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Abstract: Many food safety incidents have occurred in the world in the past 20 years, causing major
threats and harm to human life and health. Each country or region has established different food
safety management systems (FSMSs) in response, to increase food safety and to reduce food safety
risks. Hence, it is important to develop an FSMS service platform with convenience, consistency,
effectiveness, scalability, and lightweight computing. The aim of this study is to design and propose
an IOTA Tangle-based intelligent food safety service platform for bubble tea—called IF4BT—which
modularizes and integrates hazard analysis and critical control point (HACCP) principles to increase
data transparency. The deep learning inference engine is based on long short-term memory and
Siamese networks to check and extract significant rare data of high-risk factors, exception factors,
and noises, depending on daily check and audit. IF4BT can ensure the correctness of the information
of food manufacturers, so as to increase food safety and to reduce food safety issues such as allergen
cross-contamination, food expiration, food defense, and food fraud.

Keywords: bubble tea; hazard analysis and critical control points; tangle; deep learning; risk factor

1. Introduction

In the past 20 years, many major food safety incidents have occurred in the world,
e.g., the melamine incident, plasticizer incident, toxic starch incident, toxic soy sauce
incident, gutter oil incident, etc. [1–3]. Food safety incidents can present major threats
to human life and health. Governments and industries of various countries are actively
investing in the field of food safety [4,5]. Each country or region has formulated different
food safety management systems (FSMSs) to increase food safety and reduce food safety
risks [6]. Each national accreditation body (AB) and certification body (CB) issues a
certification after certifying that the production line or the product meets food safety
standards. Manufacturers need to sell goods internationally, so they must have different
food safety certifications. The CB needs to audit production status of the manufacturer
from time to time. In fact, many problems can be solved by the manufacturer’s own
internal audit [5]. However, there is a lack of professional confirmation of each process.
Because it is uncertain whether or not the internal audit information has been tampered
with, a third-party verification agency is still required in order to ensure that all processes
are correct.

The latter must conduct internal and external audits and prepare verification proce-
dures and related documents for different certification units. It takes a lot of time to prepare
many kinds of documents. It is not easy to save the collected data and to find the missing
process. Some unscrupulous manufacturers even have inconsistent documents with the
production line, which may cause food safety issues such as food expiration, food defense,
or food fraud. Therefore, effective tracking and tracing, and verifying the correctness of the
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data—preventing unscrupulous manufacturers from tampering with the content—is an
important issue.

Bubble tea—milk tea with tapioca balls—is a very popular ethnic local and interna-
tional beverage. The ingredients of a cup of bubble tea are tapioca balls, milk, tea, and
sugar. Each of its ingredients may have food safety issues, food defense issues, and food
fraud issues. Hence, to use IT techniques to construct a standard operating procedure
(SOP)-based service platform for food safety is an important issue. Consequently, five
problems must be considered: convenience, consistency, effectiveness, scalability, and
lightweight computing.

(1) Convenience: Convenience is defined as records being quickly and automatically
convertible into officially checkable documents for auditing, applications, or exam-
inations. This can save a lot of labor time and manual input errors. To tackle this
problem, a web-based service platform using Extensible Markup Language (XML)
and an intelligent mapper can effectively interchange document formats. Extensible
Markup Language (XML) is a tag-based language, which can easily migrate, integrate,
and transfer data with other services [7];

(2) Data consistency: Consistency is defined as each user seeing a consistent view of the
data. Data cannot be deliberately modified. To tackle this problem, the blockchain-
based framework is a decentralized architecture. When data are uploaded on the
distributed ledger, it records all collected data, transactions, and documents via a
tamper-resistant mechanism [8]. To tackle this problem, the distributed ledger ensures
that the raw materials, production processes, processing, sales, and audit data in the
food safety supply chain are consistent;

(3) Effectiveness: Effectiveness is defined as the ability of participants to effectively track
and trace goods in the food safety supply chain. Traditional tracking and tracing
of goods require a lot of data to consult. However, the data are often broken, and
the paper data and electronic data are interlaced and coexist, so they are not easy to
acquire. To tackle this problem, transactions are electronically stored in blockchain or
Tangle. Participants can effectively track and trace authorized data and transactions
via authorities [9];

(4) Scalability: Scalability is defined as a manufacturer being able to use low-cost com-
puter equipment or a low-power IoT device to create a new node of the blockchain,
reducing the manufacturer’s construction cost. To tackle this problem, devices can
participate in the editing of the distributed ledger. IOTA Tangle is helpful for data
transmission and connection by multiple IoT devices [9]. Allowing devices to di-
rectly participate in data and message transmission can reduce the chance of data
tampering [10];

(5) Lightweight computing. Lightweight computing is defined as a low-power device
being able to quickly analyze and confirm exceptional data or conditions. To tackle
this problem, a participant uses lightweight equipment—e.g., Raspberry Pi—to auto-
matically set multiple triggers, thresholds, and rules by the server for detecting and
computing exceptions of ingredients and foods [11].

