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Abstract: In mammalian cell culture, especially in pharmaceutical manufacturing and research,
biomass and metabolic monitoring are mandatory for various cell culture process steps to develop
and, finally, control bioprocesses. As a common measure for biomass, the viable cell density (VCD) or
the viable cell volume (VCV) is widely used. This study highlights, for the first time, the advantages
of using VCV instead of VCD as a biomass depiction in combination with an oxygen-uptake- rate
(OUR)-based soft sensor for real-time biomass estimation and process control in single-use bioreactor
(SUBs) continuous processes with Chinese hamster ovary (CHO) cell lines. We investigated a series
of 14 technically similar continuous SUB processes, where the same process conditions but different
expressing CHO cell lines were used, with respect to biomass growth and oxygen demand to
calibrate our model. In addition, we analyzed the key metabolism of the CHO cells in SUB perfusion
processes by exometabolomic approaches, highlighting the importance of cell-specific substrate and
metabolite consumption and production rate qS analysis to identify distinct metabolic phases. Cell-
specific rates for classical mammalian cell culture key substrates and metabolites in CHO perfusion
processes showed a good correlation to qOUR, yet, unexpectedly, not for qGluc. Here, we present
the soft-sensoring methodology we developed for qPyr to allow for the real-time approximation of
cellular metabolism and usage for subsequent, in-depth process monitoring, characterization and
optimization.

Keywords: process analytical technologies (PAT); off-gas analytic; real-time monitoring; viable cell
biomass; perfusion process; continuous process; single-use bioreactor (SUB); oxygen uptake rate
(OUR); soft sensor

1. Introduction

Chinese hamster ovary cells (CHO) represent the backbone of commercial and research
expression hosts used for the manufacture of monoclonal antibodies (mAB) for therapeutic
purposes. In the last decades, a variety of different production strategies and processes have
been developed to ensure high yields and product quality as well as operational efficiency
and reproducibility [1]. In order to cope with these demands, a smart synergy of flexible,
state-of-the-art bioreactor systems and up-to-date process analytical techniques (PAT) is
essential and highly recommended by the FDA [2]. Single-use bioreactor (SUB) systems
have gained tremendous interest in the biopharmaceutical industry as these bioreactors
and their peripheral solutions can remarkably elevate the efficiency and, of course, the
flexibility of modern manufacturing processes [3]. SUB systems are currently an often
used alternative and cover a broad range of different applications despite lacking many
conventional engineering parameters or availability of compatible single-use sensors [4,5].
In the context of modern bioprocess development and optimization, the online monitoring
of crucial key performance indicators (KPIs) is necessary to ensure high process and
product quality [6]. Therefore, monitoring sensors that can be applied to SUB systems and
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deliver high-grade, real-time information is a significant need, especially for one of the
most valuable indicators, the biomass concentration [7,8]. Even if common sensor systems,
e.g., hard-type sensors that have been adjusted to match single-use bioreactor requirements,
are available [9], there is still a challenge to measure the biomass concentration online [10].
As hard-type sensor probes need to fulfill a variety of prerequisites, offline-based methods,
such as image analysis with trypan blue staining and subsequent cell counting, lack limited
amount of samples, are time consuming and require sample taking [11]. An appropriate
alternative for online measuring of biomass is soft sensors. Soft sensors constitute the
interoperation of hard-type sensors that can be implemented, or peripherally attached, to
the bioreactor system in numerous ways using a software-based model as estimator [12,13].
Utilization of different soft-sensor approaches for online determination of biomass has been
reported in many valuable contributions focusing on radio frequency impedance, Raman
spectroscopy or off-gas analytic techniques [10,11,14–20]. Online biomass estimation via
off-gas measurement generally relies on the oxygen uptake rate (OUR) as this variable
is one of the best indicators for cell physiological activity and correlates very well with
metabolic turnover rates and the concentration of viable biomass.

The knowledge of the OUR as a metabolic marker allows a deeper understanding of
intrinsic physiological performance of the biomass and can be merged with other process
variables to create meaningful new information in the sense of soft sensing [17,21–25]. The
online measure of the OUR can be achieved by the global mass balance (GMB) approach
which is easy to implement in SUB systems and enables a disturbance-free measure of the
OUR. In perfusion and continuous processes, process interventions or other perturbations
that might affect the steady-state mode are undesirable [24]. Only the knowledge of vol-
umetric flow, composition of the gas in the inlet and outlet and the fermenter volume is
required, constituting an advantage when compared to liquid-phase measurements, such
as the dynamic method [23]. Perfusion processes require an optimized perfusion strategy
to allow VCD and cellular biomass generation and continuous product formation and, at
the same time, avoid unintentionally high economical demands of perfusion media. The
exchange of unconditioned media is highly dependent upon the applied perfusion rate
D, which ensures a sufficient supply of substrates to keep, in the best case, the substrate
concentrations in a steady state. In parallel, the constant removal of conditioned media
preserves the level of known metabolites, such as lactate, ammonia and metabolic and
abiotic break-down products of amino acids, nucleotides and lipoid metabolism [26], as
well as unknown cytotoxic/cytostatic metabolites at uncritical levels. It has been shown
previously that the cell-specific nutrient uptake rates in perfused cell cultures correlated
with the cell-specific growth rate for hybridomas and recombinant CHO cell lines [27]. This
knowledge strengthens the goal to analyze and use cell- and biomass-specific rates and
further metabolic KPIs for process development and optimization. In this work, we present
a real-time off-gas-based biomass soft sensor that can be applied for the perfusion-based
biomass growth phase of continuous processes. We used a proof-of-concept data set of
14 similar SUB continuous fermentation processes including 14 different mAB expressing
CHO cell lines for model calibration. We aimed for this heterologous set-up of cell lines in
order to cover a broad spectrum of different metabolically active cells as the oxygen demand
between cell lines can differ significantly [24]. The soft sensor consists of two different models
to predict the biomass in terms of viable cell density (VCD) and viable cell volume concentra-
tion (VCV) using a multilinear regression approach. The OUR was measured as a major input
variable for both using the GBM technique and observed noise distortions were minimized
by data preprocessing to improve model accuracy. Model prediction quality assessment was
done by RMSE as well as MAPE and MdAPE calculation, enabling an in-depth analysis of
errors and their distribution. Real-time biomass prediction was then applied on three differ-
ent and unknown cell lines to the prediction models by utilization of two moving average
methods to remove the OUR signal noise. Furthermore, we elaborate on the question of how
biomass can be described most properly in modern bioprocesses. VCD, as a commonly used
measure, lacks the information of the cellular volume and refers solely to the number of cells.
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Our utilization of VCV as a measure for biomass delivers more information, taking into ac-
count cell volume, which can lead to more precise correlations with the OUR [14]. In addition,
cell size can have a direct impact on oxygen demand, leading to higher oxygen requirements
from larger cells compared to smaller cells, reflecting a positive correlation between OUR and
cell size [22]. We also highlight the advantage of the shown off-gas-based biomass soft sensor
in SUB continuous processes and illustrate how the biomass can be described best when VCD
or VCV are applied as descriptive measures. Process variables, such as specific oxygen uptake
rate per single cell or per viable cell volume, can raise a different picture when the volume
per cell is not constant.

