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Abstract: This paper presents the sum of squares (SOS)-based fuzzy control with H∞ performance
for a synchronized chaos system and secure communications. To diminish the influence of the
extrinsic perturbation, SOS-based stability criteria of the polynomial fuzzy system are derived by
using the polynomial Lyapunov function. The perturbation decreasing achievement is indexed
in a H∞ criterion. The submitted SOS-based stability criteria are more relaxed than the existing
linear matrix inequality (LMI)-based stability criteria. The cryptography scheme based on an n-shift
cipher is combined with synchronization for secure communications. Finally, numerical simulations
illustrate the perturbation decay accomplishment of the submitted polynomial fuzzy compensator.

Keywords: chaos synchronization; sum of squares; extrinsic perturbation; polynomial fuzzy compensator

1. Introduction

In recent years, the studies on synchronization of chaos systems have acquired sub-
stantial attention. The drive-response frame, which is the means to synchronize chaos
systems, was established by Caroll and Pecora [1]. The master chaos system, as a drive
system, is synchronized with another chaos system, the response system. Complicated
dynamic phenomena are the major characteristics of chaos systems. For instance, chaos
systems are sensitive to parameter variation and initial conditions, such that the trajectory
of states is unpredictable. As a result of these properties, chaos synchronization can be
applied to communications for security and privacy [2], and photovoltaic module fault
detection [3]. How to operate the variables of the response system to equal those of the
drive system in various original states is the essential problem of the synchronization of
chaos systems.

Many control methods have been developed for chaos synchronization, such as itera-
tive learning control [4], robust adaptive control [5], sliding mode control [6], and adaptive
fuzzy perturbation observer [7]. The Takagi–Sugeno (T-S) fuzzy model with linear matrix
inequality (LMI) control is effective among these control strategies. A nonlinear dynamic
plant can be easily described by using the T-S fuzzy model, which is constructed from
IF–THEN fuzzy rules [8]. By using the parallel distributed compensation (PDC) method,
T-S fuzzy compensators can be portrayed. Furthermore, solving LMI-based stability condi-
tions can secure the state feedback gain. Thus, chaotic systems have been synchronized
through T-S fuzzy modeling and control [9–12]. In [9], the LMI-based fuzzy control was
applied to synchronization of chaotic systems. In [10], the perturbation observer-based
LMI was engaged for the synchronization of T-S fuzzy chaos systems. In [11], the design
of an adaptive TSK fuzzy self-organizing compensator was proposed for chaotic systems.
An exact linearization (EL) technique, which was employed to synchronize the chaotic
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systems via the PDC, has been discussed [12]. However, there still exist two design issues
in LMI-based T-S fuzzy control methodology. First, T-S fuzzy models cannot describe all
nonlinear systems. Second, the LMI-based stability conditions will be very tentative if
the quadratic Lyapunov function is employed. Thus, some literature has taken relaxed
stability conditions into account [13–15]. In [13], the conservativeness of stabilization
criterion for the T-S fuzzy system was significantly relaxed using the constraints condition
of the controller membership functions. From a line-integral Lyapunov function, a possible
conservatism generated by the derivation of the membership function was removed to
raise the relaxation of the sufficient conditions [14]. In [15], the piecewise fuzzy Lyapunov
function was introduced and less conservatism was attained. Therefore, this paper em-
ploys a polynomial Lyapunov function to acquire the sum of squares (SOS)-based stability
criteria of chaotic synchronization systems to reduce the conservativeness of the LMI-based
stability criteria.

The polynomial fuzzy model can more efficaciously characterize the nonlinear system
than the T-S fuzzy model [16]. Several studies on polynomial fuzzy control systems have
been investigated recently [17–21]. In [17], polynomial Lyapunov functions are designed
by introducing a gradient algorithm without applying the typical transformation so that
the polynomial fuzzy controller with SOS stability conditions was received. In [18], the
message and character of membership functions are deliberated in the SOS-based stability
design of (interval type 2) IT2 polynomial-fuzzy-model-based control systems. In [19],
a homogeneously state-dependent polynomial Lyapunov function was proposed for an
observed-state feedback polynomial fuzzy control system. In [20], using a free full-block
multiplier, the conservativeness of SOS-based stability analysis was reduced. In [21],
using the Lyapunov function and the S-procedure, SOS-based stability criteria are received
for uncertain large-scale polynomial T–S fuzzy systems. However, when an extrinsic
perturbation occurs in the chaos synchronization systems, the stability of the system cannot
be guaranteed using these SOS criteria.

Consequently, based on the above observations from the literature, this paper takes
extrinsic perturbation into account to synthesize the H∞ control of polynomial fuzzy chaos
synchronization systems. That is, the proffered SOS-based stability conditions not only
guarantee that the chaos synchronization systems are stable but also that H∞ is achieved for
the perturbation attenuation. Further, the proffered methodology can evade the aforesaid
shortcomings of the T-S fuzzy compensator with LMI stability criteria. Moreover, the
cryptography scheme based on an n-shift cipher combined with synchronization is applied
to increase the security of the transmitted signal. The solutions of the submitted SOS-based
criteria in this paper were determined by using SOSTOOLS [22]. This paper proposes two
novel theorems and the contributions of this article are summarized as follows. First, SOS-
based stability criteria with H∞ performance are proposed for chaos synchronization. Then,
a second theorem with SOS stability criteria is acquired to perform quasi-linearization (QL)
of a chaos system.

