOH values.
We can use the methods mentioned in the previous section to create models with the SOH
and various battery parameters and then use these models to predict the future SOH. It
should be noted that many vehicles do not contain enough data points, and there is a large
number of vehicles in the real world; therefore, it is necessary to build an aggregate model
to predict each vehicle.

As mentioned above, we continue to use the three models: the linear regression,
the ridge regression, and the Lasso regression. For each method, we create an aggregate
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model (use all of the samples) and predict the vehicles separately. Table 7 shows the
RMSE results.

Table 7. RMSE (%) results of all the models.

Linear Regression Ridge Regression Lasso Regression

Mean of RMSE 0.92 0.93 0.92
Median of RMSE 0.6 0.62 0.61

Maximum of RMSE 8.56 8.6 8.56
Minimum of RMSE 0.08 0.08 0.08

We found that there is little difference between the results of these models. The Ridge
regression obtained the best performance when we use NASA dataset, so we selected the
Ridge regression for the subsequent prediction.

3.3. RUL Prediction

To predict the future SOH, we need the future battery parameters. In practice, we can
use a Monte Carlo simulation to determine the PDF of the RUL. Without losing generality,
we investigate the historical data of two features, the charge mode and mileage, for vehicle
#1. Figure 12 shows their distributions.
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Figure 12. Frequency of the charge model and mileage per day for vehicle #1.

We can use a binomial distribution to simulate charge mode and a log-normal distri-
bution to simulate mileage per day. The parameters are shown in the Table 8.

Table 8. Distribution parameters of the charge model and mileage per day for vehicle #1.

Feature Distribution Parameters

Charge mode binomial n = 1, p = 0.284
Mileage per day log-normal µ = 3.482, σ = 0.981

Then, future data over a period of time can be simulated. We did multiple simulations
and compute the PDF of the RUL. Figure 13 is the result of four simulation scenarios
for vehicle #1; each scenario used a different random number seed. Table 9 shows the
simulation parameters. Appendix A shows the R codes.
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Figure 13. RUL Prediction.

Table 9. Simulation parameters for vehicle #1.

Scenario Random Number Seed Simulation Times Maximum Cycles

1 1 100 5000
2 2 100 5000
3 3 100 5000
4 4 100 5000

For example, in scenario 1, according to the peak value of the density estimation,
the predicted EOL for vehicle #1 is the 1592th cycle. Since the last cycle number for
prediction is 261, the RUL is 1331 cycles.

In the four simulation scenarios, the minimum of predicted EOL is 1584, the maximum
of predicted EOL is 1602, the difference rate is 1.14%, and it shows that the simulated result
is quite stable.

We have run 1000 simulations to compute the PDF, the total CPU time on a PC (AMD
Ryzen 5 3500U) is 0.03 s. The computing performance can meet the daily needs.

3.4. Discussion

When we compute the SOH value of a EV, we can predict the short-term demand
for electricity. When we compute the RUL of a EV, we can predict the long-term demand
for electricity. The electric demands of EVs was taken account into basic load frequency
control (LFC) of power systems. LFC in power systems can generate control signals and
apply it to the governors to match supply and demand. There are lots of methods to
improve the performance of LFCs by tuning them such as [45,46]. In order to handle the
parametric and non-parametric uncertainties of realistic power systems, Alhelou et al. [47]
devoloped a unknown input functional observer (UIFO) [47] or unknown input observer
(UIO) [48] for LFC. The unknown input observer can also be used for fault detection and
isolation [49]. If we can accurately predict the electric demands, we can provide more
information for LFC.

4. Conclusions and Future Works

A novel process for predicting the RUL using real-world data was proposed. First,
the SOC-based equation was used to estimate the capacity and SOH of the battery for each
electric vehicle. Second, a Lasso regression model was constructed with the aggregated
data for all the vehicles after missing and invalid values were removed. Then, the future
internal battery parameters and real-world parameters were predicted by the ARIMA
model or simulated by the Monte Carlo method. Finally, the future values of the SOH
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were predicted by the Lasso model with the predicted parameters, and the probability
distribution of the RUL was determined.