2. Materials and Methods
2.1. Cell Lines

For this study, 17 different in-house-generated Chinese hamster ovary clonal cell lines
(CHO-K1), engineered to produce 14 different mAbs, were used (Table 1). All clones were
cultivated using a proprietary, chemically-defined (CD), serum-free, in-house base and
perfusion medium. In general, cells can also be cultivated in commercially chemical-defined
media, such as CD-CHO (Thermo Fisher Scientific, Waltham, MA, USA).

Table 1. Overview of all processes with their relation to the expressed antibody and clone that were
used to create the biomass prediction models and for validation.

No. Process Expressed Antibody Clone Purpose

1 P-01 A-01 C-01 Training
2 P-02 A-02 C-02 Training
3 P-03 A-03 C-03 Training
4 P-04 A-04 C-04 Training
5 P-05 A-01 C-05 Training
6 P-06 A-05 C-06 Training
7 P-07 A-06 C-07 Training
8 P-08 A-07 C-08 Training
9 P-09 A-05 C-09 Training
10 P-10 A-08 C-10 Training
11 P-11 A-09 C-11 Training
12 P-12 A-05 C-12 Training
13 P-13 A-10 C-13 Training
14 P-14 A-11 C-14 Training
15 P-15 A-12 C-15 Validation
16 P-16 A-13 C-16 Validation
17 P-17 A-14 C-17 Validation

2.2. Cell Cultivation and in Process Control

Cells were thawed in a shake flask and maintained in a humidified shaking incubator
(Multitron Cell, Infors AG, Headoffice, Switzerland) at 36.5 ◦C under 7% (v/v) carbon
dioxide (CO2), applying a constant shaking rate and relative humidity of 70%. Cell passage
took place every 3–4 days for scale-up purposes. After 10 days, cells were transferred into
a wave-mixed SUB (Biostat® RM, Sartorius Stedim Biotech GmbH, Göttingen, Germany)
for a 4 day long inoculation train as the batch phase for further cell propagation. During
this step, the temperature was controlled at 36.5 ◦C and device-internal optical probes were
used to control pH at 7.00 and dissolve oxygen (DO) to 30% saturation by gassing with a
mixture of process air, nitrogen (N2), carbon dioxide (CO2) and pure oxygen (O2). Rocking
motion was held constant at 15 rocks/min at an angle of 9 degrees.

After the inoculation train process was finished, cells were transferred to a stirred SUB
(HyPerforma™ SUB, Thermo Fisher Scientific, Waltham, MA, USA) with an appropriate
seeding cell density depending on the doubling time in the preceding inoculation train
process. Temperature was controlled to 36.5 ◦C and stirrer speed was set constant at
140 rpm. DO concentration was measured using a stainless steel optical probe (VisiFerm™
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DO ECS 225, Hamilton, Switzerland) and controlled to 30% saturation analogous to the
wave-mixed process. pH monitoring was done by pH probe (Inpro® 3253/225/PT100,
Mettler Toledo, Columbus, OH, USA) and regulated by CO2 gassing and 1 M sodium
carbonate addition to pH 7.00.

Cell retention was enabled using a hollow fiber module (KrosFlo® MBT®, Repligen,
Waltham, MA, USA) with 0.2 µm pore size. Perfusion was started 24 h after inoculation and
modified stepwise according to the following protocol: 24 h after inoculation, perfusion mode
was started with normalized fermentation volumes per day (vvdn) of 1 and increased to
2 vvdn after another 24 h. Further increase was done after 72 h to a vvdn of 3 until the last raise
was applied 120 h after inoculation up to a vvdn of 4.55 towards process end. During perfusion
mode, the fermentation volume was kept constant by weight-controlled addition of fresh
perfusion media and no cell bleed took place. After the dynamic state with altering perfusion
rates, the steady-state process would start with a constant normalized perfusion rate of
4.55 vvdn with parallel cell bleed to keep biomass concentration and product titer stable while
product yield rises (Figure 1A). The biomass soft sensor presented in this work is proposed
for automatically controlling cell bleeding during the steady-state perfusion process.

Offline samples were drawn at least once per day using a sterile syringe (Omnifix
Luer Lock Solo, B. Braun Melsungen AG, München, Germany) and aliquoted for further
analytic purposes.

2.3. Oxygen Balancing and OUR Calculation

To quantify the OUR, the well-known global mass balance approach is used as shown
in Equation (1):

dcO2

dt
= OTR(t)−OUR(t) (1)

The rate of oxygen that is transferred from the gas phase into the liquid phase (OTR) is
influenced by several factors, such as the fluid-side oxygen mass transfer coefficient (kLa),
maximum possible oxygen solubility (c∗o2) and the current dissolved oxygen concentration
(cO2,L). Therefore, Equation (1) can be written as:

dcO2

dt
= kLa(t)·(c∗O2(t)− cO2,L(t))−OUR(t) (2)

Since the oxygen saturation during all fermentation processes in this work was con-
trolled to 30%, steady-state conditions can be assumed, thus OTR equals OUR, leading
the temporal change of soluble oxygen concentration to 0. Within this condition, the OUR
calculation is possible using a sensitive off-gas analyzer and the further application of a
mass balance approach that is based on the mass of oxygen that enters (O2,in) and leaves
(O2,out) the bioreactor system [5]. Since the temperature of the gas mixture (consisting
of air, N2, CO2, O2) that flows into the system is known, the oxygen mass intake can be
calculated using the ideal gas law (R = gas constant, MO2 = molar mass of oxygen). The
same principle applies to the calculation of the oxygen mass leaving the system where
the measured oxygen volume fraction and the gas flow rate are used. As all fermentation
processes were operated without any overpressure, the inlet gassing flow rate equals the
outlet flow rate (Fin = Fout). Furthermore, the gas inlet and outlet temperature is presumed
to be equal due to the length of the tubing (Tin = Tout). Finally, the current liquid fermen-
tation volume (VL) and the ambient pressure (Pamb) are needed to calculate the OUR as
shown in Equation (3):

OUR(t) = (O2,in(t)−O2,out(t))·
1

VL(t)
=

(VO2,in(t)−VO2,out(t))·MO2·pamb
R·T·VL(t)

(3)

For the graphical representation in this study, the volumetric OUR was normalized to
the maximum value in the training data set.
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Figure 1. Schematic overview of (A) continuous process consisting of perfusion-based dynamic state (red marked area) and
cell-bleed-based steady-state phase and (B) the off-gas measurement set-up for continuous processes in single-use bioreactors.