This paper is organized as follows. In Section 2.1, the polynomial fuzzy systems
with extrinsic perturbation are given. Moreover, using the polynomial Lyapunov function,
we derive the SOS stability criteria and obtain H∞. In Sections 2.2 and 2.3, the chaos
synchronization and secure communication are discussed. Section 3 shows the simulation
results of the comparison with the SOS approach and the LMI approach. Finally, some
conclusions are drawn in Section 4.

2. Methods

This section presents the design of a polynomial fuzzy compensator for synchronized
chaos systems and secure communications. First, stability criteria are derived for the
polynomial fuzzy system with extrinsic perturbation. Second, the drive-response structure
is employed for chaotic synchronization, and two cases of the polynomial fuzzy synchro-
nized chaos system are studied. Last, the polynomial fuzzy synchronized chaos system is
combined with cryptography technology to raise the security of communications.
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2.1. H∞ Polynomial Fuzzy Compensator

The extrinsic perturbation in chaos synchronization systems will result in destroying
stability or degrading accomplishment. The polynomial fuzzy model can more efficaciously
characterize the nonlinear system and is more universal than the Takagi-Sugeno (T-S) fuzzy
model. Accordingly, the H∞ polynomial fuzzy control will be investigated for chaos
systems in this section.

2.1.1. Polynomial Fuzzy Chaos System with Extrinsic Perturbation

The state variables are included in the polynomial fuzzy chaos system with extrinsic
perturbation. The following fuzzy rules describe the polynomial fuzzy chaos system.

IF z1(t) is Mi1 . . . . . . and zp(t) is Mip
THEN

.
x(t) = Ai(x(t))x̂(x(t)) + Bu(t) + Dn(t)

y(t) = Cx̂(x(t)) i = 1, 2, . . . , r.
(1)

where z(t) = [z1(t), z2(t), · · · , zP(t)] denotes the variables in the premise, Mij(j = 1, 2, . . . , p)
is the membership function, and r indicates the number of fuzzy rules. x(t) ∈ Rn denotes
a state vector. x̂(x(t)) ∈ RN is a vector of which all elements are monomials in x(t).
Ai(x(t)) ∈ Rn×N indicates a polynomial system matrix. B ∈ Rn×m, D ∈ Rn×p, and
C ∈ Rq×N denote constant system matrices. u(t) ∈ Rm is a compensator input. n(t) ∈ Rp

indicates a perturbation. y(t) ∈ Rq denotes a vector of output signal.
The results of the polynomial fuzzy chaos plant are expressed by

.
x(t) =

r
∑

i=1
ωi(z(t)){Ai(x(t))x̂(x(t))+Bu(t)+Dn(t)}

r
∑

i=1
ωi(z(t))

=
r
∑

i=1
hi(z(t)){Ai(x(t))x̂(x(t)) + Bu(t) + Dn(t)}

y(t) = Cx̂(x(t))

(2)

where

ωi(z(t)) =
P

∏
j=1

Mij(zj(t)), ωi(z(t)) ≥ 0,
r

∑
i=1

ωi(z(t)) > 0, i = 1, 2, . . . , r. (3)

Thus,

hi(z(t)) =
ωi(z(t))

r
∑

i=1
ωi(z(t))

,
r

∑
i=1

hi(z(t)) = 1 (4)

2.1.2. Polynomial Fuzzy Compensator Gain

Based on the parallel distributed compensation (PDC) strategy, both the polynomial
fuzzy compensator and the polynomial fuzzy model have identical fuzzy membership
functions. The polynomial fuzzy compensator can hold state variables, which is the
principal discrimination between the polynomial fuzzy compensator and the T-S fuzzy
compensator. The following presents the fuzzy control if–then rules

IF z1(t) is Mi1 . . . . . . and zp(t) is Mip
THEN u(t) = −Fi(x(t))x̂(x(t)), i = 1, 2, . . . , r.

(5)

The overall compensator is acquired by executing the sum of each control rule

u(t) = −
r

∑
i=1

hi(z(t))Fi(x(t))x̂(x(t)) (6)
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where Fi(x(t)) denotes the compensator gain.

2.1.3. Polynomial Fuzzy Compensated Chaos System

The whole polynomial fuzzy compensated chaos system include the polynomial fuzzy
chaos system and the polynomial fuzzy compensator. Thus, replacing the control signal (2)
with (6) obtains the overall polynomial fuzzy compensated chaos system shown by

.
x(t) =

r
∑

i=1
hi(z(t)){[Ai(x(t))− BFi(x(t))]x̂(x(t) )}+ Dn(t)

y(t) = Cx̂(x(t))
(7)

2.1.4. Sum of Squares

The definition of the sum of squares (SOS) for a multivariate polynomial f (x(t)) (where
x(t) ∈ Rn) is as follows. If there are polynomials f 1(x(t)), . . . , f m(x(t)), which meet

f (x(t)) =
m

∑
i=1

f 2
i (x(t)) (8)

Then, f (x(t)) is an SOS, which intimates it is positive for x(t) ∈ Rn. Accordingly,
f (x(t)) is an SOS if the matrix R is positive and semidefinite so that

f (x(t)) = x̂T(x(t))Rx̂(x(t)) (9)

where x̂(x(t)) denotes a vector whose elements are monomials in x(t).

