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Abstract: The process of upsetting, with rotating dies, is used to reduce the force required to deform
the workpiece and to receive more homogeneous deformation compared to the same process without
the rotational motion of the dies. The upper bound method is an efficient tool for a quick estimate
of process parameters. The accuracy of upper bound solutions depends on the chosen class of
kinematically admissible velocity fields. The present paper provides an efficient method for choosing
kinematically admissible velocity fields that satisfy some stress boundary conditions if the associated
flow rule is considered. The method applies to the upsetting of cylinders. It is expected that it
leads to accurate solutions if friction is high enough. Besides, the kinematically admissible velocity
field accounts for a rigid region near the axis of symmetry. Such a region inevitably occurs in exact
solutions because the friction stress must vanish at the axis of symmetry. The final expression for the
upper bound, on a combination of the force and torque, involves two arbitrary parameters. These
parameters are determined using the upper bound theorem. An example is provided to illustrate
the method.

Keywords: upsetting; rotating dies; upper bound; rigid region; singularity

1. Introduction

The cylinder compression test is used for determining the flow stress of materials
and friction between the tool and deforming material (for example, [1]). Teflon films
significantly reduce friction such that the deformation is almost homogeneous [1]. Another
method that allows for producing nearly uniform cylinder upsetting is Rastegaev’s test [2].
However, in most cases, friction significantly affects the deformation process, including
the force required to deform a cylinder and its lateral shape. There is a vast amount of
literature on studying barreling during cylinder upsetting [3–7]. Different lubricants are
usually used to study the effect of frictional conditions on barreling [8]. However, one
can change the magnitude of the friction stress in the radial direction by using upsetting
between rotating dies. The rotation of dies also reduces the force required to deform the
specimen, which is of practical importance [9,10].

The upper bound method is a convenient and reliable tool for evaluating the load
required to deform the workpiece in metal forming processes. The method is based on the
upper bound theorem [11]. Several recent applications of the upper bound method to metal
forming processes are available in [12–15]. In particular, numerous applications of this
method to the cylinder compression test have appeared in the literature (for example, [8,16]).
Paper [8] has presented an experimental/theoretical study on the effect of friction between
the workpiece and tool on barreling of solid aluminum cylinders. The theoretical solution
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has been based on the assumption that the bulge’s shape, in a generic meridional plane,
is a circular arc. It has been shown that the radius of curvature of bulge, measured
experimentally, is in good agreement with its theoretical prediction for all three aspect ratios
used in the experiment. Paper [16] has provided a collection of formulae for calculating
lower and upper bounds on the pressure required to deform strips under plane strain
conditions and axisymmetric disks. Two dimensionless parameters have been introduced,
and the effect of these parameters on the pressure has been analyzed. Plastic anisotropy has
been taken into account in [17], where the upsetting of hollow cylinders has been studied.
It has been shown that this mechanical property may greatly affect the pressure required
to deform the cylinder. These solutions have been extended to upsetting with rotating
dies in [18–22]. In addition to accounting for the rotation of dies in the upper bound
solutions above, paper [20] has compared the solutions found using the upper bound and
slab methods. Paper [21] has extended this study to the upsetting of clad cylinders. An
approach for using the upper bound theorem to analyze the continued compression of
solid cylinders by rotating dies has been developed in [22]. A disadvantage of the solutions
above is that no rigid region appears. On the other hand, such a region must appear in the
exact solution because the regime of sticking friction inevitably occurs in the vicinity of
the symmetry axis. The upper bound solution, found in [23], is based on a kinematically
admissible velocity field that assumes the existence of a rigid region. This solution is for
the upsetting of a cylinder with no twist. The present paper generalizes this solution to
include the rotational motion of dies.

2. Statement of the Problem

A circular solid cylinder is upset between two rotating flat dies. The radius of the
cylinder is R, and its height is 2H (Figure 1). The vertical velocity of each die is U, and its
angular velocity is ω. The force and torque applied to each die are F and T, respectively.
It is natural to use a cylindrical coordinate system (r, θ, z) such that its z-axis coincides
with the axis of symmetry of the process, and the plane z = 0 coincides with the plane
of symmetry of the process. Then, by virtue of symmetry, it is sufficient to consider the
domain z ≥ 0. Let ur, uθ , and uz be the components of velocity in the radial, circumferential,
and axial directions, respectively.