Regarding the aforementioned five design issues, this study designs and proposes an
IOTA Tangle-based intelligent food safety service platform for bubble tea—called IF4BT—
which modularizes and integrates hazard analysis and critical control point (HACCP)
principles to increase data transparency. IF4BT is composed of a risk management service
platform and a cloud-based deep learning service platform; it can check daily transactions
and exceptions. Users can easily trace and track goods. IF4BT can ensure the correctness of
the information available to food manufacturers, so as to increase food safety and reduce
food safety issues, such as allergen cross-contamination, food expiration, food defense, and
food fraud.

The remainder of this paper is organized as follows: Section 2 presents the literature
review. Section 3 describes the research methodology. Section 4 contains the results and
discussion. Finally, Section 5 presents the conclusion.
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2. Literature Review

In recent years, people have experienced various food safety incidents, and the re-
quirements for food safety have become greater and greater. It is important to prevent
food safety problems before they happen. Hence, many researchers have devoted efforts to
designing and developing various information technology (IT)-based applications to help,
check, and reduce food safety risks, which can be roughly divided into the following four
categories:

(1) The Internet of Things (IoT)-based Applications:

To deploy various IoT devices—such as RFID, environmental sensors, or GPS to
monitor and control food safety risks in the food safety supply chain—Raju et al. [12]
proposed near-field and ultrahigh-frequency (UHF) wireless passive sensors for monitoring
of food quality indices and food spoilage indicators. Zheng et al. proposed a meat food
traceability system based on RFID technology to achieve full process supervision on a food
supply chain; the authors built a fault-tolerant RFID mechanism to ensure the practicability
of the system [13]. Prajwal et al. designed a device to check the quality of food, using
pH sensors, gas sensors, temperature sensors, etc.; this helped them to identify food
conditions, preventing the consumption of rotten food [11]. Pal et al. proposed an IoT-
based sensing and communications infrastructure for the fresh food supply chain to help
reduce food waste; it efficiently improved transportation and distribution, and quickly
removed contaminated or spoiled products from the fresh food supply chain [14].

(2) Informational assistance:

To assist manufacturers in inspections and audits during production processes via
hazard analysis and critical control point (HACCP)-based food safety standards, Dusenko
et al. proposed a system to ensure the safety of food services based on the HACCP method.
The proposed system uses digital technology to monitor products and processes during
manufacturing, storage, transportation, sales, and disposal [15]. Jing discussed applications
of different links in the grain storage and transportation process; the author proposed a
food storage and transportation safety information management platform to enhance the
informatization process of food enterprises [16]. Gallo et al. proposed a traceability support
system to control safety and sustainability indicators in food distribution, aiding practi-
tioners in the monitoring of unsupervised operations throughout the supply chain [17].
Todorović et al. proposed the use of augmented reality to provide relevant information
on food production and packaging systems. the authors tried to apply mobile augmented
reality in the food market. This can help consumers to obtain information on goods quickly
and in a user-friendly manner [18].

(3) To build a blockchain:

To use the decentralized, tamperproof, trackable, and traceable characteristics of
the blockchain, all data are stored in the blockchain to ensure that the data will not be
arbitrarily tampered with. Yu et al. proposed an architecture based on blockchains and
RFID. By scanning the traceable QR code of the foot ring with a smart device, all the data
of each process in the chicken life cycle can be obtained [19]. Tao et al. proposed a food
safety supervision system based on a hierarchical multidomain blockchain network and a
secondary check mechanism. The proposed system can support the timely correction and
replacement of malicious nodes through the joint governance of regional nodes, auxiliary
verification of supervisory nodes, and arbitration of higher level regions [20]. Tian proposed
a supply chain traceability system for food safety based on HACCP, blockchain, and
Internet of Things; the information collection stage and food transaction stage are the
purpose of the proposed system. All supply chain members are open, transparent, neutral,
reliable, and secure [21].

(4) To design a data analysis technology:

To design a technology to analyze data in the supply chain and predict possible
food safety incidents, Wahyuni et al. used a Bayesian network to measure and analyze
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food safety risks. The proposed method was used to identify risk events in a case study,
determine their probability, develop a Bayesian network structure, calculate condition
probability tables, and analyze of food safety [22]. Dong et al. proposed a hazard analysis
and critical control point (HACCP)-based system combined with fault tree analysis (FTA)
to build a traceability model for the production and sales processes of vegetables. The
proposed system can ensure food safety and hygiene by controlling key factors in the
supply chain [23]. Hebbar used IoT technology to detect the gas released by food, and used
deep learning to estimate the probability of food spoilage; if an abnormality was found, an
alarm was issued [24].