2.1.5. H∞ SOS-Based Stability Criteria

Using the polynomial Lyapunov function secures the H∞ SOS-based stability criteria
to diminish the influence of an extrinsic perturbation and guarantee the polynomial fuzzy
compensated chaos system (7) is universally stable. Ak

i (x) indicates the kth row of Ai(x).
K = {k1, k2, . . . , km} denotes the row indices of B and D of which the corresponding row
is zero. In addition, define x̃ = (xk1, xk2, . . . , xkm). The perturbation attenuation can be
achieved through minimizing ξ with

sup
‖n(t)‖2 6=0

‖y(t)‖2
‖n(t)‖2

≤ ξ (10)

Theorem 1. If the SOS-based stability criteria (11) and (12) are satisfied for a polynomial symmetric
matrix R(x̃) ∈ <N×N and a polynomial matrix Oi(x) with prescribed ξ in (10), the system (7)
will be H∞ stable.

minimize
R, O1,...,Or

ξ2

Subject to
wT(R(x̃)− α(x)I)w is SOS, (11)

wT(Φi(x)− βi(x)I )w is SOS, i = 1, 2, . . . , r. (12)

where w is unconnected with the states, which meets α(x) > 0 and βi(x) ≥ 0. Lij(x) = ∂x̂i
∂xj

(x)

indicates the (i,j) th element of the polynomial matrix L(x) ∈ RN×n;

Φi(x) =

 Qi(x) ∗ ∗
−DTLT(x) ξ2I 0

CR(x̃) 0 I

 (13)
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Qi(x) = −{L(x)Ai(x)R(x̃)− L(x)BOi(x)
+R(x̃)AT

i (x)LT(x)−OT
i (x)BTLT(x)− ∑

k∈K

∂R(x̃)
∂xk

Ak
i (x)x̂(x)} (14)

Furthermore, compensator gains Fi(x) are calculated by

Fi(x) = Oi(x)R−1(x̃) (15)

The proof of Theorem 1 is given in Appendix A.

2.2. Chaotic Synchronization

This section presents the drive-response structure of chaotic synchronization. The
drive system is the reference model, which shall be traced. The proposed H∞ polynomial
fuzzy compensator is designed in the response system to accomplish the synchronized
chaos systems. The H∞ SOS-based fuzzy compensator can be obtained by employing
Theorem 1. Theorem 2 is employed to perform the quasilinearization of the chaos system.
Two cases of the synchronized discrepancies are discussed.

Case 1: The synchronization discrepancies are minute.
Case 2: The synchronization discrepancies are in excess of case 1.

2.2.1. Case 1

Assume that the synchronization discrepancies are minute. In this case, the drive
chaos system can be characterized by the following polynomial fuzzy model

IF zd1(t) is Mi1 and . . . and zdp(t) is Mip
THEN

.
xd(t) = Ai(xd(t))x̂d(t)

yd(t) = Cx̂d(t) i = 1, 2, . . . , r.
(16)

where zd(t) =
[
zd1(t), zd1(t), . . . , zdp(t)

]
. xd(t) =[xd1(t), xd1(t), . . . , xdn(t)]

T. x̂d(t) ∈ RN

denotes the state signal and the elements are monomials in xd(t). Ai(xd(t)) ∈ Rn×N is a
system matrix of the drive chaos system. yd(t) ∈ Rq indicates the output signal for the
drive chaos system.

The whole drive fuzzy model can be obtained as

.
xd(t) =

r
∑

i=1
hi(zd(t))Ai(xd(t))x̂d(t)

yd(t) = Cx̂d(t)
(17)

A response chaos system could be described by another polynomial fuzzy model
shown as follows

IF zr1(t) is Mi1 and . . . and zrp(t) is Mip
THEN

.
xr(t) = Ai(xr(t))x̂r(t) + Bu(t)

yr(t) = Cx̂r(t) i = 1, 2, . . . , r.
(18)

where zr(t) =
[
zr1(t), zr2(t), . . . , zrp(t)

]
. xr(t) = [xr1(t), xr2(t), . . . , xrn(t)]

T . x̂r(t) ∈ RN

denotes the state signal and the elements are monomials in xr(t). Ai(xr(t)) ∈ Rn×N is a
system matrix of the response chaos system. yr(t) ∈ Rq indicates the output signal for the
response chaos system.