Processes 2021, 9, x FOR PEER REVIEW 2 of 11 
 

 

between the workpiece and tool on barreling of solid aluminum cylinders. The theoretical 

solution has been based on the assumption that the bulge’s shape, in a generic meridional 

plane, is a circular arc. It has been shown that the radius of curvature of bulge, measured 

experimentally, is in good agreement with its theoretical prediction for all three aspect 

ratios used in the experiment. Paper [16] has provided a collection of formulae for calcu-

lating lower and upper bounds on the pressure required to deform strips under plane 

strain conditions and axisymmetric disks. Two dimensionless parameters have been in-

troduced, and the effect of these parameters on the pressure has been analyzed. Plastic 

anisotropy has been taken into account in [17], where the upsetting of hollow cylinders 

has been studied. It has been shown that this mechanical property may greatly affect the 

pressure required to deform the cylinder. These solutions have been extended to upsetting 

with rotating dies in [18–22]. In addition to accounting for the rotation of dies in the upper 

bound solutions above, paper [20] has compared the solutions found using the upper 

bound and slab methods. Paper [21] has extended this study to the upsetting of clad cyl-

inders. An approach for using the upper bound theorem to analyze the continued com-

pression of solid cylinders by rotating dies has been developed in [22]. A disadvantage of 

the solutions above is that no rigid region appears. On the other hand, such a region must 

appear in the exact solution because the regime of sticking friction inevitably occurs in the 

vicinity of the symmetry axis. The upper bound solution, found in [23], is based on a kin-

ematically admissible velocity field that assumes the existence of a rigid region. This so-

lution is for the upsetting of a cylinder with no twist. The present paper generalizes this 

solution to include the rotational motion of dies.  

2. Statement of the Problem 

A circular solid cylinder is upset between two rotating flat dies. The radius of the 

cylinder is R, and its height is 2H (Figure 1). The vertical velocity of each die is U, and its 

angular velocity is  . The force and torque applied to each die are F and T, respectively. 

It is natural to use a cylindrical coordinate system ( ), ,r z  such that its z-axis coincides 

with the axis of symmetry of the process, and the plane 0z =  coincides with the plane of 

symmetry of the process. Then, by virtue of symmetry, it is sufficient to consider the do-

main 0z  . Let r
u , u


, and z

u  be the components of velocity in the radial, circumfer-

ential, and axial directions, respectively.  

 

Figure 1. Schematic diagram of the process. 

The velocity boundary conditions are 

Figure 1. Schematic diagram of the process.

The velocity boundary conditions are

uz = 0 for z = 0, (1)

uz = −U for z = H, (2)
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and
ur = 0 for r = 0. (3)

The lateral surface of the cylinder is traction-free. By virtue of symmetry,

σrz = 0 and σθz = 0 for z = 0. (4)

Here σrz and σθz are the shear stresses, referred to in the cylindrical coordinate system.
Let τs be the shear yield stress. Its value is constant in the case of rigid perfectly plastic
materials. The friction law at z = H postulates that the friction stress, τf , is equal to a
constant fraction of the shear yield stress. However, the direction of the friction stress is
unknown. Then,

τf = mτs for z = H. (5)

Here 0 ≤ m ≤ 1. Equation (5) is valid at sliding.
The material of the cylinder obeys the von Mises yield criterion. In this case, the

plastic work rate per unit volume is represented as

w =
√

3τsξeq. (6)

Here ξeq is the equivalent strain rate. Let ξrr, ξθθ , ξzz, ξrθ , ξθz and ξzr be the strain rate
components referred to the cylindrical coordinate system. Then,

ξeq =

√
2
3

√
ξ2

rr + ξ2
θθ + ξ2

zz + 2ξ2
rθ + 2ξ2

θz + 2ξ2
zr. (7)

Taking into account that the solution is independent of θ, one can express the strain rate
components through the velocity components as

ξrr =
∂ur
∂r , ξθθ = ur

r , ξzz =
∂uz
∂z ,

ξrθ = 1
2

(
∂uθ
∂r −

uθ
r

)
, ξθz =

1
2

∂uθ
∂z , ξzr =

1
2

(
∂ur
∂z + ∂uz

∂r

)
.

(8)

It is convenient to introduce the following dimensionless quantities:

ρ =
r
R

, ζ =
z
H

, h =
H
R

, χ =
ωR
U

. (9)

3. Upper Bound Solution
3.1. Kinematically Admissible Velocity Field

Kinematically admissible velocity fields must satisfy the incompressibility equation
and velocity boundary conditions. However, it is advantageous to choose a kinematically
admissible velocity field that also satisfies some additional conditions, which follow from
the behavior of the actual velocity field. These additional conditions depend on the
boundary value problem. In the case under consideration, the symmetry of the process
dictates that the radial velocity is an even function of ζ. The other velocity components are
odd functions of ζ. This feature of the actual velocity field will be taken into account below.
If m = 1 in (5), then [24]

∂ur

∂ζ
= O

(
1√

1− ζ

)
and

∂uθ

∂ζ
= O

(
1√

1− ζ

)
(10)

as ζ → 1 . Several solutions have shown that it is advantageous to use (10) even if m < 1 ,
though its value should be large enough [12,25]. Therefore, (10) will be taken into ac-
count below.