This approach is less reliant on experimental data and can easily perform real-time
prediction; therefore, it is economical to apply it to evaluate a vehicle’s condition and the
residual value of the battery. It has significance for the battery recovery industry and thus
has some contribution to the green supply chain of the automobile industry. Based on
Section 3.4, we will use the RUL prediction model to predict the electric demands and
make more improvement to the LFC of the power systems in future work.
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The following abbreviations are used in this manuscript:

EV electric vehicle
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SOC state of charge
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RUL remaining useful life
EOL end of life
PDF probability density function
OVC open-circuit voltage
AIC Akaike information criterion
LFC load frequency control

Appendix A. R Codes for Simulation
predicRUL <- function(m0, d0, n = 100, lmax = 5000) {

OUT <- rep(0, n)
d0$fast1 <- as.numeric(d0$mode == 5)
d0$tdiff <- d0$tmax - d0$tmin
for (i in 1:n) {

simdf <- data.frame(charge_circle = 1:lmax, stringsAsFactors = FALSE)
simdf$fast1 <- sample(0:1, size = lmax, prob = c(sum(d0$fast1==0)/nrow(d0), sum(d0$fast1==1)/nrow(d0)), replace = TRUE)
simdf$tdiff <- sample(as.numeric(names(table(d0$tdiff))), size = lmax, prob = table(d0$tdiff)/nrow(d0), replace = TRUE)
tmp.log <- log(d0$charge_diff_time)
tmp.log[is.infinite(tmp.log)] <- NA
simdf$charge_diff_time <- exp(rnorm(lmax, mean = mean(tmp.log,na.rm = TRUE), sd = sd(tmp.log,na.rm=TRUE)))
mile.log <- log(diff(chargedf$mileage_gps))
mile.log[is.infinite(mile.log)] <- NA
simdf$mileage_gps <- exp(rnorm(lmax, mean = mean(mile.log,na.rm = TRUE), sd = sd(mile.log,na.rm=TRUE)))
simdf$mileage_gps[simdf$mileage_gps > 1000] <- 0
simdf$fastrate <- cumsum(simdf$fast1) / nrow(simdf)
simdf$mileage_gps <- cumsum(simdf$mileage_gps)
predf <- simdf[, c("charge_circle", "fastrate", "tdiff", "charge_diff_time", "mileage_gps")]
OUT[i] <- min(which(predict(m0, predf) <= 0.8))

}
return(OUT)

}

predicRULlasso <- function(m0, d0, n = 100, lmax = 5000) {
OUT <- rep(0, n)

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository
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d0$fast1 <- as.numeric(d0$mode == 5)
d0$tdiff <- d0$tmax - d0$tmin
for (i in 1:n) {

simdf <- data.frame(charge_circle = 1:lmax, stringsAsFactors = FALSE)
simdf$fast1 <- sample(0:1, size = lmax, prob = c(sum(d0$fast1==0)/nrow(d0), sum(d0$fast1==1)/nrow(d0)), replace = TRUE)
simdf$tdiff <- sample(as.numeric(names(table(d0$tdiff))), size = lmax, prob = table(d0$tdiff)/nrow(d0), replace = TRUE)
tmp.log <- log(d0$charge_diff_time)
tmp.log[is.infinite(tmp.log)] <- NA
simdf$charge_diff_time <- exp(rnorm(lmax, mean = mean(tmp.log,na.rm = TRUE), sd = sd(tmp.log,na.rm=TRUE)))
mile.log <- log(diff(chargedf$mileage_gps))
mile.log[is.infinite(mile.log)] <- NA
simdf$mileage_gps <- exp(rnorm(lmax, mean = mean(mile.log,na.rm = TRUE), sd = sd(mile.log,na.rm=TRUE)))
simdf$mileage_gps[simdf$mileage_gps > 1000] <- 0
simdf$fastrate <- cumsum(simdf$fast1) / nrow(simdf)
simdf$mileage_gps <- cumsum(simdf$mileage_gps)
predf <- simdf[, c("charge_circle", "fastrate", "tdiff", "charge_diff_time", "mileage_gps")]
predsoh <- as.numeric(predict(m0, newx=as.matrix(predf), s=tail(m0$lambda, n=1)))
OUT[i] <- min(which(predsoh <= 70))