2.4. Off-Gas Measurement Set-Up

To perform off-gas analytic measurements in single-use bioreactors, a bypass solution
was applied. The gas mixture enters the SUB at the bottom via a microsparger or open
pipe. After the gas leaves the bioreactor, it passes heated filters and is then transported
into a bottle that serves as a divider as well as a condensate trap. Here the gas stream is
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separated into two parts where the major part leaves the system via main exhaust whereas
a smaller portion is distributed by a self-made gas manifold chamber and actively drawn
using a membrane pump (Laboport® N96, KNF Neuberger GmbH, Freiburg, Germany) to
the gas analyzer (DasGip® GA4, Eppendorf AG, Hamburg, Germany). The gas manifold
and the multi-channel gas analyzer allow simultaneous off-gas measurements on up to
four fermentation systems in parallel. Therefore, no multiplexing or flushing steps were
necessary. We used gas-tight Teflon tubing for the whole transportation of the gas stream
after it leaves the heated sterile filters as silicone tubing tends to be permeable for gases
(Figure 1B). The gas analyzer was two-point calibrated before each process with air and
a defined gas mixture (Linde AG, Höllriegelskreuth, Germany) containing 10% CO2 and
2% O2. Unused gas analyzer channels were flushed with humidified air to preserve
sensor lifetime.

2.5. Data Collection and Preprocessing

All used offline and online data points for model generation were taken from perfusion-
based biomass growth phases of continuous processes (P-01 to P-14). These processes
were carried out in two identical SUB fermentation systems. Processes were technically
identical in terms of used media, cultivation conditions and process operating conditions,
as described above. Table 1 provides an overview on the respective cell lines, expressed
antibody and data used for model creation and validation. In order to build a biomass
prediction model, the collected OUR data gathered from off-gas analytics needed to be
preprocessed to remove signal noise and measurement distortions.

All OUR raw data were fitted by higher order polynomials using corresponding
regressions. The degree of the applied polynomials was chosen by the highest correlation
coefficient (R2) in order to select the most descriptive regression model for each process.
Since the OUR is the main factor affecting model quality, this pretreatment step was
mandatory for achieving high model prediction accuracy.

2.6. Model Generation and Assessment

The prediction model was built and evaluated using the statistical software JMP®

15.2.0 (SAS Institute, Cary, NC, USA). For the modeling procedure, treated OUR variables
(OURfitted), offline VCV and VCD and process time were used to fit a multilinear regression
model. To address model performance, the root mean square error (RMSE) with Bessel’s
correction was calculated as shown in Equation (4):

RMSE =

√
∑n

i=1(yi − yi
′)2

n− 1
(4)

In order to compare the performance of both prediction models, the mean absolute
percentage error (MAPE) was calculated (Equation (5)):

MAPE =
100
n

n

∑
i=1

∣∣∣∣yi − yi
′

yi

∣∣∣∣ (5)

In both equations, yi represents the observed values, yi
′ the corresponding predicted

values and n the number of fitted points in total. Since the RMSE and MAPE are based on
averages, outliers can negatively distort their predication [28]. Therefore, the MAPE was
also calculated using the median of absolute percentage errors (MdAPE) to paint a more
robust view on model accuracy.

2.7. Real-Time Prediction and Validation

The models were implemented in data visualization and analyzer software SEEQ
(SEEQ Corporation, Seattle, WA, USA) for calculation of VCV and VCD predictions in
real time. Therefore, three new data sets from technical replicate processes (P-15, 16 and
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17) with unknown cell lines to both models (C-15, 16 and 17) were used to validate the
prediction models. Because online OUR raw data have low signal-to-noise ratios, as
described above, two moving average smoothing algorithms were applied to assess their
impact on final prediction accuracy. The used algorithm was either a Savitzky–Golay
(SG) or a locally estimated scatterplot smoothing (LOESS) algorithm with equivalent
analytical design regarding the investigation and sample output time range. Through the
described analysis, real-time signal cleansing of OUR raw data was possible, leading to
more accurate predictions. Figure 2 gives an overview of the performed model generation
and validation workflow.
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2.8. Off-Line Measurements

All cell physiological measures, such as viable cell density (VCD), average cell diame-
ter (ACD), average volume per cell (AVC) and culture viability, were determined using an
automatic cell counting device (Cedex HiRes®, Roche Diagnostics, Mannheim, Germany).
In this work, the shape of a cell is assumed to be spherical, hence the AVC is calculated
as follows:

AVC =
4
3
π

(
ACD

2

)3
(6)

All samples were immediately processed after the sample was taken, as described in
Section 2.3. Accordingly, 300 µL of the cell containing sample was transferred into a Cedex
HiRes sample cup and measured directly to avoid long-term storage. Depending on VCD
concentration, the sample was diluted properly using 3% (m/v) Pluronic F68 dissolved in
PBS. Furthermore, the measured VCD was used to calculate VCV according to Equation (7):

VCV = VCD·AVC (7)

For the graphical representation in this study, the biomass measures VCD and VCV
were normalized to the maximum value in the training data set.
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A biochemical analyzer (Cedex Bio HT®, Roche Diagnostics, Mannheim, Germany)
was used to determine the metabolites glucose, lactate, pyruvate and ammonium. There-
fore, cell suspension was centrifuged (Heraeus Multifuge 1S-R, Thermo Fisher Scientific,
Waltham, MA, USA) at 3500× g for 10 min. The cell pellet was discarded, and the super-
natant was used subsequently.