Of the above-mentioned related studies, most discussed food safety- and risk-related
topics using information technology. Table 1 shows a summary of the findings of the
literature review.

Table 1. The summary of the findings of the literature review.

Technology Convenience Data Consistency Effectiveness Scalability Lightweight Computing

IoT V [11–14] V [11–14] V [12,14]

Informational Assistance V [15–18]

Blockchain V [19–21] V [19–21]

Data Analysis V [22–24] V [24]

3. Methods

This study designs and proposes an IOTA Tangle-based intelligent food safety service
platform for bubble tea, which is called IF4BT. IF4BT modules and divides hazard analysis
and critical control points (HACCP), and increases data transparency [25]. IF4BT aims to
control food risk, including four aspects:

(1) Food safety: To list all hazards in the processes, including acceptance testing of raw
materials, processing, manufacturing, packaging, storage, and transportation. This
ensures food hygiene and food safety, which can reduce the pathogenic bacteria and
prevent food poisoning;

(2) Allergens: In addition to the outer packaging being clearly marked, allergens must
be controlled, and sources of allergens must be prevented from cross-contaminating
the product;

(3) Food defense: Prevent food from being physically, chemically, biologically, or radioac-
tively contaminated in a deliberate manner;

(4) Food fraud: Manufacturers are prohibited from making fakes, counterfeiting, dilut-
ing, false labeling, using raw materials from unknown sources, or making false or
misleading claims about products.

According to the above-mentioned purpose and design concept, the scenario of IF4BT
is shown in Figures 1 and 2: (1) the ingredients are tapioca balls, milk, tea, and sugar;
(2) the service platform is based on IOTA Tangle; (3) the food safety management system
is based on hazard analysis and critical control point (HACCP) principles; and (4) reports
are in the form of audit forms, warning messages, analysis reports, and XML reports.
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3.1. Participants

The participants in the HACCP-based Tangle system are consumers, manufacturers,
accreditation bodies, and certification bodies.

3.1.1. Consumer

Consumers use QR codes to inquire about the purchased products, from raw materials
to product sales across the entire food supply chain for the processing and production
of the relevant details of the products. Consumers can inquire about product-related
information and passed certification marks on the risk management service platform. The
data and records of Tangle should comply with the General Data Protection Regulation
(GDPR) principles and related Computer-Processed Personal Data Protection Law [26].
If a problematic product is purchased, it can also help consumers report to it to the
manufacturer, and quickly notify consumers who have purchased the same batch of
products. This can effectively accelerate the entire response to the food safety incident.
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3.1.2. Manufacturer

Manufacturers upload relevant documents such as product information, produc-
tion and sales history, inspection reports, etc., to Tangle. IOTA Tangle distributes and
synchronizes ledgers of data in secure, distributed, decentralized, and permissionless
environments [9]. After data, transactions, and documents have been uploaded to the
IF4BT, they cannot be tampered with. Hence, this information on data, transactions and
documents is helpful for audit and improvement processes. When performing an internal
audit, it can be supplemented with other equipment information to perform the audit based
on HACCP. Furthermore, it allows third-party auditors to quickly understand the on-site
situation, and the certification body can continue to understand whether the company’s
audit behavior is correct. In this way, its production process can be confirmed, as can its
coaching improvement status.

3.1.3. Accreditation Body and Certification Body

The accreditation body and certification body mainly store the third-party audit status,
missing content, missing correction status, and actual factory visits of the manufacturer to
Tangle. In addition, allowing the certification body to objectively understand the internal
audit situation of the manufacturer requires (1) reconfirming the internal audit of the
manufacturer based on the collected data; (2) allowing the certification body to objectively
observe production status; (3) pre-preparation before the actual visit to the factory; and
(4) helping auditors to perform key audits in accordance with the established important
audit procedures.

Therefore, in order to enable effective communication and sharing of information, rel-
evant information on manufacturers is uploaded to the main chain of the risk management
service platform for all relevant parties to view relevant reports.

