
processes

Article

Photoplethysmography Analysis with Duffing–Holmes
Self-Synchronization Dynamic Errors and 1D CNN-Based
Classifier for Upper Extremity Vascular Disease Screening

Pi-Yun Chen 1, Zheng-Lin Sun 1, Jian-Xing Wu 1, Ching-Chou Pai 2, Chien-Ming Li 3, Chia-Hung Lin 1,*
and Neng-Sheng Pai 1,*

����������
�������

Citation: Chen, P.-Y.; Sun, Z.-L.; Wu,

J.-X.; Pai, C.-C.; Li, C.-M.; Lin, C.-H.;

Pai, N.-S. Photoplethysmography

Analysis with Duffing–Holmes

Self-Synchronization Dynamic Errors

and 1D CNN-Based Classifier for

Upper Extremity Vascular Disease

Screening. Processes 2021, 9, 2093.

https://doi.org/10.3390/pr9112093

Academic Editor: Chien-Chih Wang

Received: 26 October 2021

Accepted: 18 November 2021

Published: 22 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, National Chin-Yi University of Technology,
Taichung City 41170, Taiwan; chenby@ncut.edu.tw (P.-Y.C.); eechl53@ncut.edu.tw (Z.-L.S.);
jian0218@gmail.com (J.-X.W.)

2 Show-Chwan Memorial Hospital, Division of Cardiovascular Surgery, Changhua 50091, Taiwan;
actirin1945@gmail.com

3 Chi Mei Medical Center, Department of Medicine, Division of Infectious Diseases, Tainan City 41170, Taiwan;
235813cmli@gmail.com

* Correspondence: eechl53@gmail.com (C.-H.L.); pai@ncut.edu.tw (N.-S.P.)

Abstract: Common upper limb peripheral artery diseases (PADs) are atherosclerosis, embolic dis-
eases, and systemic diseases, which are often asymptomatic, and the narrowed arteries (stenosis)
will gradually reduce blood flow in the right or left upper limbs. Upper extremity vascular disease
(UEVD) and atherosclerosis are high-risk PADs for patients with Type 2 diabetes or with both diabetes
and end-stage renal disease. For early UEVD detection, a fingertip-based, toe-based, or wrist-based
photoplethysmography (PPG) tool is a simple and noninvasive measurement system for vital sign
monitoring and healthcare applications. Based on time-domain PPG analysis, a Duffing–Holmes
system with a master system and a slave system is used to extract self-synchronization dynamic
errors, which can track the differences in PPG morphology (in amplitudes (systolic peak) and time
delay (systolic peak to diastolic peak)) between healthy subjects and PAD patients. In the prelimi-
nary analysis, the self-synchronization dynamic errors can be used to evaluate risk levels based on
the reflection index (RI), which includes normal condition, lower PAD, and higher PAD. Then, a
one-dimensional convolutional neural network is established as a multilayer classifier for automatic
UEVD screening. The experimental results indicated that the self-synchronization dynamic errors
have a positive correlation with the RI (R2 = 0.6694). The K-fold cross-validation is used to verify the
performance of the proposed classifier with recall (%), precision (%), accuracy (%), and F1 score.

Keywords: upper extremity vascular diseases; wrist-based photoplethysmography; Duffing–Holmes
system; 1D convolutional neural network

1. Introduction

In Taiwan, patients with Type 2 diabetes or with both diabetes and end-stage renal dis-
ease have an increased risk factor for atherosclerotic cardiovascular disease (CVD) [1,2]. Ap-
proximately two-thirds of those patients died of related CVDs, which are the usual causes of
heart attacks, strokes, high blood pressure, and peripheral artery disease (PAD) [3,4]. PAD
is a progressive disorder disease and is caused by stenosis of large-sized or medium-sized
arteries. More than 200 million people have PAD [5]. Its prevalence increases substantially
with age and has a higher risk in the elderly population. Atherosclerosis has a more than
90% prevalence in PAD, and more than 50% of PAD patients are asymptomatic. PAD’s
symptoms are related to the arteries in the upper or lower limbs, including discomfort or
pain in the arms or legs, cramping or weakness in one or both upper arms, diabetic foot,
and upper or lower extremity vascular diseases (UEVD or LEVD). UEVDs are caused by
atherosclerosis, embolic disease, or systemic diseases and anatomic abnormalities, such
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as aortitis and thoracic outlet syndrome. For medical exams, diagnostic methods, such as
digital angiography, magnetic resonance angiography, or computed tomography angiogra-
phy, can be performed to detect UEVD or LEVD [3,4,6,7]. However, the aforementioned
diagnostic methods are not readily available for in-home healthcare or nonmedical environ-
ment. Mobile or portable sensors can be embedded in a watch or a wristband with a mobile
phone display, such as smartphones and smartwatches, to measure biosignals [8,9]. These
mobile measurement devices are applied to mobile and personalized health management
and can measure and transmit symptom biosignals via a wired or wireless communication
network for telecare applications.