Amino acid analysis was performed using an in-house LC-MS (Ultivo Triple Quadrupole
LC/MS System, Agilent Technologies Inc., Santa Clara, CA, USA) procedure with stable
isotope-labeled internal standards for calibration.

2.9. Cell-Specific Substrate and Metabolite Consumption and Production Rate, Product Formation
Rate and Yield Calculation

The cell-specific substrate consumption and metabolite production rates in the dy-
namic state of continuous process were calculated, as recently described by Bausch
et al., [29] according to the following balancing Equation (8):

dS
dt

= D(Sin − S) + qSX (8)

where S represents the molar concentration of the substrate or metabolite, D is the perfusion
rate, Sin is the substrate molar concentration in the perfusion medium, X is the cell number
and qS is the molar cell-specific substrate/metabolite production rate. In a simplified
approach neglecting abiotic degradation of instable compounds, the cell-specific qS at
discrete process time points, i, are calculated as described in Equation (9):

qSi =
1
Xi

(
(Si − Si−1)

(ti − ti−1)
−D(Sin − Si)

)
(9)

A negative and positive value for qS represent consumption and production of a com-
pound, respectively. The product formation rate qP can be calculated analogous to Equation (9).
The metabolic yield coefficients YLac/Glc and YNH4/Gln for the assessment of the metabolic state
and efficiency were calculated as follows in Equations (10) and (11), respectively:

YLac,i/Glc,i =
qLac,i

qGlc,i
(10)

YNH4,i/Gln,i =
qNH4,i

qGln,i
(11)

3. Results and Discussion
3.1. Online Parameter Evaluation and Preprocessing

To monitor the biomass formation of 14 different CHO cell lines expressing different
target proteins, we used an at-line-based viable cell density assessment, as described above.
Although all CHO lines were derived from the same native CHO host cell line, we detected,
as shown before by others, significant, process time-dependent differences in cell growth
characteristics, such as viable cell density formation and timing for cell doubling, as well
as in volume per cell among all tested clones (Figure 3A,C,E). Usually, biomass formation
analysis is performed only once per day, resulting in an erroneous, discrete monitoring of
this critical KPI, in conflict with the continuous use of this variable for dynamic calculations
of important bioprocess key performance indicators, such as the cell-specific product
formation rate and feedback control process strategies. Continuous assessment of cell
biomass formation is a prerequisite for efficient bioprocess development and economic
target protein production.

For the biomass soft-sensor model, general assumptions were made. Process variations
occur from: Media lot-to-lot differences, pH and DO probe behavior, mass flow divergences,
off-gas sensor response time and the metabolic performance of the used clone. These varia-
tions can influence the oxygen transfer and/or its solubility and, therefore, the oxygen level
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becomes a sum parameter. Specifically, the different metabolic behavior of the clones (that
leads to different controller responses and correction agent additions) might have the greatest
impact on the fermentation broth and its physicochemical characteristics in terms of oxygen
transfer. In addition, ambient conditions may vary during the course of a fermentation that
affect the off-gas measurement. Residence time of the off-gas in the headspace as well as
in the tubing and condensate trap bottles may further influence the proper calculation of
the OUR [30]. Differences in the gas inlet and outlet temperature also have an impact on
measured volume fractions, especially in cases where an off-gas cooler is used [16]. Since we
did not use any off-gas cooling, we assumed the inlet and outlet gas temperature difference
to be negligible. It has been shown that correction functions or description models generated
from perturbation experiments can be applied to enhance accuracy of off-gas measurements
for OUR calculations [30–32]. These approaches require considerable effort and profound
knowledge about the characteristics of O2 transport kinetics within the whole system. How-
ever, we took none of the mentioned factors into consideration as we wanted to create a robust
and relatively simple model that allows for easy implementation and good prediction quality
in contrast to alternative, soft-sensing approaches. As described most recently by Tuveri et al.,
precise estimation of bioprocess variables such as biomass can be realized by comprehensive
yet more complex approaches, such as the utilization of Kalman filters [33]. However, in
our study, we were aiming for a biomass soft-sensor model that can handle the metabolic
diversity and its effects on process properties that are caused by the varying clonal behavior
of not yet in-depth, characterized CHO cell lines.

All available online variables were investigated regarding their ability to predict the
biomass in terms of VCD and VCV. We found the OUR and process time (PT) to be the
most predictive variables using a JMP predictor screening algorithm, which confirmed the
known, high correlation of cellular biomass and respective volumetric OUR in cell culture
(Figure 3B). The assembled OUR data (OURraw) showed a low signal-to-noise ratio at the
beginning of all processes up to several process days. The ratio was heavily influenced by
low biomass concentrations as well as DO and pH controller response. Once the biomass
reached a critical level accompanied by higher oxygen demand, the measured OUR signal
became stable (Figure 4A).

Due to the use of different cell lines with diverse growth behavior as part of the data
set, this condition differed clearly with respect to process time (Figure 4B) and mainly
influenced the choice of the used higher order polynomials to describe the data set of each
process as accurate as possible. We found polynomials of the third to fifth degree to fit
best to the observed OUR raw data sets. Table 2 provides an overview of used polynomial
degree and their related R2.

Table 2. Overview of applied polynomial degree to describe the OUR raw data.

Process Polynomial Degree R2

P-01 5 0.863
P-02 4 0.983
P-03 4 0.878
P-04 4 0.888
P-05 4 0.712
P-06 4 0.971
P-07 4 0.991
P-08 3 0.892
P-09 3 0.982
P-10 3 0.977
P-11 3 0.918
P-12 4 0.956
P-13 4 0.977
P-14 4 0.954
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Figure 3. Time course of (A) normalized viable cell density (VCD), (B) normalized viable cell volume (VCV) vs. normalized
volumetric oxygen uptake rate (OUR), (C) cell volume, (D) cell-specific OUR, (E) cell doubling time and (F) cell-specific
OUR vs. normalized VCV of 14 different CHO cell lines (training data set, see Table 1) expressing different target proteins
in a seven-day perfusion process. Black arrows and blue dotted lines show the perfusion rate protocol with respective
normalized perfusion rate (in volume media per volume fermenter and day, vvdn) and timing strategy. The black lines
represent the fit among all tested clones and runs and the grey area highlights the confidence of the fit with α = 0.05.
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Figure 4. (A) Example of normalized OUR raw data fit from process P-04 with high signal–noise ratio in the first 100 h and
following stable signal towards end of fermentation. A polynomial fit of fourth grade was used to describe the OUR with
an R2 of 0.89. (B) Example of normalized OUR raw data fit from process P-09 with high signal–noise ratio in the first 85 h
and also towards end of fermentation. A polynomial fit of fourth grade was used to describe the OUR with an R2 of 0.95.