Analytical solutions for the plane strain compression of a layer between two parallel
plates are available for various material models [26–28]. All these solutions show that the
axial velocity is a linear function of ζ. It is reasonable to assume this distribution of the
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axial velocity occurs in the problem under consideration. Then, the boundary conditions (1)
and (2) uniquely determine the axial velocity distribution. Taking into account (9), one gets

uz

U
= −ζ. (11)

The incompressibility equation follows from (8) in the form:

ξrr + ξθθ + ξzz =
∂ur

∂r
+

ur

r
+

∂uz

∂z
= 0 (12)

Using (9) and (11), one transforms this equation to

∂ur

∂ρ
+

ur

ρ
=

U
h

. (13)

The general solution of this equation is

ur

U
=

ρ

2h
+

f (ζ)
ρ

. (14)

Here f (ζ) is an arbitrary function of ζ. It is seen, from this solution, that condition (3) cannot
be satisfied unless f (ζ) = 0. On the other hand, it is not realistic to assume that f (ζ) = 0
if m 6= 0. Equation (14) is compatible with condition (3) if there exists a rigid region
containing the z-axis (Figure 2). The rigid region moves along the z-axis and rotates about
this axis together with the die. Then, the velocity vector in this region is represented as

Ur = ωrj−Uk. (15)

Here j and k are the unit base vectors in the circumferential and axial directions, respectively.
The unit base vector, in the radial direction, is denoted as i.
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Since the circumferential velocity is an odd function of ζ, it is reasonable to choose it
in the form: uθ

U
= ρζg(ζ). (16)

Here g(ζ) is an arbitrary even function of ζ.
Substituting (11), (14) and (16) into (8), one finds the strain rate components as

ξrr =
U
H

(
1
2 −

h f (ζ)
ρ2

)
, ξθθ = U

H

(
1
2 + h f (ζ)

ρ2

)
, ξzz = −U

H ,

ξθz =
Uρ
2H

[
g(ζ) + ζ

dg
dζ

]
, ξzr =

U
2Hρ

d f
dζ , ξrθ = 0.

(17)



Processes 2021, 9, 1845 5 of 11

Equations (7) and (17) combine to give

ξeq =
U
H

√
2
3

√
3
2
+

2h2 f 2(ζ)

ρ4 +
ρ2

2

[
g(ζ) + ζ

dg
dζ

]2
+

1
2ρ2

(
d f
dζ

)2
. (18)

The velocity normal to the velocity discontinuity surface must be continuous. Let n be
the unit vector normal to line OA (Figure 2). This line is generated by the intersection of the
velocity discontinuity surface and a generic meridian plane. It is seen from the geometry of
Figure 2 that

n = −i sin ϕ + k cos ϕ. (19)

Here ϕ is the inclination of the tangent to line OA to the r-axis, measured anticlockwise.
The velocity vector in the plastic region is

Up = uri + uθj + uzk. (20)

The condition of continuity of the normal velocity can be represented as Up · n = Ur · n.
Substituting (15), (19) and (20) into this equation, one gets

ur sin ϕ− uz cos ϕ = U cos ϕ. (21)

It is understood here that ur and uz are to be calculated at line OA. It follows from the
geometry of Figure 2 and (9) that

tan ϕ =
dz
dr

= h
dζ

dρ
. (22)

Equations (11), (14), (21) and (22) combine to give

dρ

dζ
=

ρ2 + 2h f (ζ)
2ρ(1− ζ)

. (23)

It is convenient to use the following substitution:

η = ρ2. (24)

Then, Equation (23) becomes
dη

dζ
=

η + 2h f (ζ)
1− ζ

. (25)

This is a linear differential equation. Its general solution is

η = ηOA(ζ) =

2h

(
ζ∫

1
f (λ)dλ + C

)
1− ζ

. (26)

It is seen from this solution that η → ∞ as ζ → 1 unless C = 0. Therefore, lines OA and
ζ = 1 have a common point only if C = 0. In this case, Equation (26) becomes