The whole response fuzzy model can be obtained by

.
xr(t) =

r
∑

i=1
hi(zr(t))Ai(xr(t))x̂r(t) + Bu(t)

yr(t) = Cx̂r(t)
(19)

Let the state discrepancy be defined as ê(t) = x̂r(t) − x̂d(t). When a message is
dispatched between the drive and response chaos systems, an extrinsic perturbation



Processes 2021, 9, 2088 6 of 21

frequently occurs in the public channel. The following presents the discrepancy model
with extrinsic perturbation

.
e(t) =

.
xr(t)−

.
xd(t) + Dn(t)

=
r
∑

i=1
hi(zr(t)) Ai(xr(t))x̂r(t)−

r
∑

i=1
hi(zd(t)) Ai(xd(t))x̂d(t) + Bu(t) + Dn(t)

=
r
∑

i=1
hi(zr(t)) Ai(xr(t))ê(t) + Bu(t) + Dn(t)+

r
∑

i=1
[hi(zr(t))Ai(xr(t))− hi(zd(t))Ai(xd(t)) ]x̂d(t)

ey(t) = Cê(t)

(20)

Let zT
d (t) = xd(t) and zT

r (t) = xr(t). The final item will approach the null when
‖ê(t)‖ ≤ ρ for the ρ being very small,

r

∑
i=1

[hi(zr(t))Ai(xr(t))− hi(zd(t))Ai(xd(t)) ]x̂d(t) ≈ 0 (21)

This indicates that the norm of synchronization discrepancies is limited to a minute
scope. Therefore, the chaos discrepancy model with extrinsic perturbation can be ap-
proached as

.
e(t) =

r
∑

i=1
hi(zr(t)) Ai(xr(t))ê(t) + Bu(t) + Dn(t)

ey(t) = Cê(t)
(22)

In this case, the SOS-based polynomial fuzzy compensator is sketched by

u(t) = −
r

∑
i=1

hi(zr(t)) Fi(xr(t))ê(t) (23)

Utilizing Theorem 1 acquires the compensator gains Fi. The chaos discrepancy system
can attenuate extrinsic perturbation with H∞ achievement. This indicates that the SOS-
based polynomial fuzzy compensator will not be executed until the discrepancy signal falls
into a minute scope.

2.2.2. Case 2

Assume that the synchronization discrepancies are in excess the minute scope of case 1.
That is, ‖ê(t)‖ > ρ. Thus, we design two polynomial fuzzy sub-compensators to achieve
the synchronization of the chaos systems.

Sub-compensator 1:

IF zd1(t) is Mi1 . . . . . . and zdp(t) is Mip
THEN u1(t) = Fi(xd(t))x̂d(t) i = 1, 2, . . . , r.

(24)

Sub-compensator 2:

IF zr1(t) is Mi1 . . . . . . and zrp(t) is Mip
THEN u2(t) = −Fi(xr(t))x̂r(t) i = 1, 2, . . . , r.

(25)

The whole polynomial fuzzy compensator will be built as

u(t) = u1(t) + u2(t)

= −
r
∑

i=1
hi(zr(t)) Fi(xr(t))x̂r(t)+

r
∑

i=1
hi(zd(t)) Fi(xd(t))x̂d(t)

(26)
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By (20) and (26), the chaos discrepancy system can be rewritten as follows:

.
e(t) =

r
∑

i=1
hi(zr(t)){Ai(xr(t))− BFi(xr(t))}x̂r(t) + Dn(t)

−
r
∑

i=1
hi(zd(t)){Ai(xd(t))− BFi(xd(t))}x̂d(t)

ey(t) = Cê(t)

(27)

The quasilinearization will be used in the following section.

Theorem 2. If there are compensator gains Fi(xr(t)) and Fi(xd(t)) so that

vT




µI ∗
(G1(xr(t))−Gi(xr(t)))R(x̃(t))
(G1(xd(t))−Gi(xd(t)))R(x̃(t))
(G(xr(t))−G(xd(t)))R(x̃(t))

I

− εi−1(xr(t))

v

is SOS for 2 ≤ i ≤ r.

(28)

Then, G1(xr(t)) = Gi(xr(t), G1(xd(t)) = Gi(xd(t)), and G(xr(t)) = G(xd(t)). Thus,
the chaos discrepancy system (27) is quasi-linearized (QL) as:

.
e(t) = G(xr(t))x̂r(t)−G(xd(t))x̂d(t) + Dn(t)

= G(xr(t))ê(t) + Dn(t)
ey(t) = Cê(t)

(29)

where εi−1(xr(t)) is a nonnegative polynomial for all xr(t), v is a vector, which is uncon-
nected to xr(t), R(x̃(t)) is a positive matrix, and µ is a small positive number.

Gi(xr(t)) = Ai(xr(t))− BFi(xr(t)),
Gi(xd(t)) = Ai(xd(t))− BFi(xd(t)), for i = 1, 2, · · · r.

(30)

The proof of Theorem 2 is given in Appendix A.
The quasilinearization of chaos synchronization can be obtained through Theorem 2.