3.2. Biomass Model Generation and Assessment

Two descriptive models were built using the preprocessed OUR and process time
(PT) as input variables to predict the VCV and the VCD, respectively. Both regression
models allow a good description of the biomass for each variable (Figure 5A,B). The VCV
model has a normalized prediction error of RMSE = 0.0339, whereas the VCD model
reaches 0.0469. Referring to relative model performance evaluation, the accuracy for VCV
prediction was calculated as MAPEVCV = 31.79% and MdAPEVCV = 13.19%. Lower forecast
performance values were obtained from the VCD model with MAPEVCD = 56.59% and
MdAPEVCD = 19.78%. The differences between MAPE- and MdAPE-derived values can be
explained by the nature of the observed errors and their distribution during the fermen-
tations that were used to create these models. Despite the similarity from the observed
residuals to the normal distribution (Shapiro–Wilk for VCV residuals is 0.89 and 0.82 for
VCD), it is noticeable that, within both models, the difference between actual and pre-
dicted values begins to scatter with progressing process time and biomass concentration
(Figure 5C,D). Small dimension residuals were observed up to 60–80 h after the process
start and were highest towards the end of processes. However, the lack of prediction
performance of both models is located at the beginning of the processes, as the magnitude
of absolute percentage errors (APE) reveals (Figure 5E,F). Both prediction models show
comparable behavior regarding the APE distribution but, significantly, lower APE mag-
nitudes were found from the VCV model. This local APE density is mainly influenced
by the high signal noise produced by the OUR raw data combined with comparably low
biomass concentrations and, therefore, low oxygen demands. Despite the fact that the
OUR data is preprocessed as described, the impact of the low signal-to-noise ratio heavily
reduces the accuracy of both models. Furthermore, this is the leading cause for the de-
scribed differences between MAPE and MdAPE values as the median is not as affected
as the mean is by high APE occurrence, as mentioned. Additionally, a likely explanation
for an increase in scattering residuals might be related to the necessary dilution to stay
within the manufacturer’s specifications and calibration ranges for the Cedex HiRes® cell
density assay.
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Figure 5. (A) Soft-sensor model for VCV prediction with model assessment RMSE and R2. Black dots represent normalized
values, red line describes the found model with prediction confidence α = 0.05. (B) Soft-sensor model for VCD prediction
with model assessment RMSE and R2. Black dots represent normalized values, red line describes the found model with
prediction confidence of α = 0.05. (C) VCV normalized residuals plotted against normalized predicted values with process
time indication. (D) VCD normalized residuals plotted against normalized predicted values with process time indication.
(E) VCV-model-derived absolute percentage errors plotted against normalized predicted VCV values with process time
indication. (F) VCD-model-derived absolute percentage errors plotted against normalized predicted VCD values with
process time indication.
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Even if a high cell concentration in a given sample might decrease the measurement
error, the probability is increased when covering a more characteristic amount of cells
in the analyzed sample because pre-dilution procedures are prone to cause unintended
consequential errors [34,35]. Therefore, we consider the user-dependent and manually
applied dilution step as the root cause for the observed residual increase during the course
of the processes. The second input variable, process time, is further expected to represent
an indirect measure of biomass growth rate.

The estimation functions are listed below:

VCVPredicted,Normalized
= −0.0907 + 0.425·OURNormalized + 0.00194·PT

+(PT− 74.736)·((OURNormalized − 0.207)·0.00571)
(12)

VCDPredicted,Normalized
= −0.0994 + 0.362·OURNormalized + 0.00243·PT

+(PT− 74.736)·((OURNormalized − 0.207)·0.00554)
(13)

3.3. Real-Time Prediction and Quality of Online OUR Monitoring

Using the identified models as a biomass soft sensor under real-time circumstances
was considered as the chosen path of validation in this work. The estimator equations
were implemented in SEEQ to perform online biomass prediction of dynamic state for
the continuous processes (P-15, P-16 and P-17) with unknown cell lines (C-15, C-16 and
C-17) to both models. The processes were executed in the same manner as described
above, hence they are technical replicates, such as the processes P-01–P-14. In order to
remove the signal noise from the calculated OUR, two signal-smoothing algorithms were
applied in real time. As Bassey et al. [36] found the Savitzky–Golay (SG) filter algorithm to
be well suited for gas-sensor-derived signal smoothing, we also applied the SG filter to
remove signal distortions from the OUR signal. In addition, we tested a locally estimated
scatterplot smoothing (LOESS)-based algorithm on the OUR signal to evaluate its influence
on the final prediction quality. Both algorithms represent moving average functions that
investigate a filter time window of 25 min with a permanent output frame of 30 s.

Using this approach, the SG applies a polynomial regression of first order, whereas
the LOESS filter uses the best-fit line, which can either be a linear or a higher polynomial
function. Due to the growth rate of animal cells of about 24 h, we consider the filter time
delay to be negligible. Both soft-sensor models can predict the biomass in terms of VCV
and VCD with good prediction accuracy regardless of whether the real-time OUR smooth-
ing was done with the SG or LOESS algorithm (Figure 6A–D). Nevertheless, referring to
model assessment parameters, the VCV model shows a significantly higher goodness of
fit in each case (Tables 3 and 4). Calculated MAPE values are half the magnitude from
the VCV model (MAPEVCV,LOESS/SG ≈ 14%) compared to VCD-model-derived MAPE
(MAPEVCD,LOESS/SG ≈ 33%). Therefore, the VCV model is leading to predictions that
are more precise on average. Beyond that, the difference between MAPE and MdAPE
values is still noticeable in a comparable period after process start (Figure 6A,B) as the
same root cause of a high signal-to-noise ratio creates a high local APE density. How-
ever, MdAPE values between both models are quite comparable and are in the range of
MdAPEVCD,LOESS/SG ≈ 8% and, for the VCV model, MdAPEVCV,LOESS = 6.6% and
MdAPEVCV,SG = 8.3%. Half of the prediction errors are located above and below these
values and, in reference to the calculated average prediction errors, the VCV model has the
best prediction performance validated on the novel cell lines C-15, 16 and 17.