η = ηOA(ζ) =

2h
ζ∫

1
f (λ)dλ

1− ζ
. (27)

This equation determines the shape of line OA if the function f (ζ) is prescribed. The
right-hand side of (27) reduces to the expression 0/0 as ζ → 1 . Using l’Hospital’s rule,
one gets

ηA = −2h f (1). (28)
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Here ηA is the value of η at point A (Figure 2). Moreover, line OA must contain the origin
of the coordinate system. Then, it follows from (27) that

1∫
0

f (ζ)dζ = 0. (29)

3.2. Upper Bound Theorem

In the case under consideration, the upper bound theorem reads

FU + Tω ≤ ΩV + Ωd + Ω f . (30)

Here ΩV is the plastic work rate in the plastic region, Ωd is the plastic work rate at the
velocity discontinuity surface, and Ω f is the plastic work rate at the friction surface. Using
(6), one determines ΩV as

ΩV = 2
√

3πτs

H∫
0

R∫
rOA(z)

ξeqrdrdz. (31)

Here r = rOA(z) is the equation of the velocity discontinuity line OA in the cylindrical
coordinates. Using (9), (18) and (24), one transforms (31) to

ΩV√
3πτsR2U

=

√
2
3

1∫
0

1∫
ηOA(ζ)

√
3
2
+

2h2 f 2(ζ)

η2 +
η

2

[
g(ζ) + ζ

dg
dζ

]2
+

1
2η

(
d f
dζ

)2
dηdζ. (32)

The plastic work rate, at the velocity discontinuity surface, is determined as

Ωd = 2πτs

∫
[uτ ]rdL. (33)

Here dL is the infinitesimal length element of line OA and

[uτ ] =
∣∣Ur −Up

∣∣ (34)

where Ur and Up are understood to be calculated at line OA. Using (15) and (20), one finds

[uτ ] =

√
u2

r + (uθ −ωr)2 + (uz + U)2. (35)

Eliminating the velocity vector components in the plastic region, employing (11), (14) and
(16) yields

[uτ ] = U

√√√√[√ηOA(ζ)

2h
+

f (ζ)√
ηOA(ζ)

]2

+ ηOA(ζ)[ζg(ζ)− χ]2 + (1− ζ)2. (36)

In deriving this equation, (9) and (24) have been used.
By definition,

dL =

√
(dr)2 + (dz)2 =

√(
dr
dz

)2
+ 1dz. (37)
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The derivative dr/dz can be eliminated employing (22) and (23). The resulting equation
and (24) combine to give

dL = H

√√√√ [ηOA(ζ) + 2h f (ζ)]2

4h2ηOA(ζ)(1− ζ)2 + 1dζ. (38)

Substituting (36) and (38) into (33) leads to

Ωd√
3πτsR2U

=
2h√

3

1∫
0

√[√
ηOA(ζ)
2h + f (ζ)√

ηOA(ζ)

]2
+ ηOA(ζ)[ζg(ζ)− χ]2 + (1− ζ)2×√

1
4h2

[
ηOA(ζ)+2h f (ζ)

(1−ζ)

]2
+ ηOA(ζ)dζ.

. (39)

The plastic work rate at the friction surface involves the actual friction stress. The
magnitude of the friction stress is given by (5). However, the direction of the friction stress
vector is controlled by the actual velocity field, which is unknown. Therefore, Ω f cannot
be evaluated using a kinematically admissible velocity field. Let γ be the angle between
the actual velocity vector and a kinematically admissible velocity vector at any point of the
friction surface. Here, both velocities are understood to be the velocities relative to the tool
surface. Then,

Ω f = mτs

∫ √
u2

r + (uθ −ωr)2 cos γdS f . (40)

Here S f is the friction surface. The velocity components are understood to be calculated at
the friction surface. Since cos γ ≤ 1, it is seen from (40) that

Ω f ≤ Ω(a)
f = mτs

∫ √
u2

r + (uθ −ωr)2dS f . (41)

Therefore, Equation (30) can be rewritten as

FU + Tω ≤ ΩV + Ωd + Ω(a)
f . (42)

Substituting (14) and (16) into (41) and using (9), (24) and (28), one arrives at

Ω(a)
f√

3πτsR2U
=

m
2
√

3h

1∫
ηA

√
η

√[
1− ηA

η

]2
+ 4h2[g(1)− χ]2dη. (43)

Using (9), one can rewrite Equation (42) as

Λu =
ΩV + Ωd + Ω(a)

f√
3πτsR2U

(44)

where Λu is the upper bound on the quantity (F + χT/R)/
(√

3πτsR2
)

. Substituting (32),
(39) and (43) into (44), one can calculate Λu if the functions f (ζ) and g(ζ) are prescribed.