Among these portable sensors, photoplethysmography (PPG) is an optical technique
to obtain a plethysmogram for noninvasively detecting blood oxygen saturation (SpO2) and
blood volume changes for further time-domain and frequency-domain analyses. As shown
in Figure 1, a portable PPG measurement tool, such as fingertip-based, toe-based, or wrist-
based PPG, can provide nonclinical and noninvasive continuous health monitoring and can
be applied to severe acute respiratory syndrome (COVID-19) and chronic disease symptom
detection and monitoring [10,11], including heart rate (HR), heart rate variability (HRV),
SpO2, and respiratory rate (RR). Moreover, PPG waveform features and shapes with blood
volume changes in the time domain are used to evaluate arterial stiffness and compliance,
such as pulse interval for HR analysis, stiffness index (SI) for large artery stiffness analysis,
and reflection index (RI) for small to medium-sized arterial stiffness analysis. For SI and RI
extraction, the systolic peak, dicrotic notch, and diastolic peak in each PPG pulse need to
be obtained for ratio index computations [8,12–14]. The systolic peak indicates pulsatile
changes in blood volume and is proportional to local vascular distensibility. Meanwhile,
the dicrotic notch and diastolic peaks often disappear, and the time delay between systolic
and diastolic peaks decreases with age and chronic diseases [15]. Hence, the evaluation of
arterial stiffness in the time-domain pulse waveform is difficult. The first derivative PPG
(i.e., velocity waveform of PPG signals) is needed to locate the systolic peak, dicrotic notch,
and diastolic peak in each PPG signal [8,15].
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(a) Narrowed arteries (stenosis) in the upper limb, (b) Wrist-based PPG measurement tool.

In frequency-domain analysis, HRV spectral analysis with fast Fourier transform (FFT)
provides information about autonomic nervous system activity, such as low-frequency com-
ponents for sympathetic and parasympathetic activities and high-frequency components
for parasympathetic activity [16–18]. Moreover, the frequency spectrum of PPG signals can
use the main characteristic frequency to estimate the RR and indicate that PPG signals have
the characteristics of high-frequency components in healthy subjects and low-frequency
components in PAD patients. However, PPG signals may contain various sources of noises,
such as the subject’s motion and respiration, which are required to remove the slow non-
stationary trends or unwanted artifacts from PPG signals. Hence, before HRV spectral
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analysis, a detrending method or a high-pass or band-pass filter (i.e., Butterworth filter,
within the band limit 0.4–3.5 Hz) is used to reduce the detrimental effects [19–21]. However,
frequency spectral parameters cannot screen the PAD risk level. In time-domain analysis,
the PPG’s transit time and amplitudes are differences between the normal and abnormal
PPG signals, which indicates difference increases as the PAD gradually severity and de-
crease in amplitudes and also indicates that PPG waveform changes relate to synchronous
cardiac changes in vascular blood volumes.

Hence, in this study, we propose a time-domain quantizer and a classifier for automatic
UEVD screening. In time-domain PPG analysis, synchronizing chaotification methods
(SCMs), such as the Duffing–Holmes (D–H), Sprott, or Chen–Lee systems [21–27], have
been applied to signal preprocessing and feature extraction. With SCMs, a discrete self-
synchronization dynamic system consisting of a master system (MS) and a slave system
(SS) can be established as a time-domain quantizer for extracting different features from
normal and abnormal PPG signals, as shown in Figure 2. SCMs have advantages in the
broad frequency spectrum and fractal properties of motion in the phase space for analyzing
PPG changes in amplitude (systolic peak) and time delay (systolic peak to diastolic peak).
To simplify the high-dimensional SCMs, the D–H system [21,23,24,28,29] can be linearized,
simplified, and reduced as a discrete two-dimensional (2D) self-synchronization dynamic
system [21,27]. For digital signal processing feeding two different PPG signals into the
MS and SS can cause the chaotic system to produce chaotic phenomena. For feature ex-
traction, normal and abnormal PPG signals are fed into the MS and SS, respectively, so
that the D–H system can track the differences. Any changes in the PPG waveform, such
as initial conditions, amplitudes, or phases can lead to changes in the dynamic errors,
the so-called self-synchronization dynamic errors, and produce different scatter maps of
dynamic trajectories and chaotic regions for screening the normal condition (Nor), lower
PAD (LPAD), and higher PAD (HPAD). Comprehensive dynamic errors (Φ) have a positive
correlation with the RI index (RI index versus Φ as shown in Figure 2) and will be validated
in this study. Hence, a dynamic error-based quantizer can be used to quantify the rela-
tionships of the dynamic errors versus PAD risk levels, which provides scaling indications
for rapidly screening PAD. Hence, chaotic scatter maps can be applied to classification
tasks. For the automatic screening function, a one-dimensional (1D) or 2D convolutional
neural network (CNN) [30–35] can be used to design a multilayer classifier consisting of
the convolutional layers, pooling layers, flattening layers, and a fully connected network.
In previous studies [33–35], PPG analysis with 2D CNN-based classifiers has been applied
to HR and hypertension detection, PAD-related CVD risk detection, and PAD detection,
exhibiting high accuracy for screening mild to severe diseases, arterial hardening, and
Nor. However, a 2D CNN with a deep learning algorithm [33–35] has some drawbacks
and limitations [30], that is, the number of 2D CNN multilayers need to be determined,
the computational complexity for training 2D CNN is high, the 2D CNN is unsuitable for
real-time signal screening applications on a mobile or portable device, and a large dataset
is needed to train the 2D CNN. Moreover, the 2D CNN algorithm needs to be performed
with a graphics processing unit to accelerate the overall process.