In contrast to offline-based measurements which usually consists of only one or a
few measurement points per day, the prediction provides a continuous description of
biomass during the processes, filling in the gaps between offline-derived measurements
(Figure 6E,F). These real-time predictions can be further utilized to calculate other mean-
ingful process variables in a soft-sensing manner, such as production or consumption rates
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(see Section 3.5). Additionally, high quality online biomass forecasts enable a verification
of erroneous offline-based readings, revealing possible measurement errors.
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Figure 6. (A) Normalized measured VCV vs. real-time normalized predicted VCV data using the LOESS filter algorithm with
model assessment for all three processes represented by colored dots. (B) Normalized measured VCV vs. real-time normalized
predicted VCV data using the SG filter algorithm with model assessment for all three processes represented by colored dots.
(C) Normalized measured VCD vs. real-time normalized predicted VCD data using the LOESS filter algorithm with model
assessment for all three processes represented by colored dots. (D) Normalized measured VCD vs. real-time normalized
predicted VCD data using the SG filter algorithm with model assessment for all three processes represented by colored dots.
(E) Exemplary normalized predicted VCVLOESS/SG values (orange and gray lines) and actual normalized VCV values from
process P-15 with clone C-15 represented by blue dots. Error bars describe an assumed 11% error for all VCV measurements.
(F) Exemplary normalized predicted VCDLOESS/SG values (orange and gray lines) and actual normalized VCD values from
process P-15 with clone C-15 represented by blue dots. Error bars describe an assumed 10% error for all VCD measurements.
Biomass measures VCV and VCD are normalized to the maximum value in the training data set (P-01-P-14).
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Table 3. Overview of measured VCV and real-time predicted VCV data using SG or LOESS algorithm.

Process R2 RMSE (Normalized) MAPE [%] MdAPE [%]

SG LOESS SG LOESS SG LOESS SG LOESS

P-15 0.999 0.998 0.017 0.015 18.13 18.15 4.93 3.85

P-16 0.974 0.980 0.057 0.052 14.94 14.61 14.35 13.77

P-17 0.995 0.994 0.025 0.025 7.99 8.23 6.61 6.60

Table 4. Overview of measured VCD and real-time predicted VCD data using SG or LOESS algorithm.

Process R2 RMSE (Normalized) MAPE [%] MdAPE [%]

SG LOESS SG LOESS SG LOESS SG LOESS

P-15 0.997 0.995 0.035 0.033 33.09 32.57 9.85 8.29

P-16 0.965 0.971 0.072 0.068 16.75 15.21 19.43 11.16

P-17 0.996 0.995 0.025 0.031 48.81 49.71 6.79 7.99

Since the increase in biomass is always accompanied by a growth in cell number
and cell volume, we consider a description of the biomass solely by cell number in terms
of VCD to be insufficient. VCD is a coarse measure of the viable biomass, because even
small changes in mean cell diameter result in large differences in cell volume [37]. An
analysis of cell size, especially its distribution during fermentation process time, can deliver
valuable information that cannot be seen by only looking at cell numbers. Besides the
fact that trypan blue-based automatic cell counting enables a differentiation in viable and
nonviable cells, numerous publications can be found that highlight the advantages and also
the necessity of cell size in terms of cell volume measurements [37–41]. Mammalian cell
volume differs not only between cell lines but also during an ongoing process, which leads
to changing biomass in terms of volume and cellular mass itself. In addition, the process
mode, growth conditions and other parameters can influence cell size. For example, larger
cells tend to consume more oxygen than smaller cells, and the rapid adaptability of cells to
process conditions such as osmolality, where a rise results in cell size increase, underlines
the advantages of having cell size measured [22]. All factors support our preference for
more accurate correlations for a VCV-based biomass description. Furthermore, it has been
demonstrated that packed cell volume measurements can reach errors below 5%, whereas
standard trypan blue cell counting techniques still struggle with errors up to 15% [42].

3.4. Biomass-Specific Oxygen Demand and Key Metabolism Analysis

The metabolism of CHO cell lines during classical batch and fed-batch cultivation
is highly dynamic, and metabolic steady-state descriptions can be used to analyze the
coherences by mechanistic modeling approaches [43]. These significant metabolic changes
originate from alterations in the dynamic cell environmental media matrix composition,
such as substrate and cofactor consumption, (toxic) metabolite production and shifts
in chemicophysical parameters, such as medium osmolality, buffer capacity and redox
potential [44–47]. Perfusion cell cultivation processes can be used to overcome these media
matrix variations by an optimized constant replacement of conditioned media with fresh
media and by using parameters such as the cell-specific perfusion rate (CSPR). Nevertheless,
the optimization and analysis of CSPR was not the goal of this study.

We analyzed the biomass-specific OUR and metabolism of key substrates and metabo-
lites of tested CHO cell lines in SUB perfusion processes in more detail. As shown pre-
viously [14,48], the volumetric OUR of tested CHO cell lines followed the previously
described cell density kinetics during cell cultivation (Figure 3B). The observed cell density
formation consequently showed differences among each tested CHO cell line, and the
final volumetric OUR of the perfusion processes showed a constant increase over process
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time. At the end of the cultivation, the volumetric OUR showed a broad variation between
all tested CHO cell lines and, for C-05 and C-13, up to more than 100% more than the
respective variance observed for viable cell densities (Figure 3B). The cell-specific OUR
(qOUR), however, showed an initial slight increase followed by highly homogenous qOUR
for all tested clones and plateaued on a stable level of approximately 41.7 amol cell−1 s−1

from day 5 until the end of the perfusion process at day 7 (Figure 3D). The observed level
of qOUR fits well with previously reported qOURs for CHO suspension cells [24,27,48–50].
Plotting the viable cell volume of the process (VCV) vs. qOUR revealed very high qOUR
and, subsequently, a fast decrease of qOUR in the beginning of the perfusion cultivation
where low biomass was available, followed by a stable plateauing of qOUR (Figure 3F).
Both observations, the initial increase in qOUR followed by a stabilization at a lower qOUR
level at the later cell cultivation phases and the higher biomass levels, confirm previously
reported trends for CHO cells in perfusion cultivations [27,51]. The early qOUR peaks
were attributed to an initial metabolic acclimation phase when cells were seeded into an
unconditioned media with high substrate concentrations and the cultivation conditions at
start of cell culturing.