However, Theorem 2 cannot guarantee the system is always stable with H∞ performance.
Therefore, we utilize Theorem 1 such that the stability of the quasilinearization of the chaos
system is globally stable with H∞ performance. Since the chaos discrepancy system (29) is
a special polynomial fuzzy system (i = 1), the stability conditions with H∞ performance (12)
of Theorem 1 can be simplified as

wT(Φ(x)− β(x)I )w is SOS (31)

2.3. Chaotic Secure Communications

Using the property of a chaotic system, which is excessively reactive to original
states, the chaos system can be applied to secure communications. This section combines
cryptography technology with a chaotic system to raise the security of the dispatched
message. In order to encrypt the original signal, an n-shift cipher is adopted. Figure 1
shows the block diagram of chaotic secure communications.
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The encryption function is described as

Θn(t) = f1(· · · f1( f1(p(t), k(t)), k(t)), · · · , k(t)) (32)

where

f1(p, k) =


(p + k) + 2λ −2λ ≤ (p + k) ≤ −λ
(p + k) −λ ≤ (p + k) ≤ λ
(p + k)− 2λ λ ≤ (p + k) ≤ 2λ

(33)

p(t) is a plaintext signal, k(t) is the key signal, which is retrieved from one state of the
variable of the chaotic system, n is the number of shifts, 2λ is the range of plaintext signal
plus key signal, and Θn(t) is a ciphertext signal.

By using the decryption function, the recovered signal p̂(t) can be obtained. The
decryption rule is described as

p̂(t) = f1(· · · f1( f1(Θ̂n(t),−k̂(t)),−k̂(t)), · · · ,−k̂(t)) (34)

where Θ̂n(t) is a recovered ciphertext and k̂(t) is a recovered key signal.
The chaotic secure system with extrinsic perturbation is designed as:

IF zd1(t) is Mi1 . . . . . . and zdp(t) is Mip
THEN

.
xd(t) = Ai(xd(t))x̂d(t) + BΘn(t)

yd(t) = Cx̂d(t) i = 1, 2, . . . , r.
(35)

Using fuzzy reasoning obtains the overall outputs of the polynomial fuzzy encrypter system

.
xd(t) =

r
∑

i=1
hi(zd(t))Ai(xd(t))x̂d(t) + BΘn(t)

yd(t) = Cx̂d(t)
(36)

IF zr1(t) is Mi1 . . . . . . and zrp(t) is Mip
THEN

.
xr(t) = Ai(xr(t))x̂r(t) + B(u(t) + s(t)) + Dn(t)

yr(t) = Cx̂r(t) i = 1, 2, . . . , r.
(37)
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where s(t) is a transmitted message and designed as

s(t) =
r

∑
i=1

hi(zd(t)) Fi(xd(t))x̂d(t) + Θn(t) (38)

u(t) = −
r

∑
i=1

hi(zr(t)) Fi(xr(t))x̂r(t) (39)

Using fuzzy reasoning obtains the final outputs of the polynomial fuzzy decrypter system

.
xr(t) =

r
∑

i=1
hi(zr(t)){Ai(xr(t))− BFi(xr(t)) }x̂r(t)

+
r
∑

i=1
hi(zd(t)) BFi(xd(t))x̂d(t) + BΘn(t) + Dn(t)

yr(t) = Cx̂r(t)

(40)

By (36)–(40), the chaos discrepancy system with cryptography is obtained

.
e(t) =

r
∑

i=1
hi(zr(t))[Ai(xr(t))− BFi(xr(t)) ]x̂r(t)

+
r
∑

i=1
hi(zd(t)) BFi(xd(t))x̂d(t) + BΘn(t) + Dn(t)

−
[

r
∑

i=1
hi(zd(t))Ai(xd(t))x̂d(t) + BΘn(t)

]
ey(t) = Cê(t)

(41)

In case 1, (41) can be rewritten as follows:

r
∑

i=1
hi(zr(t)) Ai(xr(t))ê(t)−

r
∑

i=1
hi(zr(t)) BFi(xr(t))ê(t)+Dn(t)

+
r
∑

i=1
[hi(zr(t))Ai(xr(t))− hi(zd(t))Ai(xd(t)) ]x̂d(t)

+
r
∑

i=1
[hi(zr(t))BFi(xr(t))− hi(zd(t))BFi(xd(t)) ]x̂d(t)

(42)

Let zT
d (t) = xd(t) and zT

r (t) = xr(t). The final two items will approach null when
‖ê(t)‖ ≤ ρ for the ρ being very small,

r

∑
i=1

[hi(zr(t))Ai(xr(t))− hi(zd(t))Ai(xd(t)) ]x̂d(t) ≈ 0 (43)

r

∑
i=1

[hi(zr(t))BFi(xr(t))− hi(zd(t))BFi(xd(t)) ]x̂d(t) ≈ 0 (44)

Therefore, the chaotic error system with cryptography is similar to (22).
In case 2, (41) can be rewritten as (27).

3. Results

In this section, two cases of computer simulation are offered to illustrate the viability
of the submitted methodology and to validate the expected H∞ performance. Furthermore,
the sum of squares (SOS) compensator is compared with the linear matrix inequality (LMI)
compensator to display the effectiveness of the submitted approach.

3.1. Case 1

In this section, the polynomial fuzzy compensator based on Theorem 1 will be executed
if the synchronized discrepancies fall into a minute scope. Due to the chaos behavior of
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Chua’s circuit, one of the state variables will be the key signal for secure communication.
The following presents the chaotic Chua’s system with perturbation.