}
return(OUT)

}

library(glmnet)
chargedf <- readRDS("chargedf.rds")
datalist <- split(chargedf, f = chargedf$vin)
trainlist <- list()
for (i in 1:length(datalist)) {

tmp.df <- datalist[[i]]
tmp.df$fast1 <- as.numeric(tmp.df$mode == 5)
tmp.df$fastrate <- cumsum(tmp.df$fast1) / nrow(tmp.df)
tmp.df$soh <- (tmp.df$soh -80)/20 * 100
tmp.df$tdiff <- tmp.df$tmax - tmp.df$tmin
trainlist[[i]] <- tmp.df[, c("soh", "charge_circle", "fastrate", "tdiff", "charge_diff_time", "mileage_gps")]
names(trainlist)[i] <- tmp.df$vin[1]

}
traindf <- do.call("rbind", trainlist)
ridge1 <- glmnet(as.matrix(traindf[, -1]), traindf[[1]], family="gaussian", nlambda=50, alpha=0)
d1 <- datalist[["V00332"]]

seeds <- c(1, 2, 3, 4)
par(mar=c(5,5,2,1), mfrow = c(2,2))
for (i in 1:length(seeds)) {

set.seed(seeds[i])
p1 <- predicRULlasso(ridge1, d1, n = 100, lmax = 5000)
p1 <- p1 + nrow(d1)
den1 <- density(p1,na.rm=T)
plot(soh~charge_circle, data = d1, type = "p", xlim = c(0, max(p1)*1.2), ylim = c(70,100),

xlab = "Cycle number (Vehicle #1)", ylab = "SOH (%)", main = paste0("Simulation Scenario ", i))
text(den1$x[which.max(den1$y)], 95, paste0("EOL = ", round(den1$x[which.max(den1$y)],0)), pos=2)
legend(2000, 100, c("Actual Data", "PDF of the RUL"), col = c("black", "wheat"), pch = c(20, 17), xjust=1, cex = 0.5)
par(new = TRUE,mar=c(5,5,2,1))
plot(den1, col = "wheat", xlim = c(0, max(p1)*1.2), ylim = c(0,0.05),axes=FALSE, xlab="", ylab="", main="")
polygon(den1, col = "wheat")
abline(v = den1$x[which.max(den1$y)], lty = 2)

}

References
1. Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Möller, K.C.; Besenhard, J.O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.;

Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281. [CrossRef]
2. Xing, Y.; Ma, E.W.M.; Tsui, K.L.; Pecht, M. Battery Management Systems in Electric and Hybrid Vehicles. Energies 2011, 4, 1840–1857.

[CrossRef]
3. Pattipati, B.; Sankavaram, C.; Pattipati, K.R. System Identification and Estimation Framework for Pivotal Automotive Battery

Management System Characteristics. IEEE Trans. Syst. Man Cybern. Part C 2011, 41, 869–884. [CrossRef]
4. Finger, E.P.; Marwell, E.M. Battery Control System for Battery Operated Vehicles. U.S. Patent 4,012,681, 1 September 1977.
5. Chiang, Y.H.; Sean, W.Y.; Ke, J.C. Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in

electric vehicles. J. Power Sources 2011, 196, 3921–3932. [CrossRef]
6. Zhang, J.; Lee, J. A review on prognostics and health monitoring of Li-ion battery. J. Power Sources 2011, 196, 6007–6014. [CrossRef]
7. Waag, W.; Fleischer, C.; Sauer, D.U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid

vehicles. J. Power Sources 2014, 258, 321–339. [CrossRef]
8. Wei, J.; Dong, G.; Chen, Z. Remaining Useful Life Prediction and State of Health Diagnosis for Lithium-Ion Batteries Using

Particle Filter and Support Vector Regression. IEEE Trans. Ind. Electron. 2018, 65, 5634–5643. [CrossRef]
9. Zhou, Y.; Huang, M.; Chen, Y.; Tao, Y. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction. J.