Hence, to improve the drawbacks of 2D CNNs, a 1D CNN with a time-domain feature
extraction layer (i.e., D–H-based quantizer), 1D convolution processes, 1D subsampling pro-
cesses, and a few hidden nodes and layers in the fully connected network is used to design
a multilayer classifier for automatic UEVD screening. This adaptive learning model can
also be deployed to adjust the optimal network parameter with feeding training patterns
using the gradient descent method or particle swarm optimization algorithm [31,36–39],
which provides a labeled dataset to maximize classification accuracy. The optimization
algorithm with iteration processes is used to refine the optimal network parameter for
applying to enhance the classifier performance. In the convolution-subsampling layer,
the 1D convolution and subsampling processes are employed to enhance the features,
reduce unwanted noises, and protect the vector’s dimension from self-synchronization
dynamic errors. In the classification layer, the gradient descent algorithm can directly use
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the gradient values for finding the optimal network parameter. In addition, an appropriate
selecting learning rate can speed up the training processes, and then the convergence speed
is increased. The optimized classifier can be applied to separate the Nor from LPAD and
HPAD for UEVD classification. Hence, the proposed 1D CNN-based classifier can directly
analyze and process raw 1D measured PPG signals and learn to extract features in pat-
tern recognition, resulting in low computational operations for real-time signal screening
applications. The proposed screening procedure is tested using the PPG measurement
data, which are obtained from 40 subjects (including 11 Nor, 11 LPAD, and 22 HPAD) and
approved by the hospital research ethics committee. The measurement data are divided
into training and testing datasets to train the classifier and validate the classifier’s feasi-
bility. The experimental results indicated the computational efficiency and high accuracy
against random noises of the proposed screening procedure using the measurement data
for UEVD screening.
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The remainder of this study is organized as follows: Section 2 describes the methodol-
ogy, including the PPG measurement, D–H-based quantizer, feasibility assessment, and
1D CNN-based classifier. Sections 3 and 4 present the feasibility tests and results and the
conclusions, respectively.

2. Materials and Methods
2.1. PPG Measurement

As shown in Figure 1b, the PPG prototype board (EVAL-ADPD4100Z, Analog Devices Inc.,
Wilmington, MA, USA) consists of light sources and a photodetector. The light sources
are three green light-emitting diodes (LEDs), one infrared (IR) LED, and one red LED,
which are separately driven by the EVAL-ADPDUCZ (Cortex M4) microcontroller board
(Analog Devices Inc., Wilmington, MA, USA) [40], and a single 7 mm2 photodiode without
optical fiber coating is incorporated for optical measurement. The optical measurement
system of the PPG prototype board works in reflection mode. In this study, we select the
IR or red LED or both of them to measure PPG signals and SpO2 for medical diagnostics
and healthcare applications. This wrist-based PPG wearable tool is applied to clinical
physiological monitoring and vascular assessments, such as HRV, HR, SpO2, arterial
disease, and arterial compliance or aging monitoring. The microcontroller can repackage
the PPG measurement data and send them to a virtual serial port through the USB to a
laptop. Meanwhile, the wrist-based PPG tool sits flat on the skin for each PPG measurement
from the wrist, the PPG raw data can be displayed in real time with limited latency and
subjected to frequency-domain and time-domain analyses by the Wavetool Evaluation
Software graphical user interface. Moreover, the raw data stream is connected to external
analysis programs, such as LabVIEW® (National Instruments Corp., Austin, TX, USA)
or MATLAB® (1994–2021, The MathWorks Inc., Natick, MA, USA) software in real time.
Therefore, the measured PPG signal can be preprocessed and analyzed on a laptop. A PPG
data stream, PPGorg, is preprocessed using the detrending process [19–21] and normalized
as follows:

PPGdet = detrend(PPGorg) (1)
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PPG =
PPGdet

max(PPGdet)
(2)

where detrend (•) is a detrending operator, which is used to remove unwanted variations
and direct current bias from the original measured PPG signal; PPGdet is the detrended
PPG signal; PPG is the normalized data stream, and max (•) is an operator used to find the
maximum value in a detrended stream.