To understand the reason for this shift in early and late qOUR kinetics, we analyzed
the concentration and consumption/production rates of glucose, lactate, glutamine and
ammonia as key substrates in mammalian cell cultures. Significant changes in volumetric
glucose and glutamine substrate availability, as well as lactate and ammonium byproduct
levels, were observed by using the applied perfusion process strategy. Both glucose and
glutamine levels dropped during the course of the perfusion process, with an earlier
decline in glutamine, which may be due to additional abiotic degradation (Figure 7A). Both
byproducts, lactate and ammonium showed an initial increase followed by an intermediate
plateau phase between day 3 and 5 and a final metabolic inverse shift with a decreasing
level of lactate and, subsequently, an increase in ammonium from day 5 until the end of
perfusion fermentation at day 7 (Figure 7A). The analysis of the cell-specific rates of these
substrates and metabolites emphasizes the metabolic shift at day 5 with a stagnation in
low levels of cell-specific glutamine consumption qGln and lactate formation rates qLac
(Figure 7B).

The yield coefficients YLac/Glc and YNH4/Gln are characteristic bioprocess key parame-
ters (KPI) for assessing the metabolic status of cellular systems and the utilized pathways
for energy production. By applying these parameters, we temporally analyzed the yield
coefficient YLac/Glc and YNH4/Gln along the perfusion process time. Through our anal-
ysis, we identified three distinct metabolic phases: (i) from day 0 to day 3, a phase of
high anaerobic lactate production and glutaminolysis-driven ammonium formation with
a clone-dependent YLac/Glc of 1–2 mol/mol and YNH4/Gln of 0.5–3.6 mol/mol, (ii) from
day 3 to day 5, a metabolic transition phase switching to aerobic metabolism and low
glutaminolysis activity and (iii) from day 5 to day 7, an almost complete aerobic phase with
practically no lactate production and clone-dependent increasing glutaminolysis again
(YLac/Glc of 0.03–0.64 mol/mol, YNH4/Gln of 0.7–1.7 mol/mol) (Figure 7C,D).

The yield analysis by YLac/Glc and YNH4/Gln suggests an alternative reason for the
observed metabolic switch rather than substrate limitation since glucose and glutamine are
available in the fermentation media matrix in high amounts during the whole perfusion
process (Figure 7A). The limitation of pyruvate during the perfusion process was identified
as a putative reason for the metabolic switch. The slight increase of cell-specific glucose
consumption qGluc and of the glutaminolysis and ammonium formation qSNH4 from
day 5 onward correlates with the limitation of pyruvate (Figure 8A) and stagnation of
cell-specific pyruvate consumption rate qPyr (Figure 8B). In general, pyruvate is an im-
portant alternative, energy-generating carbon source for fast proliferating mammalian cell
lines and for reducing cell growth-inhibiting ammonium production in cell cultures [52].
Analysis of qPyr vs. the available global pyruvate concentrations in the culture suggests a
concentration-dependent shift of qPyr at levels lower than 2 mM, which correlates with the
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increase of cell-specific ammonium formation with the drop in cell doubling time (data
not shown).

In principle, the accumulations of cytostatic/toxic metabolic byproducts, other than
lactate and ammonium, originating from the amino acid break-down metabolism in CHO
fermentation processes are well characterized triggers which induce decreased biomass
formation and increased cell doubling time [53]. In our study, however, we focused on the
classical cell culture substrates and metabolites yet encouraged the analysis of these amino
acid break-down products in the future to allow for optimized perfusion process designs
with efficient depletion of known and unknown cytostatic/toxic metabolic byproducts.
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Figure 7. Metabolic analysis of the dynamic state of continuous CHO SUB processes. Kinetic of key substrates glucose and
glutamine and metabolites lactate and ammonium concentrations (A,B) cell-specific rates. Time-resolved analysis of the
cell-specific rate-based yield coefficients (C) YLac/Glc and (D) YNH4/Gln. The colored dots represent the tested 14 clones and
the black, blue, red and green lines represent the fit of Gln concentration or cell-specific Gln consumption/production rate
qGln, NH4

+ concentration or cell-specific NH4
+ consumption/production rate qNH4, glucose concentration or cell-specific

glucose consumption rate and lactate concentration or cell-specific lactate consumption/production rate, respectively. The
black, blue, red and green areas highlight the confidence of the fits with α = 0.05. Black arrows and blue dotted lines show
the perfusion rate protocol with respective normalized perfusion rate (in volume media per volume fermenter and day,
vvdn) and timing strategy.
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Figure 8. Real-time prediction of qPyr in dynamic state of continuous CHO SUB processes. (A) Analysis of pyruvate
concentration over perfusion process time. The colored dots represent the tested 14 clones from the training data set and the
black line represents the fit with α = 0.05. (B) qPyr cell-specific consumption/production rates. The black area highlights
the confidence of the fit with = 0.05. (C) Actual vs. predicted plot of a logistic regression model for qPyr for all tested clones
from the training data set C-1 to C-14 (black dots) with regression model prediction (red line) and mean of all tested qPyr
(blue line). (D) Online prediction of qPyr for a model validation perfusion process with C-15 (grey line) with qPyr actuals
(blue dots). Error bars describe an assumed 10% error for actual qPyr values.

Mammalian amino acid metabolism is highly dependent upon the availability of
bioavailable oxygen as an electron acceptor to allow for an indirect regeneration of re-
dox equivalents NAD+ and FAD in the tricarbon cycle (TCA), which are finally needed
for the oxidative phosphorylation and energy production in cells [54]. Since there is no
report that describes the correlation of specific amino acid and key metabolite consump-
tion/production rates qS with qOUR of CHO cell lines in SUB continuous processes, we
aimed to analyze this important investigation in our experimental set-up. Unexpectedly,
cell-specific qGluc showed no correlation to qOUR (R2: 0.007, RMSE: 0.31 pmol cell−1 d−1)
yet the following important metabolic rates of key substrates and metabolites revealed a
sound correlation: qGln (R2: 0.389, RMSE: 0.13 pmol cell−1 d−1), qAla (R2: 0.540, RMSE:
0.06 pmol cell−1 d−1), qPyr (R2: 0.521, RMSE: 0.23 pmol cell−1 d−1), qLac (R2: 0.324, RMSE:
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0.32 pmol cell−1 d−1) and qNH4 (R2: 0.741, RMSE: 0.08 pmol cell−1 d−1) (Figure 9A). In
addition, the cell-specific product formation rate qP revealed no correlation to the cell
biomass-specific OUR (R2: 0.062, RMSE: 4.42 pg cell−1 d−1) (Figure 9B).
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Figure 9. Correlation of (A) cell-specific substrate and metabolite formation/consumption rates and
(B) product formation rate. The colored dots represent the tested 14 clones and for (A) the black,
blue, red, green, violet and brown lines represent the fit of qGluc, qGln, qAla, qPyr, qLac and qNH4
cell-specific consumption/production rates and for (B) the black line represent the fit of qP. The dark
black, blue, red, green, violet and brown areas highlight the confidence of the fits with α= 0.05 and
light-colored areas the respective confidences of the predictions.