3.2. Risk Management Service Platform

The risk management service platform is responsible for constructing and maintaining
subchains, allowing users to upload raw data, documents, and reports. After transactions
are uploaded to the subchain, data of transactions are normalized by the data normalization
unit and evaluated through the constructed rules. If an exception occurs, warning messages
will be issued. All uploaded data are formatted and normalized by the data normalization
unit, providing it to the deep-learning-oriented food safety, risk, reasoning, and analysis
model for reasoning out rules. The working flow of the data normalization unit is shown
in Figure 3. After data being collected from the supply chain, they are manipulated by
the normalization phase and Shapes Constraint Language (SHACL) validation. Data are
tagged by XML tags. These data are changed to resource description framework (RDF)
serialization formats, which can be stored in Tangle using the same data format.
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Tangle uses decentralized application (DApp) to ensure that the decentralization of
the data provided by the participants cannot be controlled or tampered with by a partner.
Therefore, Tangle can be used to improve the speed and reliability of tracking and tracing
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when food safety incidents occur, and to assist in the construction of inference models based
on collected data. The backbone of IF4BT is based on IOTA Tangle—a distributed ledger
based on Tangle, which is illustrated in Figure 4. IOTA Tangle is based on a directed acyclic
graph (DAG) [9,27]. IOTA Tangle is an improved technology based on blockchain; it is also
a distribute-and-synchronize ledger platform that uses blocks and connects the blocks in
series [11]. IOTA improves the transaction speed and power consumption; hence, IOTA
Tangle is helpful for data transmission and connection by multiple IoT devices [28–30].
Buffered blocks can be quickly proofed and added to Tangle [31,32]. Furthermore, the
unspent transaction output (UTXO) model is responsible for making transactions with the
accounting balance, where the indicated total inputs are equal to the total outputs and total
unspent outputs. The unspent transaction output model is illustrated in Figure 5. UTXO
can prevent transaction conflicts, making transactions more effectively.

Processes 2021, 9, 1937 7 of 19 
 

 

ner. Therefore, Tangle can be used to improve the speed and reliability of tracking and 
tracing when food safety incidents occur, and to assist in the construction of inference 
models based on collected data. The backbone of IF4BT is based on IOTA Tangle—a dis-
tributed ledger based on Tangle, which is illustrated in Figure 4. IOTA Tangle is based 
on a directed acyclic graph (DAG) [9,27]. IOTA Tangle is an improved technology based 
on blockchain; it is also a distribute-and-synchronize ledger platform that uses blocks 
and connects the blocks in series [11]. IOTA improves the transaction speed and power 
consumption; hence, IOTA Tangle is helpful for data transmission and connection by 
multiple IoT devices [28–30]. Buffered blocks can be quickly proofed and added to Tan-
gle [31,32]. Furthermore, the unspent transaction output (UTXO) model is responsible 
for making transactions with the accounting balance, where the indicated total inputs 
are equal to the total outputs and total unspent outputs. The unspent transaction output 
model is illustrated in Figure 5. UTXO can prevent transaction conflicts, making transac-
tions more effectively. 

Traditional Blockchain Tangle
Confirmed Blockchain Buffered Blocks

One Block Multiple Blocks

Confirmed Tangle Buffered Blocks

 
Figure 4. The difference between a traditional blockchain and Tangle. 

Input

Output

Unspent Output

Input

Output

Unspent Output

Input

Output

Unspent Output

Input

Output

Unspent Output

Self 

 
Figure 5. The unspent transaction output model. 

3.3. Cloud-Based Deep Learning Service Platform 
A cloud-based deep learning service platform is responsible for identifying the in-

fluential factors on food safety and risk management. The inference engine is called the 
deep-learning-oriented food safety, risk, reasoning, and analysis model (DORAM), 
which is composed of a heterogeneous data integration unit, a weight-added 
class-imbalance learning unit, and a deep learning training unit, and is used to identify 
significant rare data. Significant rare data are defined as rarely occurring, and being a 
serious matter once they do. Figure 6 illustrates the working flow of the 
deep-learning-oriented food safety, risk, reasoning, and analysis model.  

Figure 4. The difference between a traditional blockchain and Tangle.

Processes 2021, 9, 1937 7 of 19 
 

 

ner. Therefore, Tangle can be used to improve the speed and reliability of tracking and 
tracing when food safety incidents occur, and to assist in the construction of inference 
models based on collected data. The backbone of IF4BT is based on IOTA Tangle—a dis-
tributed ledger based on Tangle, which is illustrated in Figure 4. IOTA Tangle is based 
on a directed acyclic graph (DAG) [9,27]. IOTA Tangle is an improved technology based 
on blockchain; it is also a distribute-and-synchronize ledger platform that uses blocks 
and connects the blocks in series [11]. IOTA improves the transaction speed and power 
consumption; hence, IOTA Tangle is helpful for data transmission and connection by 
multiple IoT devices [28–30]. Buffered blocks can be quickly proofed and added to Tan-
gle [31,32]. Furthermore, the unspent transaction output (UTXO) model is responsible 
for making transactions with the accounting balance, where the indicated total inputs 
are equal to the total outputs and total unspent outputs. The unspent transaction output 
model is illustrated in Figure 5. UTXO can prevent transaction conflicts, making transac-
tions more effectively. 

Traditional Blockchain Tangle
Confirmed Blockchain Buffered Blocks

One Block Multiple Blocks

Confirmed Tangle Buffered Blocks

 
Figure 4. The difference between a traditional blockchain and Tangle. 

Input

Output

Unspent Output

Input

Output

Unspent Output

Input

Output

Unspent Output

Input

Output

Unspent Output

Self 

 
Figure 5. The unspent transaction output model. 