2.2. Duffing–Holmes-Based Quantizer

Based on a forced oscillator, the second-order D–H differential equation can be ex-
pressed as follows [21,23,24,28,29]:

..
x + δ

.
x− x + x3 = f sin(ωt) (3)

where δ is the damping parameter, f is the excitation amplitude, and ω is the excitation
frequency. Equation (3) is a nonlinear dynamic system, that is, the so-called D–H system.
The dynamic D–H system with excitation amplitude, f, and frequency, ω, can generate dy-
namic chaotic phenomenon using the external influence term, “f sin(ωt).” The D–H system
can be reduced from a high-order to a one-order nonautonomous equation, as follows:

.
x = y (4)

.
y = −δy + x− x3 + f sin(ωt) (5)

Let excitation amplitude f = 0 (under unforced condition), x1 = x, and x2 = y,
Equations (4) and (5) can be linearized as follows

.
x1 = x2 (6)

.
x2 = (1− x2

1)x1 − δx2 (7)

where x1 and x2 are the state variables for the D–H system. Equations (6) and (7) can also
be represented in matrix form, as follows:[ .

x1.
x2

]
=

[
0 1

1− x2
1 −δ

][
x1
x2

]
(8)

where, when system parameter δ > 0, the dynamic system is equivalent to a “hard spring,”
and when system parameter δ < 0, the dynamic system is equivalent to a “soft spring” [23].
The damping parameter, δ ∈ [0,1], can observe the chaotic oscillations and control the dy-
namic trajectories within a specific boundary region. The D–H system can be implemented
in a simple analog electrical circuit and a digital computer [21,23,24,28,29].

For screening the normal and abnormal PPG signals obtained from the subjects, as
shown in Figure 2, we can establish a self-synchronization dynamic error system, including
the MS and SS, with the following construction:

MS :
[ .

x1m.
x2m

]
=

[
0 1

1− x2
1m −δ

][
x1m
x2m

]
(9)

SS :
[ .

x1s.
x2s

]
=

[
0 1

1− x2
1s −δ

][
x1s
x2s

]
(10)

where x1m and x2m are the state variables for the MS and x1s and x2s are the state variables
for the SS. Two variables, x1m and x2m, are the sampling data of the normal PPG signal
(as gold standard) and x1s and x2s are the sampling data of the measurement PPG signal,
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respectively. The error variables can be expressed as e1 = x1m − x1s and e2 = x2m − x2s; thus,
the error dynamic system can be expressed as follows:[ .

e1.
e2

]
=

[
0 1

(1− x2
1m)− (1− x2

1s) −δ

][
e1
e2

]
(11)

When the MS and the SS receive different PPG signals, the dynamic errors can be
generated by the self-synchronization tracking processes between the two systems, as
shown in Figure 2. Two sequences of dynamic errors, that is, e1 and e2, produce the
chaotic trajectories of different PAD risk levels. The damping parameter, δ, can control the
chaotic trajectories. For digital D–H system implementation in computing applications,
Equation (11) can be modified as a discrete dynamic error system with two discrete error
variables, that is, e1 and e2, and expressed as follows:[

Φ1[i]
Φ2[i]

]
=

[
0 1

(1− (xm[i])
2)− (1− (xs[i])

2) −δ

][
e1[i]
e2[i]

]
(12)

[
e1[i]
e2[i]

]
=

[
xm[i]− xs[i]

xm[i + 1]− xs[i + 1]

]
(13)

As expressed in Equation (13), the sampled data of normal PPG signals can be ex-
pressed as xm[i] = x1m[i] and xm[i + 1] = x2m[i] and the sampled data of abnormal PPG
signals can be expressed as xs[i] = x1s[i] and xs[i + 1] = x2s[i], where i = 1, 2, 3, . . . , n − 1
with n denoting the total number of sampled data in a measured PPG stream. The chaotic
variations can be quantized by two discrete error variables, that is, e1[i] and e2[i]. For
the dynamic error scatter diagram, the comprehensive dynamic error, Φ, [21] is used to
evaluate the PAD risk levels, as follows:

Φ =

√√√√n−1

∑
i=1

((Φ1[i])
2 + (Φ2[i])

2), i = 1, 2, 3, . . . , n− 1 (14)

where the dynamic errors Φ1 ∈ Rn − 1 and Φ2 ∈ Rn − 1. The index, Φ, is a “comprehensive
quantizer” for screening PAD risk levels, including Nor, LPAD, and HPAD. According
to the different PAD risk levels, the dynamic error scatter diagrams indicate different
distribution regions around a circle (i.e., Φ1 = ±0.5, Φ2 = ±0.5), as denoted by the pink
dashed lines shown in Figure 3. For example, for six subjects, the normal patterns are in a
narrow region around the point of origin, and for the HPAD cases, the abnormal patterns
have two obvious chaotic eyes. Hence, these feature patterns can be used to separate
abnormal patterns from normal patterns.
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2.3. Time-Domain Analysis with Reflection Index