Chua’s circuit: .
x1(t) = σ1(−x1(t) + x2(t)− f (x1(t))).
x2(t) = x1(t)− x2(t) + x3(t).
x3(t) = −σ2x2(t)

(45)

With a nonlinear resistor f (x1(t)) = gbx1(t) + 0.5(ga − gb)·(|x1(t) + 1| − |x1(t)− 1|),
where σ1 = 10, σ2 = 14.87, ga = −1.27, and gb = −0.68. The nonlinear term f (x1(t))
of Chua’s circuit satisfies limx1(t)→0

x∈Ω

( f (x1(t))/x1(t)) = ga. Then, f (x1(t)) is taken as

ϕ(x1(t)) with

ϕ(x1(t)) ≡
{

f (x1(t))/x1(t),
ga,

x1(t) 6= 0
x1(t) = 0

(46)

Select x1(t) as the premise state and design the fuzzy set to be M1(x1(t))=(1/2)(1−
(ϕ(x1(t))/d)) and M2(x1(t)) = 1−M1(x1(t)) with d = supxr∈Ω|ϕ(x1)| = 3.

Deliberate synchronization of two fuzzy Chua’s systems in which the drive and
response systems are represented by (16) and (18), respectively. Let the system matrices be
designed as:

A1(xr(t)) = A1(xd(t)) =

 (d− 1)σ1 σ1 0
1 −1 1
0 −σ2 0

, (47)

A2(xr(t)) = A2(xd(t)) =

 −(d + 1)σ1 σ1 0
1 −1 1
0 −σ2 0

, (48)

B =

 1
0
0

, C =
[

1 1 0
]
. (49)

The original conditions of the response system are arbitrarily selected as xr(0) =

[ −0.1 −0.1 −0.1
]T and those of the drive system are arbitrarily selected as xd(0) =

[ 0.1 0.1 0.1
]T. If there exists an extrinsic perturbation, which is a pulse with amplitude

40 occurring from the 35th sec to the 36th sec, we assume the perturbation appeared in the
first state, which means that D =

[
1 0 0

]T . The H∞ achievement is chosen as ξ = 0.2
for better perturbation attenuation. The plaintext signal is set as p(t) = 2sin(t) for better
demonstration. The number of shifts is selected as n = 30 for better security. The key signal
is retrieved from the first state of the Chua’s circuit, i.e., k(t) = xd1(t) and k̂(t) = xr1(t). The
range of plaintext signal plus the key signal is estimated as λ = 8. Then, utilizing Theorem 1
we acquire the compensator (F1, F2) and the matrix R whose eigenvalues are positive. To
compare with the SOS methodology, the LMI-based compensator is procured from the
literature [8].

SOS-based compensator (ξ = 0.2)

F1 =
[

61.6093 27.5899 0.0058
]

(50)

F2 =
[

8.5459 29.5633 −0.0734
]

(51)

R =

 2.7517 1.0915 −0.0247
1.0915 1.4974 −0.0285
−0.0247 −0.0285 0.0725

 (52)

LMI-based compensator (ξ = 0.2)

F1 =
[

38.2871 28.5285 0.8880
]

(53)
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F2 =
[
−21.7129 28.5285 0.8880

]
(54)

R =

 0.2500 0.2272 −0.0000
0.2272 0.2758 −0.0009
−0.0000 −0.0009 0.0047

 (55)

Figures 2–4 display the compared responses of the perturbation decay achievement.
Figure 5 shows that the operation commences at t = 10 s, but the control signal is joined
around 10.5 s when ‖ê(t)‖ ≤ 4. To evaluate the H∞ performance of proposed method, an
integral square error (ISE) is defined as follows:

ISE =
∫ 40

35
‖e(t)‖dt (56)
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The value of ISE via the SOS method is 3.02 and the value of ISE via the LMI method is
6.17. Apparently, the submitted SOS-based compensator has better perturbation rejection.

Based on Theorem 1, the compensator (F1, F2) and the matrix R, whose eigenvalues
are positive at various ξ, are obtained as follows. Figures 6–8 show the H∞ achievement at
various ξ cases with the compensators operating at t ≥ 10. Obviously, the perturbation
attenuation achievement will be increased when the value of ξ is decreased.
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SOS-based compensator (ξ = 0.6)

F1 =
[

48.2971 15.2806 −0.0009
]

(57)

F2 =
[
−6.8468 15.6567 −0.0164

]
(58)

R =

 12.5995 2.1331 −0.0633
2.1331 4.3748 −0.0695
−0.0633 −0.0695 0.2725

 (59)

SOS-based compensator (ξ = 0.9)

F1 =
[

41.4964 13.4478 0.0136
]

(60)

F2 =
[
−13.3518 13.7721 0.0033

]
(61)

R =

 16.6246 2.3470 −0.0736
2.3470 5.3791 −0.0830
−0.0736 −0.0830 0.3425

 (62)

Figure 9 shows the encrypted signal. Figure 10 shows the recovered signal with
perturbation rejection. Figures 11 and 12 show that the SOS method is more relaxed than
the LMI method. The stability criteria via SOS are more universal than those via LMI. That
is, the result from the LMI method is also a solution for the SOS-based method. From
the above outcomes, we confirm that the proposed SOS-based fuzzy compensator also
offers larger feasible space and achieves better perturbation attenuation performance for
Chua’s system.
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3.2. Case 2

In this section, the polynomial fuzzy decrypter based on Theorem 2 will be executed
if the synchronized discrepancies exceed the minute scope of case 1. The fuzzy model of
two Chua’s circuits and the simulation parameters (such as the initial states, r, p(t), n, λ,
k(t), and k̂(t)) are the same as case 1 except that the extrinsic perturbation is a pulse with
amplitude 40 and occurs from the 30th sec to the 31th sec.