3.3. Cloud-Based Deep Learning Service Platform 
A cloud-based deep learning service platform is responsible for identifying the in-

fluential factors on food safety and risk management. The inference engine is called the 
deep-learning-oriented food safety, risk, reasoning, and analysis model (DORAM), 
which is composed of a heterogeneous data integration unit, a weight-added 
class-imbalance learning unit, and a deep learning training unit, and is used to identify 
significant rare data. Significant rare data are defined as rarely occurring, and being a 
serious matter once they do. Figure 6 illustrates the working flow of the 
deep-learning-oriented food safety, risk, reasoning, and analysis model.  

Figure 5. The unspent transaction output model.

3.3. Cloud-Based Deep Learning Service Platform

A cloud-based deep learning service platform is responsible for identifying the in-
fluential factors on food safety and risk management. The inference engine is called the
deep-learning-oriented food safety, risk, reasoning, and analysis model (DORAM), which
is composed of a heterogeneous data integration unit, a weight-added class-imbalance
learning unit, and a deep learning training unit, and is used to identify significant rare data.
Significant rare data are defined as rarely occurring, and being a serious matter once they
do. Figure 6 illustrates the working flow of the deep-learning-oriented food safety, risk,
reasoning, and analysis model.
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Figure 6. The working flow of the deep-learning-oriented food safety, risk, reasoning, and analysis model. 

3.3.1. Heterogeneous Data Integration Unit 
The heterogeneous data integration unit is responsible for data normalization and 

integration [33]. Figure 7 illustrates a detailed flowchart of the heterogeneous data inte-
gration unit. The data formats generated by each platform are different from the table 
defined in each database. If the raw data are not filtered and formatted, the cost of sub-
sequent operations will be greatly increased in data allocation, formatting, and acquisi-
tion. Data are tagged as three different types, including real-time data, audit data, and 
law data. After tagging, data are packaged and then delivered to subchains and the 
weight-added class-imbalance learning unit. 
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3.3.2. Weight-Added Class-Imbalance Learning Unit 
The weight-added class-imbalance learning unit is responsible for observing and 

extracting the significant rare data of high risk. The main purpose of this unit is to estab-
lish hypotheses for observing and filtering significant rare data via automatic neighbor-
hood size determination–synthetic minority oversampling technique (AND–SMOTE), 
edited nearest neighbors (ENN), agglomerative hierarchical clustering (AHC), ordering 
points to identify the clustering structure (OPTICS), and affinity propagation (AP). The 
significant rare data are not produced easily, but have a high effect on the food safety. 
When a manufacturer performs production-related activities, they follow standard pro-
cedures. IF4BT monitors exceptional events, and uses the weight-added mode to accu-
rately analyze the occurrence of food safety risk factors. Therefore, this study proposes a 
weight-added class-imbalance learning unit to solve this problem. The original data use 
AND–SMOTE to generate new data points, strengthening the weight value of all data 
for analysis, such that the information will not be ignored because some data are too 
small [34]. After generating new relevant data points, the weight values of all data are 
readjusted, using feature extraction algorithms to reduce the amount of data that need to 
be calculated and to maintain the original appearance of the data [35]. Figure 8 illus-
trates the flowchart of the weight-added class-imbalance learning unit, including the 
oversampling phase, the downsampling phase, and the create hypothesis phase.  

Figure 6. The working flow of the deep-learning-oriented food safety, risk, reasoning, and analysis model.

3.3.1. Heterogeneous Data Integration Unit

The heterogeneous data integration unit is responsible for data normalization and
integration [33]. Figure 7 illustrates a detailed flowchart of the heterogeneous data integra-
tion unit. The data formats generated by each platform are different from the table defined
in each database. If the raw data are not filtered and formatted, the cost of subsequent
operations will be greatly increased in data allocation, formatting, and acquisition. Data
are tagged as three different types, including real-time data, audit data, and law data.
After tagging, data are packaged and then delivered to subchains and the weight-added
class-imbalance learning unit.
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3.3.2. Weight-Added Class-Imbalance Learning Unit

The weight-added class-imbalance learning unit is responsible for observing and
extracting the significant rare data of high risk. The main purpose of this unit is to establish
hypotheses for observing and filtering significant rare data via automatic neighborhood size
determination–synthetic minority oversampling technique (AND–SMOTE), edited nearest
neighbors (ENN), agglomerative hierarchical clustering (AHC), ordering points to identify
the clustering structure (OPTICS), and affinity propagation (AP). The significant rare data
are not produced easily, but have a high effect on the food safety. When a manufacturer
performs production-related activities, they follow standard procedures. IF4BT monitors
exceptional events, and uses the weight-added mode to accurately analyze the occurrence
of food safety risk factors. Therefore, this study proposes a weight-added class-imbalance
learning unit to solve this problem. The original data use AND–SMOTE to generate
new data points, strengthening the weight value of all data for analysis, such that the
information will not be ignored because some data are too small [34]. After generating new
relevant data points, the weight values of all data are readjusted, using feature extraction
algorithms to reduce the amount of data that need to be calculated and to maintain the
original appearance of the data [35]. Figure 8 illustrates the flowchart of the weight-added
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class-imbalance learning unit, including the oversampling phase, the downsampling phase,
and the create hypothesis phase.
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(1) Oversampling phase