In the time-domain analysis shown in Figure 4a, a PPG waveform characteristically
consists of a systolic peak, dicrotic notch, and diastolic peak. The PPG waveform can be
used to assess CVDs and arterial compliance. For arterial compliance assessment, SI and
RI [8,12–14] are two arterial stiffness measurement methods: SI is used to measure large
arterial stiffness, whereas RI is used to measure small to medium-sized arterial stiffness,
such as extreme PADs. Both of them are significantly correlated with age, HR, systolic
blood pressure, and diastolic blood pressure [8,12–14]. The RI index can be estimated
as follows:

RI =
H2

H1
× 100% (15)

where H1 is the amplitude of the early systolic peak and H2 is the amplitude of the diastolic
peak. In this study, the RI is used to assess the stiffness in the extremity arteries of the upper
or lower limbs. For 40 subjects (i.e., 11 Nor, 11 LPADs, and 18 HPADs), with the correlation
analysis using the quantizer shown in Figure 4b and a linear regression method (i.e., least
squares estimation) [21,37], the comprehensive dynamic error, Φ, has a positive correlation
with the RI% (RI = −4.649 Φ + 94.939, R2 = 0.6694). Through preliminary verification,
different chaotic feature maps can be used to extract the comprehensive error scales to
predict the extreme arterial stiffness levels. In the subsequent section, with the chaotic
feature map-based training patterns, the 1D CNN will be established as a classifier for
automatically screening the PAD risk levels.
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2.4. 1D CNN-Based Classifier

The conventional CNN is designed to process 2D images or videos exclusively. The
1D CNN is a modified scheme and is preferable to the 2D CNN in dealing with 1D signals
(e.g., ECG signals, blood pressure waveforms, vibration signals, and phonoangiographic
signals [30–32]) because the computational requirement and complexity of the 1D CNN are
lower than those of a 2D CNN, the scheme of the 1D CNN is easier to train and implement
that that of a 2D CNN, and training the 1D CNN with a few hidden layers and nodes is
faster than training a 2D CNN [30,31]. The configuration of the 1D CNN consists of 1D
convolution operations, subsampling (pooling) processes, and a multilayer classifier, as
shown in Figure 5. The procedure of the 1D CNN algorithm can be summarized as follows:
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• 1D convolution operations:

To obtain the feeding dynamic errors, Φ1 and Φ2, from the D–H-based quantizer,
two 1D digital convolution operators are used to extract the specific characteristics of the
dynamic error signals, which can slide over the input signal, Φe, e = 1, 2, and convolve with
it as a feature extraction filter. The convolution calculation Xe[i] = Φe[i] * H[j] (where * is the
convolution operator) [31,41,42] is performed using discrete-time convolution, as follows:

Xe[i] =
M−1

∑
j=0

H[j]Φe[i− j] (16)

H[j] = exp[
−1
2

(
j− 1

σ
)

2
] (17)

where Xe[i] is the finite 1D convolution summation with i = 0, 1, 2, . . . , n − 1, which is an
n + M − 1 point signal running from 0 to n + M − 2; H[j] is a 1D convolution mask used to
extract the features of the dynamic error signal, Φe with j = 0, 1, 2, . . . , M − 1 (M is the data
length of the 1D convolution mask), which can cover the systole region of each PPG signal;
H[j] is the discrete Z-sigmoidal function, and σ is the standard deviation. In this study,
mask (kernel) size M = 200 and sliding stride = 1 are selected. As j runs through 0 to M − 1,
Xe[i] can be obtained by performing the finite summation of all of the multiplications of
the signal, Φe[i − j], and the weighted values of H[j].

After the 1D convolution processes, Equations (16) and (17) can be used to extract the
obvious features for classification applications.

• 1D subsampling (pooling) process:

In the pooling process, a 1D downsampling process is used to reduce the vector
dimension of the feature pattern and expressed as follows:

xe[i] = Xe[10i], I = 1, 2, 3, . . . , n (18)

n′ =
n + M− 2

10
(19)

where Xe[i], e = 1, 2, is the call subsampling feature obtained with the sliding stride = 10
from the feature pattern, X. Hence, the vector dimension of the feature pattern can be
reduced from n + M − 2 to n′ (n′ ≈ 100). The pooling process can retain key features and
reduce the computational requirement and complexity. Then, two feature patterns are
combined as an input pattern, that is, X = [x1[i]|x2[i]] = [x1, x2, x3, . . . , x200], and fed to a
multilayer classifier for further screening of the PAD risk levels.
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• Multilayer classifier with a fully connected network:

In the classification layer, a fully connected network consisting of an input layer, a
pattern layer, a summation layer, and an output layer [31,38–40] is utilized to map the
relationship between input feature patterns and PAD risk levels to separate abnormal
patterns from normal patterns. For K input–output paired training patterns, with the
input pattern (1 × 200 in vector) X(k) = [x1(k), x2(k), x3(k), . . . , x200(k)] and output pattern
Y(k) = [y1(k), y2(k), y3(k)] = [Nor, LPAD, HPAD], k = 1, 2, 3, . . . , K, these patterns are used to
configure the multilayer classifier, including 200 input nodes in the input layer, K pattern
nodes in the pattern layer, 4 summation nodes in the summation layer, and 3 output nodes
in the output layer, where the output Y(k) denotes one of three risk levels, encoded as
(1) Nor: [1,0,0], (2) LPAD: [0,1,0], and (3) HPAD: [0,0,1], with a value of 1 for “possible
level” and all other levels encoded with the value of 0. The algorithm of the multilayer
classifier is summarized as follows [31,38]:

Step (1) For 200 × K input training patterns, X(k), k = 1, 2, 3, . . . , K, is used to set the
connecting weights between input and pattern layers.