Thus, applying Theorem 2 could acquire the compensators (F1, F2) and the matrix
R whose eigenvalues are positive. To contrast with the SOS methodology, the LMI-based
compensator is procured from the literature [8].

SOS-based compensator (ξ = 0.2)

F1 =
[

103.2541 96.2763 −0.1880
]

(63)

F2 =
[

96.5163 91.0441 −0.1315
]

(64)

R =

 0.9843 0.0512 −0.0004
0.0512 1.0614 −0.0145
−0.0004 −0.0145 0.0713

 (65)

LMI-based compensator (ξ = 0.2)

F1 =
[

34.7109 25.1400 0.8711
]

(66)

F2 =
[
−25.2891 25.1400 0.8711

]
(67)
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R =

 0.2926 0.2618 −0.0000
0.2618 0.3388 −0.0013
−0.0000 −0.0013 0.0070

 (68)

Figures 13–15 show the comparison results of the perturbation attenuation perfor-
mance for Chua’s circuit. Figure 16 shows the recovered signal with perturbation rejection
for Chua’s circuit. Moreover, the SOS approach is superior to the LMI approach for
Chua’s circuit.
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4. Conclusions

This study displayed the H∞ synthesis of a polynomial fuzzy compensator through
the sum of squares (SOS) approach for synchronization of chaos systems and secure
communications. The SOS-based criteria with H∞ performance was proposed against the
extrinsic perturbation through the polynomial Lyapunov function. Based on the norm
of synchronization discrepancies, the chaos synchronization was divided into two cases.
Numerical simulation showed that the synchronization discrepancy can converge to zero,
and the signal can be recovered under extrinsic perturbation in either case 1 or case 2.
The feasible space of the proposed stability conditions via SOS was larger than that of
the existing stability conditions via linear matrix inequality (LMI). Moreover, the H∞
performance of the proposed SOS chaos control system was superior to that of the existing
LMI chaos control system.
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Appendix A

Proof of Theorem 1. Let the Lyapunov function V(x) = x̂T (x)P( x̃) x̂(x), where
P( x̃) = R−1( x̃) ∈ <N×N is a polynomial matrix whose eigenvalues are greater than zero.
This indicates that the polynomial Lyapunov function will be positive except for the states
at the original point when (11) is held. Performing the differentiation of V(x) with respect
to time obtains

.
V(x) = x̂T(x)R−1(x̃)

.
x̂(x) +

.
x̂

T
(x)R−1(x̃)x̂(x)+x̂T(x)

.
R
−1

(x̃)x̂(x) ≤ −yT(t)y(t) + ξ2nT(t)n(t) (A1)

⇒ x̂T(x)R−1(x̃)L(x)
.
x +

.
xTLT(x)R−1(x̃)x̂(x)+x̂T(x)

(
∑
k∈K

∂R−1(x̃)
∂xk

.
xk

)
x̂(x) ≤ −yT(t)y(t) + ξ2nT(t)n(t) (A2)
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The following equation holds when Bk = 0 and Dk = 0 for k ∈ K,

.
xk =

r

∑
i=1

hi(z)Ak
i (x)x̂(x) for k ∈ K (A3)

Substituting (7) and (A3) into (A2) grants

r
∑

i=1
hi(z)x̂T(x)×

{
R−1(x̃)L(x)[Ai(x)− BFi(x)]+[Ai(x)− BFi(x)]TLT(x)R−1(x̃)+ ∑

k∈K

∂R−1(x̃)
∂xk

Ak
i (x)x̂(x) + CTC

}
x̂(x)

+x̂T(x)R−1(x̃)L(x)Dn(t)+nT(t)DTLT(x)R−1(x̃)x̂(x)− ξ2nT(t)n(t) ≤ 0
(A4)

⇒
r

∑
i=1

hi(z)
[

x̂T(x) nT(t)
]
×
[

Γi(x) R−1(x̃)L(x)D
DTLT(x)R−1(x̃) −ξ2I

][
x̂(x)
n(t)

]
≤ 0 (A5)

where

Γi(x) = R−1(x̃)L(x)[Ai(x)− BFi(x)]+[Ai(x)− BFi(x)]TLT(x)R−1(x̃)+∑
k∈K

∂R−1(x̃)
∂xk

Ak
i (x)x̂(x) + CTC (A6)

From (A5), the following conditions can be procured:

r

∑
i=1

hi(z)
[

−Γi(x) ∗
−DTLT(x)R−1(x̃) ξ2I

]
≥ 0 (A7)

(A7) can be decomposed as follows: r
∑

i=1
hi(z)Ni(x) ∗

−DTLT(x)R−1(x̃) ξ2I

− [ CTC 0
0 0

]