In the oversampling phase—although the data have first been processed by the hetero-
geneous data integration unit—in order to increase effects of the significant rare data, the
AND–SMOTE algorithm is responsible for increasing the balance and weight of significant
rare data. The AND–SMOTE algorithm is composed of the automatic neighborhood size
determination (AND) and the synthetic minority oversampling technique (SMOTE). The
AND uses characteristic values to divide data into appropriate adjacent area sizes, as seen
in Equations (1)–(3):

regionik =
m
∩

j=1

[
min

(
Oij , Nkj

)
, max

(
Oij , Nkj

)]
(1)

Unionik =
k
∪

j=1
regionik (2)

labelik = (ŷ1 , ŷ2 , · · · , ŷm )T , i f
{

ŷk = Positive , i f x ∈ Unionik
ŷk = Negative , else

(3)

where i and j are counters, m is the number of samples, k is the neighborhood size, and T is
number of minority class samples.

After determining the neighborhood size k for SMOTE, xref is a randomly selected
object from the minority neighborhood of x by AND. The magnification α is a random
variable between 0 and 1, generated from the neighbor xnew randomly selected from the
overall data object. Equation (4) is used to determine the xnew. Equation (5) is used to
produce a new dataset S to increase the weighting of the original x.

xnew = x +
(

xre f − x
)
× α (4)

S = S ∪ {xnew} (5)

(2) Downsampling phase

This phase uses the edited nearest neighbors (ENN) algorithm to clean the database
by removing samples close to the decision boundary, based on the heterogeneous value
difference metric (HVDM) [36,37]. HVDM considers the similarity of each value to calculate
the distances between these values. The ENN algorithm weighs the weight of neighboring
points based on the distance between each point and target point, Sq. The weight value is
calculated by the ENN algorithm, as described in Equation (6).

h
(
Sq
)
= arg max

c∈C

k

∑
i=1

1

d
(
Sq, Ŝi

)2 δ
(
c, f
(
Ŝi
))

(6)
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C represents 1 to k datasets with Sq. f (x) is a parameter depending on the x type. Ŝ is
the closest k dataset with Sq, and the distance function d calculates its similarity. δ(a, b) is a
parameter depending on a and b; if a is equal to b, δ(a, b) = 1; otherwise δ(a, b) = 0.

(3) Create hypothesis phase

This phase is responsible for identifying the high-effect significant rare data via a
constructed hypothesis, avoiding the wrong results. Hence, this phase is composed of three
algorithms: agglomerative hierarchical clustering (AHC), ordering points to identify the
clustering structure (OPTICS), and affinity propagation (AP).

Agglomerative hierarchical clustering (AHC) is used to group objects in clusters based
on their similarity [38]. Through repeated iterative evolutions, all data are aggregated and
classified according to the weights of each layer and, finally, a tree structure is produced.
This study used the minimum variance method and Ward’s method to construct the
agglomerative hierarchical clustering, as shown in Formula (7). The data form clusters,
which combine according to their total variance. Ward’s method merges the data with the
smallest differences in total variance.

AHCA,B = nA‖xA −
=
x‖

2
+ nB‖xB −

=
x‖

2
(7)

Ordering points to identify the clustering structure (OPTICS) is an algorithm for
finding density-based clusters in spatial data [39]. The OPTICS algorithm needs to define
two parameters: ε and MinPts. ε is the maximum distance (radius) centered on this point,
while MinPts is the minimum point within the range that needs to be included. ε and
MinPts define the core point p, as shown in Equation (8):

Nε(p) ≥ MinPts (8)

To calculate the distance from p to each MinPtsTH , and to calculate the reachability—
the distance that can reach p from another point o—the expressions of core distance and
reachability distance are shown in Equations (9) and (10), respectively.

coreDistε,MinPts(p) =
{

UNDEFINED , i f |Nε(p)| < MinPts
MinPtsTH distance to Nε(p) , othrise

(9)

reachDistε,MinPts(o, p) =
{

UNDEFINED , i f |Nε(p)| < MinPts
max(coreDistε,MinPts(p), dist(p, o)), othrise

(10)

According to the constant iteration of the above formula, each o point is divided
into the group with the most similar p points. The algorithm continuously calculates and
divides the weight value of each candidate p point to each remaining o point, outputting
the result when there is no independent or unclassified o point in the space. The OPTICS
algorithm does not need to specify the number of clusters in advance; it is a clustering
algorithm divided by data density, so it can find highly unique cluster centers that are
suitable for constructing hypotheses.