Step (2) For K × 4 output training patterns, Y(k) = [y1(k), y2(k), y3(k), 1] is used to set
the connecting weights between the pattern and summation layers.

Step (3) Compute the outputs of the pattern node, gk, using the radial basis functions
(Gaussian functions), as follows:

gk = exp[−
K

∑
k=1

(xi − xi(k))
2

2σ2
k

] (20)

where X(0) = [x1, x2, x3, . . . , x200] is the testing pattern and σ = σ1 = . . . = σk are the
smoothing parameters. The optimal parameter, σopt, can be tuned using optimization
algorithms, such as the gradient descent method, as follows [38]:

∇ = (Tj(k)− yjk)(
∂sj(k)

∂σ − yj(k)
∂gk
∂σ

gk
) (21)

∂sj(k)
∂σ

= 2(
K

∑
k=1

xi(k)gk)(
(xi − xi(k))

2

2σ3 ) (22)

∂gk
∂σ

= 2(
K

∑
k=1

gk)(
(xi − xi(k))

2

2σ3 ) (23)

Hence, the optimal parameter, σ, can be refined using the iteration computation,
as follows:

σ(p + 1) = σ(p) + η(−∇) (24)

where Tj(k) is the desired target, j = 1, 2, 3; η is the learning rate, 0 < η ≤ 1, and p is the
number of iteration computations. The optimal parameter, σopt, can minimize the term
“(Tj(k) − yj(k))” in Equation (21).

Step (4) Compute the output yj in the output layer as follows:

sj =
K

∑
k=1

yj(k)gk/
K

∑
k=1

gk , j = 1, 2, 3 (25)

yj =

{
1, sj ≥ 0.5
0, sj < 0.5

(26)

where the final outputs, yj, are the binary values representing the three risk levels, that is,
Nor, LPAD, and HPAD.
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3. Experimental Results and Discussion

To validate the proposed 1D CNN-based classifier, the PPG measurement data divided
into the training and testing datasets were used to validate its classification feasibility for
screening PAD risk levels. A total of 40 subjects were enrolled in a practical investiga-
tion, which includes 3 levels, that is, (1) Nor = 11 subjects; (2) LPAD = 11 subjects, and
(3) HPAD = 18 subjects. With at least 10 cycles of PPG data (approximately 8 s), the
PPG waveforms were different in the time domain for the three risk levels. As shown in
Figure 4b, the preliminary screening results indicated that the comprehensive dynamic
error, Φ, and RI% were positively correlated (R2 = 0.6694), as shown in Table 1. Hence, the
D–H-based quantizer was used to extract features from the PPG stream data directly. As
shown in Figure 6, the self-synchronization dynamic errors (Φ1 and Φ2) can be applied to
the three risk levels identified. The proposed algorithm for the 1D CNN-based classifier is
implemented on a tablet PC using a high-level graphical programming language in the
LabVIEW and MATLAB software (NI™, Austin, TX, USA). Table 2 shows the related data
of the 1D CNN-based classifier, including its layer functions, manners, and feature patterns.
The feasibility study was validated as described in detail in the subsequent sections.

Table 1. Preliminary results for screening normal, LPAD, and HPAD.

Pathology Class Φ RI (%)

Normal (11) 5.34 ± 0.84 75.20 ± 4.17

LPAD (11) 6.48 ± 0.83 64.07 ± 3.91

HPAD (18) 8.56 ± 0.81 52.77 ± 19.64
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Table 2. Related data of 1D CNN-based multilayer classifier.

Layer Function Manner Feature Pattern

Feature Extraction Layer D–H based Quantizer Φ1 and Φ2 (1 × 799)

Feature Enhancement Layer 2 1D Convolutional Operations [40] (stride = 1) X1 and X2 (1 × 998)

Simplifying Feature Layer 2 1D Pooling Processes (stride = 10) x1 and x2 (1 × 100)

Classification Layer
Multilayer Classifier: 200 input nodes, 40 pattern nodes,

4 summation nodes, 3 output nodes Input Pattern of Fully Connecting
Network: [x1|x2] (1 × 200)