Power Sources 2016, 321, 1–10. [CrossRef]

http://doi.org/10.1016/j.jpowsour.2005.01.006
http://dx.doi.org/10.3390/en4111840
http://dx.doi.org/10.1109/TSMCC.2010.2089979
http://dx.doi.org/10.1016/j.jpowsour.2011.01.005
http://dx.doi.org/10.1016/j.jpowsour.2011.03.101
http://dx.doi.org/10.1016/j.jpowsour.2014.02.064
http://dx.doi.org/10.1109/TIE.2017.2782224
http://dx.doi.org/10.1016/j.jpowsour.2016.04.119


Processes 2021, 9, 2174 17 of 18

10. Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing mechanisms and
estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [CrossRef]

11. Zhao, Q.; Qin, X.; Zhao, H.; Feng, W. A novel prediction method based on the support vector regression for the remaining useful
life of lithium-ion batteries. Microelectron. Reliab. 2018, 85, 99–108. [CrossRef]

12. Song, Y.; Liu, D.; Yang, C.; Peng, Y. Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion
battery. Microelectron. Reliab. 2017, 75, 142–153. [CrossRef]

13. Si, X.S.; Wangbde, W.; Zhouc, D.H. Remaining useful life estimation—A review on the statistical data driven approaches. Eur. J.
Oper. Res. 2011, 213, 1–14. [CrossRef]

14. Zheng, X.; Fang, H. An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery
remaining useful life and short-term capacity prediction. Reliab. Eng. Syst. Saf. 2015, 144, 74–82. [CrossRef]

15. Yang, F.; Wang, D.; Xing, Y.; Tsui, K.L. Prognostics of Li(NiMnCo)O2-based lithium-ion batteries using a novel battery degradation
model. Microelectron. Reliab. 2017, 70, 70–78. [CrossRef]

16. Burgess, W.L. Valve Regulated Lead Acid battery float service life estimation using a Kalman filter. J. Power Sources 2009,
191, 16–21. [CrossRef]

17. Dong, H.; Jin, X.; Lou, Y.; Wang, C. Lithium-ion battery state of health monitoring and remaining useful life prediction based on
support vector regression-particle filter. J. Power Sources 2014, 271, 114–123. [CrossRef]

18. Zhang, X.; Miao, Q.; Liu, Z. Remaining useful life prediction of lithium-ion battery using an improved UPF method based on
MCMC. Microelectron. Reliab. 2017, 75, 288–295. [CrossRef]

19. Duong, P.L.T.; Raghavan, N. Heuristic Kalman optimized particle filter for remaining useful life prediction of lithium-ion battery.
Microelectron. Reliab. 2018, 81, 232–243. [CrossRef]

20. Zhang, H.; Miao, Q.; Zhang, X.; Liu, Z. An improved unscented particle filter approach for lithium-ion battery remaining useful
life prediction. Microelectron. Reliab. 2018, 81, 288–298. [CrossRef]

21. Ma, Y.; Chen, Y.; Zhou, X.; Chen, H. Remaining Useful Life Prediction of Lithium-Ion Battery Based on Gauss–Hermite Particle
Filter. IEEE Trans. Control Syst. Technol. 2019, 27, 1788–1795. [CrossRef]

22. Li, L.; Saldivar, A.A.F.; Bai, Y.; Li, Y. Battery Remaining Useful Life Prediction with Inheritance Particle Filtering. Energies 2019,
12, 2784. [CrossRef]

23. He, W.; Williard, N.; Osterman, M.; Pecht, M. Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the
Bayesian Monte Carlo method. J. Power Sources 2011, 196, 10314–10321. [CrossRef]

24. Ng, S.S.Y.; Xing, Y.; Tsui, K.L. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl. Energy
2014, 118, 114–123. [CrossRef]