3.5. Online Prediction of Cellular Metabolic Rates

As shown in the previous section, the calculations and analyses of biomass-specific
substrate consumption and metabolite production rates, qS, are mandatory to identify
distinct cell metabolic phases, which can be preferably used to optimize perfusion media
and rates for an efficient continuous cultivation of CHO cell lines. Solely monitoring
global substrate and metabolite concentrations is not sufficient to allow for an equivalent
characterization of cell cultivation processes, such as the described CHO perfusion process
in SUBs.
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As a proof of concept, we developed a soft-sensor-based real-time prediction of the cell-
specific pyruvate consumption/production rate qPyr by using available real-time estimates
for qOUR and biomass measures, as described before. The importance of an immediate
estimation of the metabolic pyruvate flux into the cell is justified by its central role in the
direct and indirect control of the cellular energy metabolism. Pyruvate is funneled into the
TCA by the pyruvate dehydrogenase complex and/or by the anaplerotic reaction regulated
by the pyruvate carboxylase [55,56]. Therefore, monitoring coupled with tailored control
of qPyr is generally envisioned to improve the cellular energy state and avoid the lactate
accumulation in cell culture fermentation processes.

qPyr correlated well with discrete cell-specific qOUR values (R2 of 0.521, RMSE of
0.23) by using the discrete qPyr and real-time predicted qOUR data of the 14 different CHO
cell lines and perfusion processes (Figure 9), suggesting the possibility to directly use this
important information on the respiratory metabolism for a soft-sensoring approach for
real-time qPyr prediction. As a proof of concept, a suitable logistic multiregression model
was generated for the generalized, sigmoid qPyr time course by simply using the available
online OUR data and the predicted, SG-smoothed VCD, VCV and cell- and biomass-specific
qOUR values (R2 of 0.8, RMSE of 0.0334 pmol cell−1 d−1) (Figure 8C). The used estimation
functions for qPyr prediction are shown in following Equation (14):

qPyrPredicted = Logist
(
1.046·1012 + 67.365·Logist(OUR)− 0.259

·Logist(VCDPredicted) + 1.87·1014·qOURcellvolumePredicted
−2.092·1012·qOURcellPredicted

) (14)

We validated the prediction estimation model for qPyr by using a validation data
set with CHO clone C-15 and perfusion process P-15 (Table 1). By this, the real-time
prediction and discrete actuals for qPyr showed a technically relevant, good correlation
in this validation data set (Figure 8D). The reason for the observed offset likely originates
from the erroneous discrete qPyr measurement and respective error propagation by the
calculation and/or by the cell-specific metabolic nature, often described for CHO cells
with a high genetic plasticity [57]. The first 24 h of the prediction were not used due to the
high noise in the OUR signal due to reasons described before. In general, more elaborated
non-linear modeling approaches, such as decision trees and artificial neuronal nets, may
also be used in the future for an increased precise estimation of cell-specific rates such as
qPyr. Regardless, using these powerful modeling approaches requires large, annotated
data sets that can be technically realized simply over a longer period of time.

4. Conclusions

In this work, we present, for the first time, an off-gas-based soft sensor for real-time
biomass prediction in SUB continuous processes with CHO cell lines. The 14 different CHO
cell lines that were used to build the soft-sensor models cover a variety of phenotypically
different CHO cell lines. Given the diversity of our training data set, we expect the resulting
models to be applicable to a broad range of CHO cell lines. This application is underlined by
a high prediction accuracy achieved by the models on the bioprocesses of three novel CHO
cell lines which were previously unknown to both models. The detailed analysis of both
the model residuals as well as the absolute percentage errors disclosed some weaknesses
that are primarily process related. The noisy OUR raw signal that was observed during the
onset of all cell cultivation processes is caused by the pH controller response leading to
very high prediction errors for up to 80 h after the processes were started. Optimization of
pH controller settings and strategies or using more basic pH set points could overcome
these technical challenges (data not shown). In addition, a split into different forecast
models where altered pH controller interferences are present could lead to lower prediction
errors. In addition, alternative yet computational and model-calibration-intensive forecast
approaches such as Kalman filtering could significantly increase the prediction quality and
should be considered for further, more elaborated closed-loop variable predictions and
process control strategies [33].
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Our data also demonstrated that higher model accuracy was established when VCV
instead of VCD was used as biomass depiction. This strengthens our strong belief in a
paradigm change regarding biomass description in modern bioprocesses. VCD should
no longer be the leading, or the only, measurement looked at when it comes to biomass
determination. The cell size or volume, its distribution over time and, of course, the VCV
should be used by default to accurately describe the biomass and all derived metabolic
variables, such as mAB, lactate production rate, or glucose/oxygen consumption rates.
Conclusions, based only on cell density measurements, can lead to wrong assumptions,
calculations or other unforeseen misinterpretations, generating a fragmented picture of the
biomass [38,40]. As modern bioprocesses can be highly complex and dynamic, the biomass
and cellular metabolism analysis should be as comprehensive as possible to generate a
comparable and reproducible data basis. Furthermore, the utilization of an off-gas-based
soft sensor is easy to implement in SUB systems as well as in common stainless steel
plants. For this purpose, the installation of any hard-type probes inside the bioreactor is not
necessary and does not increase handling or decrease safety and therefore prevents possible
contamination risks. The fundamental correlation of biomass growth and increasing oxygen
demand can be used, optimized and extended to generate profound real-time knowledge
on diverse bioprocess variables such as the shown biomass and metabolic nutrient rate soft
sensor. Moreover, off-gas analysis can be used to determine the true bioreactor pH without
any sampling or as non-invasive method for online pCO2 monitoring, which underlines
the flexibility and outstanding character of having an off-gas analyzer implemented and
running [58].
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