Learning Algorithm: Gradient Descent Method

3.1. Feasibility Tests Using for PPG Feature Extraction

For 40 subjects, PPG raw data with a data length of approximately 8 s (10 cycle PPG
signals, 8000 sampling points) were obtained using the noninvasive optical measurement.
As shown in Figure 6, first, the measured PPG raw data were detrended and normalized to
remove the slow nonstationary trends and unwanted artifacts using Equations (1) and (2).
Then, with the 10-cycle PPG stream data, as shown in Figure 7, the D–H-based quantizer
with the damping parameter, δ = 0.30, was employed to track the differences between
the normal templated PPG stream data and the incoming (unknown) PPG stream data
and generate the self-synchronization dynamic errors, Φ1 and Φ2. After the convolution
and pooling processes, the feature patterns, x1 and x2 (middle part of Figure 7), indicated
the different dynamic trajectories in amplitudes in the systole region (systolic peak) and
the systolic peak to diastolic peak region (time delay), which showed the similarities or
differences between Nor, LPAD, and HPAD.
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In the chaos patterns for the three risk levels, the x1 and x2 feature patterns (the
dimension of each feature pattern is 1 × 200) can be utilized to plot the dynamic error
scatter diagram, as x1 and x2 are in the horizontal and vertical axes, respectively, where the
blue lines denote different dynamic trajectories. Meanwhile, the waveform’s amplitude
and time delay were different, and the chaotic trajectories indicated different distribution
regions that gradually separated in the third and fourth quadrants and exhibited two chaos
eyes (shown as red dashed lines in Figure 7). Hence, the chaos patterns showed that the
differences in chaotic dynamics were the effect of the differences in PPG morphology, which
could be used to separate Nor from LPAD/HPAD. Thus, the proposed feature patterns
could be validated for UEVD screening.

3.2. D CNN-Based Classifier Training and Testing

With the PPG measurement data, we could extract a total of 160 feature patterns
from 40 subjects, including 44 normal patterns and 116 abnormal patterns (44 LPADs and
72 HPADs). In the training stage, 10-fold, Kf = 10, cross-validation was performed by
interchanging trained and untrained feature patterns. We could randomly select 40 trained
feature patterns to train the multilayer classifier. Hence, using 40 pairs of input–output
patterns, we obtained 200 input nodes, 40 pattern nodes, 4 summation nodes, and 3 output
nodes in the fully connected network topology (network topology = 200 − 40 − 4 − 3), as
shown in Figure 5.

Then, setting the convergent condition, that is, tolerance value ε ≤ 10−2, and the initial
condition, that is, σ0 = 1.0000, the gradient descent method was used to minimize the
mean squared error (MSE) using the iteration computation to tune the optimal smoothing
parameters in the pattern nodes. Figure 8a,b show the training history curves for the train-
ing classifier, as optimal parameters versus iteration numbers and MSEs versus iteration
numbers, respectively. With the different learning rates, η = 0.1–0.5, the gradient descent
method required <25 iterative computations to reach the specific convergent condition,
as shown in Figure 8b. The average optimal parameter, σopt = 0.3360, could be utilized to
increase the classification accuracy. The iteration processes required an average of 0.0960 s
of CPU time to determine the optimal parameter.
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Moreover, with a high learning rate, η ≥ 0.4, the convergent condition for determining
the optimal parameter could be rapidly achieved. However, its training history curves
indicated unstable convergent performances or divergent conditions in the training stage,
as denoted by the symbols -•- and -∆- shown in Figure 8. By contrast, with a low learning
rate, η < 0.4, the learning algorithm could guarantee that the convergent condition will
be achieved. Moreover, its training history curves indicated a monotonous decrease, as
denoted by the symbols -O- and -∇- shown in Figure 8. The classification accuracy in
the learning stage was 100.00%. For untrained feature patterns, with the 10-fold cross-
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validation, we randomly select testing patterns from the tested 120 datasets to validate the
performance of the proposed 1D CNN-based classifier. Table 3 shows the experimental
results of the 10-fold cross-validation, with a mean recall of 97.92%, a mean precision of
94.48% for screening abnormality (i.e., true positive (TP), including both LPAD and HPAD),
a mean accuracy of 94.50% for the correctly identified risk levels, and a mean F1 score of
0.9615 for the evaluated classifier performances. The index of the F1 score is the weighted
average of recall and precision, which considers both false positive (FP) and false negative
(FN). The F1 score is more useful than accuracy in evaluating classifier performance. We
obtained an F1 score of 0.9615, which indicates approximately 96% accuracy in separating
normal patterns from abnormal patterns. Recall as the sensitivity index correctly identifies
TP observations from all observations in the actual classification task. Hence, the recall
indicator was the true accuracy of TP, and the precision indicator was the standard for
predicting TP. Both indicators were greater than 80%. The recall indicator is also called the
positive predictive value (PPV). In general, the PPV index was >80%, indicating that the
classifier had a good predictive performance. Furthermore, Youden’s index (YI) used both
sensitivity and specificity to quantify the number of FPs and FNs, and its value ranged
from 0 to 1. Hence, in this study, the average of YI = 0.8473 ≥ 0.5 was obtained. Hence,
the larger the YI is, the better the performance of our proposed 1D CNN-based classifier
in UEVD screening and the greater its authenticity for evaluating the probability of an
informed decision. Therefore, our proposed 1D CNN-based classifier had promising results
for UEVD screening.

