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Photocatalysis, especially heterogeneous photocatalysis, is one of the most investi-
gated processes for environmental remediation. Indeed, the use of solar light, which is an
infinite source of energy, to activate photocatalysts is a sustainable technology [1]. The con-
version of solar light into chemical energy via a heterogeneous photocatalyst is a powerful
tool to decontaminate the natural environment (water, air, and soil), but also to produce
green energy such as hydrogen, which is considered as the most promising alternative to fos-
sil energy [1]. Beside photocatalysis, other photochemical processes can be used for environ-
mental applications, including the photo-Fenton process and photolysis. The Special Issue
on “Photocatalytic Processes For Environmental Applications” summarizes all these crucial
challenges that the future generation will have to solve. The Special Issue is available online
at https://www.mdpi.com/journal/processes/special_issues/photocatalytic_processes
(access date: 19 November 2021).

A well-known family of heterogeneous photocatalysts are transition metal chalco-
genides. Among them, the most popular one is titanium dioxide (TiO2), which is still
the most investigated owing to its non-toxicity, low cost, and relatively high efficiency
under UVA light. While several methods including the design of composite and doping are
often found to successfully increase the photocatalytic activity of TiO2 under visible light,
innovative methods could also be used, such as photocatalytic activation through electron
beam [2]. In this special issue, Gallegos et al. have demonstrated that microparticulate
TiO2 activated with e-beam exhibited a higher degradation rate constant for Direct Blue 1
removal [2].

It is worth reminding the photocatalytic mechanism during the degradation of organic
pollutants in water. After the generation of electron/hole (e−/h+) pairs under suitable
irradiation (hν > Eg), highly reactive inorganic radicals, especially reactive oxygen species
(ROS), are produced:

h+ + OH− → HO• (1)

e− + O2 → O2
•− (2)

These “primary” radicals are responsible of the efficient degradation of water contam-
inants.

On the other hand, as UVA light represents only 5% of the solar spectrum, intense
research is also focused on visible light-driven photocatalysts like, for example, vanadium-
and iron-based oxides (V2O5, BiVO4, Fe2O3, CoFe2O4, and so on), as well as metal sulfides
(CdS, ZnS, CuS, and so on) [1,3,4]. Some of these materials are ternary oxides. Indeed, it
helps to tune the energy bandgap, which is an essential feature in heterogeneous photo-
catalysis [1]. In addition, another important physical factor that should be considered in
heterogeneous photocatalysis is the morphology of materials. Morphology can influence
the specific surface area as well as the transport properties of charge carriers. In this way,
Ullah et al. have published in this Special Issue work related to the preparation of CdS
nanorods, which have excellent photocatalytic properties in the degradation of Rhodamine
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B [3]. Moreover, photocatalysts can be composed of chemical elements that are active in
Fenton-based reactions (Equations (3)–(5)). It is the case of CoFe2O4 that has been investi-
gated by To Loan et al. [4]. Indeed, this visible light-driven photocatalyst in combination
with Fenton-based processes can almost completely degrade Rhodamine B [4].

Fe2+ + H2O2 → Fe3+ + OH− + HO• (3)

Fe3+ + H2O2 → Fe2+ + H+ + HO2
• (4)

Fe3+ + H2O + hν→ Fe2+ + H+ + HO• (5)

Concerning these Fenton-based processes, they are usually performed in homoge-
neous systems using dissolved iron species, thus exhibiting higher kinetic rates compared
with heterogeneous systems. By looking at these reactions (Equations (3) and (4)), it ap-
pears as a catalytic process owing to the iron cycle (Fe2+ ↔ Fe3+). However, in an aqueous
solution, Fenton-based reactions face two main drawbacks, including (i) the stability of iron
species and (ii) the reduction of Fe3+ into Fe2+ (which is the limiting step). Therefore, using
non-toxic and biodegradable ligands, stable iron complexes can be used under visible light,
thus allowing their use at environmental pH and favoring the reduction process via iron
photolysis (Equation (5)). That has been investigated in the work of Huang et al., where
2,4-dichlorophenol has been successfully degraded using the Fe(III)–EDDS complex in
both synthetic and real water bodies [5].

Another interesting photochemical process is the photolysis of radical precursors.
In such a configuration, no material is needed as the action of light of suitable energy
can generate ROS like HO•. Usually, hydroxyl radicals can be generated by photolysis
of H2O2 under UVB light, while strong UVC is required to photolyze water molecules.
For the latter, a VUV/UV photoreactor is necessary. In this Special Issue, Luo et al. have
investigated the fluid dynamics in a VUV/UV photoreactor by correlating simulations
with experiments for the degradation of organic pollutants [6]. Therefore, their work brings
interesting knowledge for the development of such a technology for water treatments.

The improvement of photochemical processes can also be reached using physical
methods. An example is the application of a voltage to a photocatalyst in the form of a
photoelectrode. Such a photoelectrocatalytic process can be employed for various applica-
tions including the production of hydrogen by water splitting, the enhanced degradation
of water contaminants, and the production of hydrogen peroxide. In this Special Issue,
Papagiannis et al. have studied the latter system using a photoanode [7]. Indeed, the
production of H2O2 by WO3 photoanode is made sustainable by using organic fuels from
biomass derivatives such as glycerol and ethanol. H2O2 is a well-known oxidant that is
used in both conventional oxidation and advanced oxidation processes. It is a radical
precursor used in the production of hydroxyl radicals.

This Special Issue on “Photocatalytic Processes For Environmental Applications”
offers an overview (through original full-length and review articles) of the different photo-
chemical processes (photocatalysis, photo-Fenton, and photolysis) triggered by different
inorganic compounds that can be used for environmental applications, not for only water
treatment, but also for hydrogen production. As guest editors, we thank all the contributors
and the editorial team of Processes for their work and the successful publication of this
Special Issue.
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