25. Patil, M.A.; Tagade, P.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Yeo, T.; Doo, S. A novel multistage Support Vector Machine based
approach for Li ion battery remaining useful life estimation. Appl. Energy 2015, 159, 285–297. [CrossRef]

26. Zhou, Y.; Huang, M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition
and ARIMA model. Microelectron. Reliab. 2016, 65, 265–273. [CrossRef]

27. Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Lithium-Ion Battery Remaining Useful Life Prediction With Box–Cox Transformation
and Monte Carlo Simulation. IEEE Trans. Ind. Electron. 2019, 66, 1585–1597. [CrossRef]

28. Wu, J.; Zhang, C.; Chen, Z. An online method for lithium-ion battery remaining useful life estimation using importance sampling
and neural networks. Appl. Energy 2016, 173, 134–140. [CrossRef]

29. Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life
Prediction of Lithium-Ion Batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [CrossRef]

30. Khumprom, P.; Yodo, N. A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning
Algorithm. Energies 2019, 12, 660. [CrossRef]

31. Chen, L.; Tao, L.; Fan, H. Li-ion battery capacity estimation: A geometrical approach. J. Power Sources 2014, 261, 141–147.
32. Wang, D.; Yang, F.; Zhao, Y.; Tsui, K.L. Battery remaining useful life prediction at different discharge rates. Microelectron. Reliab.

2017, 78, 212–219. [CrossRef]
33. Eddahech, A.; Briat, O.; Woirgard, E.; Vinassa, J.M. Remaining useful life prediction of lithium batteries in calendar ageing for

automotive applications. Microelectron. Reliab. 2012, 52, 2438–2442. [CrossRef]
34. Nuhic, A.; Terzimehic, T.; Soczka-Guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining useful life prognostics of

lithium-ion batteries using data-driven methods. J. Power Sources 2013, 239, 680–688. [CrossRef]
35. Canals, L.; Schiffer Gonzalez, A.; Amante, B.; Llorca, J. PHEV battery ageing study using voltage recovery and internal resistance

from On-board data. IEEE Trans. Veh. Technol. 2015, 65, 4209–4216. [CrossRef]
36. Alhelou, H.H.; Hamedani-Golshan, M.E.; Heydarian-Forushani, E.; Al-Sumaiti, A.S.; Siano, P. Decentralized fractional order

control scheme for LFC of deregulated nonlinear power systems in presence of EVs and RER. In Proceedings of the 2018
International Conference on Smart Energy Systems and Technologies (SEST), Seville, Spain, 10–12 September 2018; pp. 1–6.

37. Saha, B.; Goebel, K. Battery Data Set. In Nasa Ames Prognostics Data Repository; NASA Ames Research Center: Moffett Field,
CA, USA, 2007. Available online: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository (accessed on 30
November 2021).

38. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. 1996, 58, 267–288. [CrossRef]

http://dx.doi.org/10.1016/j.jpowsour.2013.05.040
http://dx.doi.org/10.1016/j.microrel.2018.04.007
http://dx.doi.org/10.1016/j.microrel.2017.06.045
http://dx.doi.org/10.1016/j.ejor.2010.11.018
http://dx.doi.org/10.1016/j.ress.2015.07.013
http://dx.doi.org/10.1016/j.microrel.2017.02.002
http://dx.doi.org/10.1016/j.jpowsour.2008.12.123
http://dx.doi.org/10.1016/j.jpowsour.2014.07.176
http://dx.doi.org/10.1016/j.microrel.2017.02.012
http://dx.doi.org/10.1016/j.microrel.2017.12.028
http://dx.doi.org/10.1016/j.microrel.2017.12.036
http://dx.doi.org/10.1109/TCST.2018.2819965
http://dx.doi.org/10.3390/en12142784
http://dx.doi.org/10.1016/j.jpowsour.2011.08.040
http://dx.doi.org/10.1016/j.apenergy.2013.12.020
http://dx.doi.org/10.1016/j.apenergy.2015.08.119
http://dx.doi.org/10.1016/j.microrel.2016.07.151
http://dx.doi.org/10.1109/TIE.2018.2808918
http://dx.doi.org/10.1016/j.apenergy.2016.04.057
http://dx.doi.org/10.1109/TVT.2018.2805189
http://dx.doi.org/10.3390/en12040660
http://dx.doi.org/10.1016/j.microrel.2017.09.009
http://dx.doi.org/10.1016/j.microrel.2012.06.085
http://dx.doi.org/10.1016/j.jpowsour.2012.11.146
http://dx.doi.org/10.1109/TVT.2015.2459760
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x