The affinity propagation (AP) algorithm uses the similarity and attractiveness of each
point to group data [40]. The best clustering result is based on multiple iterations and
weight correction. The calculation process is to set all sample points as the center point
of the candidate group, in order to find the exemplar point that best represents the center
of the group, and to establish the similarity between all points. Equation (11) describes
the similarity:

s(i, k) = −||xi − xk||2 (11)
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After the similarity is calculated, the iterative method is used to continuously adjust
the information on the degree of attraction between the sample points—responsibility and
availability—as shown in Formulae (12) and (13).

r(i, k)← s(i, k)−max
k′ 6=k

{
a
(
i, k′
)
+ s
(
i, k′
)}

(12)

a(i, k)← min
(

0, r(k, k) + ∑i/∈{i,k}max(0, r
(
i′, k
)
)
)

for i 6= k and a(k, k)←∑i′/∈k max(0, r
(
i′, k
)
) (13)

where r() is responsibility and a() is availability. Continuously correcting the r(i,k) and a(i,k)
and the position of the group center, until all of the data stop changing, the final group
center position can be found.

3.3.3. Deep Learning Training Unit

The deep learning training unit is based on long short-term memory mechanisms, and
is responsible for observing the hypotheses of the reasoned effect factors and significant rare
data. A traditional artificial neural network can manipulate the data at single point in time.
The long short-term memory combines the data of past events in order to comprehensively
consider the correlation between time and data. Using the Siamese network, the past
section time data and the new section time data can be converted into comparable values
in order to further understand whether the production situation has changed. Hence, the
key advantage of the deep learning training unit is that it does not use data at a single
point in time as the basis for judgment, but combines historical data to analyze new event
conditions and understand the current status by comparing the data of the period of time.
Figure 9 illustrates a detailed flowchart of the deep learning training unit.

Long short-term memory networks are used to classify, process, and make predictions
based on time-series data [41]; they can handle the unknown relationship between impor-
tant events in a time series, and work via multiple cells, each with an input gate and an
output gate. Hence, this study developed them to manipulate the significant rare data and
effects. Figure 10 illustrates the working flow of the long short-term memory network.
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(1) The first step is to decide whether the information needs to be forgotten. This decision
is determined by σ—the forget gate—as shown in Equation (14). The value of σ
between the previous output and the current input will be between 0 and 1. If ft is 1,
it means that the memory is completely retained; if ft is 0, it means that the memory is
completely forgotten;
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ft = σ
(

W f ·[ht−1, xt] + b f

)
(14)

(2) Data will be recorded and updated by the value of σ between 0 and 1 from the input
gate. If it is 1, it means complete replacement; if it is 0, it means no replacement is
allowed. These processes are shown in Equations (15) and (16). After determining it,
C̃t is based on tanh() to create a new candidate value and to update the cell state;

it = σ(Wi·[ht−1, xt] + bi) (15)

C̃t = tanh(WC·[ht−1, xt] + bC) (16)

(3) Ct is a new state that combines Ct−1 and C̃t, as described in Equation (17). ft is used
to determine the influence of previous memories from the forget gate, as well as to
determine the current state of influence from the input gate;

Ct = ft ∗ Ct−1 + it ∗ C̃t (17)

(4) Finally, the hypothesis value h(t) is used to evaluate whether the significant rare data are
memorized or forgotten. The detailed formulae are described in Equations (18) and (19):

ot = σ(Wo·[ht−1, xt] + bo) (18)

ht = ot ∗ tanh(Ct) (19)

After constructing the long short-term memory network, this study used a Siamese
network to evaluate the status and to check the consistency of auditing and HACCP [42,43].
A schematic of the Siamese network is shown in Figure 11.
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Figure 11. Siamese network used to evaluate the results.

After factors are calculated via the Siamese network formed by the long short-term
memory model, the fully connected layer evaluates food safety factors, allergen factors,
food defense factors, and food fraud factors. Figure 12 illustrates the fully connected layer
used to evaluate the scenario of food safety. Figure 13 illustrates each node of the fully
connected layer in detail.