=

 r
∑

i=1
hi(z)Ni(x) ∗

−DTLT(x)R−1(x̃) ξ2I

− [ CT

0

] [
C 0

]
≥ 0

(A8)

where

Ni(x) = −
{

R−1(x̃)L(x)[Ai(x)− BFi(x)]+[Ai(x)− BFi(x)]TLT(x)R−1(x̃)+∑
k∈K

∂R−1(x̃)
∂xk

Ak
i (x)x̂(x)} (A9)

Utilizing the Schur complement, (A8) becomes
r
∑

i=1
hi(z)Ni(x) ∗ ∗

−DTLT(x)R−1(x̃) ξ2I 0
C 0 I

 ≥ 0 (A10)

Consequently, the following inequality holds Ni(x) ∗ ∗
−DTLT(x)R−1(x̃) ξ2I 0

C 0 I

 ≥ 0 (A11)

The left-hand side of the above equation is multiplied by diag
{

R(x̃) I I
}

 Ti(x) ∗ ∗
−DTLT(x) ξ2I 0

CR(x̃) 0 I

 ≥ 0 (A12)
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where

Ti(x) = −{L(x)[Ai(x)− BFi(x)]R(x̃)+R(x̃)[Ai(x)− BFi(x)]TLT(x)+∑
k∈K

R(x̃)
∂R−1(x̃)

∂xk
R(x̃)Ak

i (x)x̂(x)}. (A13)

Since the inverse of R(x̃) exists, R−1(x̃)R(x̃) = I. Performing the derivative on both
sides of the equation obtains

∂R−1(x̃)
∂xk

R(x̃) + R−1(x̃)
∂R(x̃)

∂xk
= 0 (A14)

Rewriting (A14) yields

∂R(x̃)
∂xk

= −R(x̃)
∂R−1(x̃)

∂xk
R(x̃) (A15)

Utilizing (A15) and letting Oi(x) = Fi(x)R(x̃), (A12) becomes

Φi(x) =

 Qi(x) ∗ ∗
−DTLT(x) ξ2I 0

CR(x̃) 0 I

 ≥ 0 (A16)

where

Qi(x) = −{L(x)Ai(x)R(x̃)− L(x)BOi(x)+R(x̃)AT
i (x)LT(x)−OT

i (x)BTLT(x)−∑
k∈K

∂R(x̃)
∂xk

Ak
i (x)x̂(x)} (A17)

Hence, the SOS-based stability criteria (12) are achieved as follows:

wT(Φi(x)− βi(x)I )w is SOS (A18)

Performing the integration on both sides of (12) from zero to infinity obtains

V(x(∞))− V(x(0)) ≤ −
∫ ∞

0
‖y(t)‖2

2dt +
∫ ∞

0
ξ2‖n(t)‖2

2dt (A19)

Based on the original state x(0) = 0 and V(x(∞)) ≥ 0, the following inequality holds∫ ∞
0 ‖y(t)‖

2
2dt∫ ∞

0 ‖n(t)‖
2
2dt
≤ ξ2 (A20)

Accordingly, if (12) holds, the L2 gain of the polynomial fuzzy chaos plant will be less
than ξ. �

Proof of Theorem 2. Assume there exist Fi(xr(t)) and Fi(xd(t)) such that

 G1(xr(t))−Gi(xr(t))
G1(xd(t))−Gi(xd(t))
G(xr(t))−G(xd(t))

T G1(xr(t))−Gi(xr(t))
G1(xd(t))−Gi(xd(t))
G(xr(t))−G(xd(t))

 = 0 (A21)

Then, G1(xr(t)) = Gi(xr(t), G1(xd(t)) = Gi(xd(t)), and G(xr(t)) = G(xd(t)).
The chaotic error system (29) can be obtained. However, if B is a singular matrix, then
Fi(xr(t) )) and Fi(xd(t) )) cannot be obtained by Fi(xr(t)) = B−1. (G(xd(t))− Ai(xd(t)) )
and Fi(xd(t)) = B−1(G(xd(t))− Ai(xd(t)) ), respectively. Therefore, (A22) could be uti-
lized to avoid this situation.
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µI−R(x̃(t))

 G1(xr(t))−Gi(xr(t))
G1(xd(t))−Gi(xd(t))
G(xr(t))−G(xd(t))

T

·

 G1(xr(t))−Gi(xr(t))
G1(xd(t))−Gi(xd(t))
G(xr(t))−G(xd(t))

R(x̃(t)) > 0 (A22)

where µ a small positive number. This implies if µI is near zero in the above inequalities,
then the condition (A21) is satisfied. Using the Schur complement, we derive

µI ∗
(G1(xr(t))−Gi(xr(t)))R(x̃(t))
(G1(xd(t))−Gi(xd(t)))R(x̃(t))
(G(xr(t))−G(xd(t)))R(x̃(t))

I

 (A23)

Therefore, the SOS condition (28) is obtained as follows:

vT




µI ∗
(G1(xr(t))−Gi(xr(t)))R(x̃(t))
(G1(xd(t))−Gi(xd(t)))R(x̃(t))
(G(xr(t))−G(xd(t)))R(x̃(t))

I

− εi−1(xr(t))

v is SOS.� (A24)
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