Processes 2021, 9, 2174 18 of 18

39. Mansouri, S.S.; Karvelis, P.; Georgoulas, G.; Nikolakopoulos, G. Remaining Useful Battery Life Prediction for UAVs based on
Machine Learning. IFAC-PapersOnLine 2017, 50, 4727–4732. [CrossRef]

40. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw.
Artic. 2010, 33, 1–22. [CrossRef]

41. Brockwell, P.J. Time Series: Theory and Methods; Springer: New York, NY, USA, 1987.
42. Box, G.E.P.; Jenkins, G.M. Time Series Analysis : Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1970.
43. Hyndman, R.; Khandakar, Y. Automatic Time Series Forecasting: The forecast Package for R. J. Stat. Softw. Artic. 2008, 27, 1–22.
44. Einhorn, M.; Conte, F.V.; Kral, C.; Fleig, J. A method for online capacity estimation of lithium ion battery cells using the state of

charge and the transferred charge. IEEE Trans. Ind. Appl. 2012, 48, 736–741. [CrossRef]
45. Haes Alhelou, H.; Hamedani Golshan, M.E.; Hajiakbari Fini, M. Wind driven optimization algorithm application to load

frequency control in interconnected power systems considering GRC and GDB nonlinearities. Electr. Power Compon. Syst. 2018,
46, 1223–1238. [CrossRef]

46. Alhelou, H.H.; Siano, P.; Tipaldi, M.; Iervolino, R.; Mahfoud, F. Primary Frequency Response Improvement in Interconnected
Power Systems Using Electric Vehicle Virtual Power Plants. World Electr. Veh. J. 2020, 11, 40. [CrossRef]

47. Alhelou, H.H.; Golshan, M.E.H.; Hatziargyriou, N.D. A decentralized functional observer based optimal LFC considering
unknown inputs, uncertainties, and cyber-attacks. IEEE Trans. Power Syst. 2019, 34, 4408–4417. [CrossRef]

48. Alhelou, H.H.; Golshan, M.E.H.; Hatziargyriou, N.D. Deterministic dynamic state estimation-based optimal lfc for interconnected
power systems using unknown input observer. IEEE Trans. Smart Grid 2019, 11, 1582–1592. [CrossRef]

49. Alhelou, H.H.; Golshan, M.H.; Askari-Marnani, J. Robust sensor fault detection and isolation scheme for interconnected smart
power systems in presence of RER and EVs using unknown input observer. Int. J. Electr. Power Energy Syst. 2018, 99, 682–694.
[CrossRef]

http://dx.doi.org/10.1016/j.ifacol.2017.08.863
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.1109/TIA.2011.2180689
http://dx.doi.org/10.1080/15325008.2018.1488895
http://dx.doi.org/10.3390/wevj11020040
http://dx.doi.org/10.1109/TPWRS.2019.2916558
http://dx.doi.org/10.1109/TSG.2019.2940199
http://dx.doi.org/10.1016/j.ijepes.2018.02.013

	Introduction
	Materials and Methods
	Overview
	Introduction to NASA Dataset
	SOH Estimation
	RUL Prediction
	RUL Prediction by Using Time Series Method Directly
	RUL Prediction by the Regression Methods

	Results
	SOH Estimation by Regression Models
	RUL Prediction When SOH Is Determined
	RUL Prediction When SOH Is Not Determined


	Application Study with Data from the Real World
	Data Description
	SOH Estimation
	RUL Prediction
	Discussion

	Conclusions and Future Works
	R Codes for Simulation
	References