Table 3. Experimental results of tenfold cross-validation for the proposed 1D CNN-based classifier.

Cross-
Validation

Trained
Patterns

Untrained
Patterns Recall (%) Precision (%) Accuracy (%) F1 Score Youdens

Index

1

Random Selection
Normality:
11 patterns

Abnormality:
29 patterns

Total of Trained
Pattern: 40

Random Selection
Normality:
11 patterns

Abnormality:
29 patterns

Total of Trained
Pattern: 40

100.00
(TP: 27, FN: 0)

93.10
(TP: 27, FP: 2)

95.00
(2 failures) 0.9643 0.8462

2 100.00
(TP: 28, FN: 0)

96.55
(TP: 28, FP: 1)

97.50
(1 failures) 0.9825 0.9167

3 96.43
(TP: 27, FN: 1)

93.10
(TP: 27, FP: 2)

92.50
(3 failures) 0.9474 0.7976

4 100.00
(TP: 27, FN: 0)

93.10
(TP: 27, FP: 2)

95.00
(2 failures) 0.9643 0.8462

5 100.00
(TP: 28, FN: 0)

96.55
(TP: 28, FP: 1)

97.50
(1 failures) 0.9825 0.9167

6 93.33
(TP: 28, FN: 2)

96.55
(TP: 28, FP: 1)

92.50
(3 failures) 0.9492 0.8333

7 96.43
(TP: 27, FN: 1)

93.10
(TP: 27, FP: 2)

92.50
(3 failures) 0.9474 0.7976

8 96.43
(TP: 27, FN: 0)

93.10
(TP: 27, FP: 2)

95.00
(2 failures) 0.9643 0.8462

9 96.43
(TP: 27, FN: 1)

93.10
(TP: 27, FP: 2)

92.50
(3 failures) 0.9474 0.7976

10 96.55
(TP: 28, FN: 1)

96.55
(TP: 28, FP: 1)

95.00
(2 failures) 0.9655 0.8746

Average (%) 97.92 94.48 94.50 0.9615 0.8473

Note: (1) TP: true positive, (2) FN: false negative, (3) FP: false positive.

4. Conclusions

We have developed a 1D CNN-based classifier for UEVD screening, including Nor,
LPAD, and HPAD. The 1D CNN consisted of a D–H-based quantizer, two 1D digital convo-
lution operators, two 1D subsampling processes, and a fully connected network (as shown
in Figure 5). The D–H-based quantizer was employed to extract the self-synchronization
dynamic errors between normal and abnormal PPG signals, which could indicate the
differences in PPG morphology, such as the region of systolic peak and the time interval
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between systolic and diastolic peaks. Then, the self-synchronization dynamic errors were
used to separate normal patterns from abnormal patterns, including Nor and LPAD/HPAD.
The 1D digital convolution operator was used to enhance the feature pattern and remove
the unwanted noises, and the dimension of the feature pattern could be reduced by the
1D subsampling process from 1 × 1000 to 1 × 100 (as shown in Figures 6 and 7). Finally,
the feature patterns were fed into the multilayer classifier, the UEVD risk level could be
identified in the PPG stream data, and the screening tasks were performed. With the
10-fold cross-validation, at each cross-validation, given 40 randomly selected untrained
feature patterns, the proposed classifier had an average recall of 97.92%, average precision
of 94.48%, average accuracy of 94.50%, and average F1 score of 0.9615 for screening abnor-
malities (i.e., LPAD and HPAD). The average of YI = 0.8473 ≥ 0.5 could meet empirical
benchmarks for being administered for diagnostic purposes and provide a measure of the
capability of a diagnostic test to balance sensitivity and specificity. Experimental results of
10-fold cross-validation indicated the computational efficiency and promising screening
capability for a limited training dataset to predict the untrained dataset. The experimental
results showed that the proposed 1D CNN-based classifier had promising performances in
1D raw PPG signal processing in the time domain and could rapidly extract and enhance
features for further classification tasks with the D–H-based quantizer and 1D convolution
processes and reduce the feature dimension in the 1D subsampling processes, resulting
in low computational operations for real-time signal screening applications. Hence, the
proposed wrist-based PPG wearable tool and 1D multilayer classifier could be used for
early detection in a nonmedical environment and continuous home healthcare monitoring.
Cooperating with the image examinations, such as vascular ultrasound, catheter angiog-
raphy, and computed tomography angiography could create images to view the areas
of restricted blood flow and then to locate blockages. These manners could provide a
reliable examination to evaluate the vascular condition for further surgery or interventional
therapy recommendations. In addition, in real-world applications, PPG measurements
with annotations were continuously obtained, the new training dataset could be added to
the current database for further trained the classifier. The proposed 1D CNN could rapidly
retain a new pattern mechanism by adding a new trained dataset. Hence, the 1D multilayer
classifier could keep its intended medical purpose in real-world application and could also
be used as a computer-aided decision-making tool and software in a medical device tool.
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