The function of the fully connected layer is to multiply the value of all connected
upper-layer nodes by the weight of their edge, then combine all of the products and bias
to obtain the value of the node [44]. Finally, the result of the tanh function, with a value
between 1 and −1, is output, as shown in Equation (20).
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Output = tanh
(
∑(Xn ∗Wn) + bias

)
(20)

Hence, this study designed an inference engine to collect and classify relevant data
using heterogeneous data integration units. The significant rare data balance unit is used to
find important significant rare data. The deep learning training unit is used to extract the
significant rare data and to generate a deep learning model that identifies factors related to
food safety risks

4. Results and Discussion

This section presents the IOTA Tangle-based intelligent food safety service platform
for bubble tea, including the significant rare data and system interfaces. The current status
of each batch number can be seen in the system, and the boxes show the current status
of the Tangle system. Figure 14 illustrates the states of Tangle. The green box means that
the data are uploaded to Tangle, the orange box means that the data are missing, and the
gray box means that is the data are scheduled for production jobs. Each circle represents
an HACCP audit point. Green indicates processes that have been completed and passed
the CCP, blue indicates current working processes, and gray indicates waiting processes.
Figure 15 illustrates the detailed hazard analysis and critical control point of the tea. The
production CCPs is checked and recorded. Table 2 shows an example of the HACCP for
bubble tea ingredients.
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Figure 15. The system implementation of the HACCP audit.

IF4BT observes and extracts significant rare data that are high risk via the deep
learning inference engine. Figure 16 illustrates the significant rare data of high risk. When
a rare factor is found, IF4BT informs the manager. Although this point is not included in
the CCP, it should be considered a factor of the CCP.
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Table 2. An example of the HACCP for bubble tea ingredients.

Ingredient Steps Hazard Cause/Source Control Measure

Tea [45]
Cultivation Biological Disease and insect damage;

infections GLOBAL G.A.P.

CTC and Google Shifter Physical Metallic contamination Magnetic arrestor is required

Milk [46] Pasteurization Biological Incorrect temperature or time
range in this step

Using thermometer; stainless
steel dryer.

Sugar [47]
Extraction Chemical Residual disinfectant and

antifoam to the next stage. Chemical analysis via GC

Crystallization and
Centrifugation Chemical Heavy metal contamination Chemical analysis via GC

Drying and Cooling Chemical Heavy metal contamination Chemical analysis via GC

Tapioca balls [48] Drying Biological
Insufficient drying leading to

the development of
microorganisms.

Using thermometer; stainless
steel dryer.

Figure 17 illustrate the system interface of each CCP. Each CCP is listed by the batch
number. The green cycle is the process is completed and passed the CCP. The blue cycle is
the current working process. The gray process is the waiting process. If the internal check
is finished, the status, the system time and the signature are recorded. Figure 18 illustrates
a detailed report of a CCP. If the manager wants to know the detailed information on each
check point, they can click the check point to receive it. This will show who performed the
check, the detailed time stamp of the check, and the signature of the checker. Finally, the
result of the check will be displayed.
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5. Conclusions

This study presents an IOTA Tangle-based intelligent food safety service platform
for bubble tea (IF4BT), which modularizes and integrates hazard analysis and critical
control point (HACCP) principles to increase data transparency. The inference engine is
based on a deep learning mechanism composed of long short-term memory, a Siamese
network, and a fully connected layer. IF4BT can enable inspectors to quickly carry out
daily inspections in accordance with the HACCP procedures. All data are stored in Tangle
for fast tracking and tracing. Five problems are considered and overcome: convenience,
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consistency, effectiveness, scalability, and lightweight computing—(1) IF4BT uses a web-
based service platform to overcome the problem of convenience; (2) IF4BT uses distributed
ledger techniques to overcome the problem of data consistency; (3) IF4BT uses IOTA
Tangle to overcome the problems of effectiveness and scalability; (4) IF4BT uses lightweight
equipment (a Raspberry Pi) to automatically set reasoned rules via the cloud-based deep
learning service platform to overcome the problem of lightweight computing. Hence, the
four contributions of this study:

(1) To develop a verification unit for food safety risk factors. IF4BT is responsible for
collecting the manufacturer’s usual production information and internal and external
audit information in order to analyze the risk factors.;

(2) To construct an HACCP-based food safety management system. It has highly flexible
for ISO 22000, FSSC 22000, SQF, and BRCGS;

(3) To design a deep learning inference engine. The inference engine is responsible for
identifying the significant rare data of the risk factors for food safety;

(4) To maintain data consistency and transparency. Using the tamperproof mechanism of
the IOTA Tangle platform, the internal inspection data are input to the food safety
supply chain—including raw materials, production processes, processing, sales, and
audit data—on a daily basis in order to ensure the correctness of the information of
the food manufacturer. Each check is an audit to increase food safety and reduce food
safety issues such as food expiration, food defense, and food fraud.

Three areas of study are proposed for future researchers: (1) to design and to develop
a knowledge base—this increases the HACCP domain knowhow of other products, and
can improve the flexibility of the proposed intelligent food safety service platform; (2) to
increase other food safety certifications—this increases the ability of data compatibility;
and (3) to integrate with the business flow, logistics flow, information flow, and money flow
in a service platform. Finally, IF4BT can be a reference model for researchers and engineers.
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