3.3. Choice of the Functions f (ζ) and g(ζ)
Since f (ζ) is an even function of ζ, it follows, from (14), that one of the simplest

choices for this function, satisfying (10), is

f (ζ) = µ0 + µ1

√
1− ζ2 (45)
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where µ0 and µ1 are constant. It follows from (28) and (45) that

µ0 = −ηA
2h

. (46)

Substituting (45) into (29), one gets

µ0 = −µ1π

4
. (47)

Equations (45)–(47) combine to give

f (ζ) = −ηA
2h

(
1− 4

π

√
1− ζ2

)
. (48)

Using (24), one can find from (14) and (48) that ur = 0 at η = ηA. Then, it is reasonable to
require that

uθ = ωr at η = ηA. (49)

By analogy to (45), one chooses the function g(ζ) in the form

g(ζ) = ν0 + ν1

√
1− ζ2 (50)

where ν0 and ν1 are constant. Equations (9), (16), (49) and (50) combine to give ν0 = χ.
Then, Equation (50) becomes

g(ζ) = χ + ν1

√
1− ζ2. (51)

Substituting (48) and (51) into (32), (39) and (43) allows one to determine the right-
hand side of (44) as a function of ηA and ν1. A minimum value of this function gives
the best upper bound Λu based on the kinematically admissible velocity field chosen.
Minimization should be performed numerically.

4. Numerical Example

The boundary value problem is classified by three dimensionless parameters, namely
h, m, and χ. Since the present paper emphasizes the effect of die rotation on the upsetting
process, the numerical example below focuses on the effect of χ on Λu. It is assumed that
h = 1 in all calculations. The right-hand side of (44) has been minimized with respect to ηA
and ν1 using the Wolfram Mathematica software. Figure 3 depicts the variation of Λu/Λ0
with χ for four values of m (m = 0.7, m = 0.8, m = 0.9, and m = 1). Here Λ0 is the value of
Λu at χ = 0. The difference between the curves is very small and is invisible in the figure.
It is an advantage of this representation of the solution. In particular, one curve provides
Λu/Λ0 for any m in the range 0.7 ≤ m ≤ 1. It is then necessary to calculate Λ0 for a specific
value of m to determine the dependence of Λu on χ. Table 1 presents the value of Λ0 for
several values of m.

The solution found is not accurate if m < 0.7. In particular, minimizing the right-hand
side of (44) leads to very small values of ηA, which means that the rigid region is vanishing.
On the other hand, a rigid region must exist in the exact solution. An accurate solution
requires a kinematically admissible velocity field that permits a rigid region while not
penetrating the through-thickness of the cylinder.

Table 1. Dependence of Λu on m at χ = 0.

m 1 0.9 0.8 0.7

Λ0 1.171 1.168 1.164 1.156
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  on  . Table 

1 presents the value of 0
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Table 1. Dependence of u
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m 1 0.9 0.8 0.7 
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near maximum friction surfaces. From this solution, the following conclusions can be 
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Figure 3. Variation of Λu/Λ0 with χ at h = 1. This curve accurately represents Λu/Λ0 if the friction
factor is within the range 0.7 ≤ m ≤ 1.

5. Conclusions

An upper bound solution, for the upsetting of a cylinder between rotating dies, has
been proposed. The solution accounts for the singular behavior of the real velocity field near
maximum friction surfaces. From this solution, the following conclusions can be drawn:

1. The upper bound theorem does not immediately apply because the direction of the
friction stress in the exact solution is unknown. For this reason, Ω f in (30) has been

replaced with Ω(a)
f resulting in (44).

2. An advantage of the solution is that the single curve, shown in Figure 3, accurately
represents the variation of Λu/Λ0 with m in the range 0.7 ≤ m ≤ 1.

3. The solution is not appropriate if m < 0.7 (approximately). It predicts a vanishing
rigid region in this range of the friction factor. In this case, a kinematically admissible
velocity field that permits a rigid region, while not penetrating the through-thickness
of the cylinder, is required. To the best of authors’ knowledge, no such field has been
proposed, even for the upsetting between non-rotating dies. This will be the subject
of further investigation.

High-pressure torsion is a widely used severe plastic deformation process [28–32].
The solution given in the present paper can be adapted for this process. The cylinder cannot
expand radially in the high-pressure torsion process. Then, the incompressibility equation
demands that the axial velocity vanishes. The kinematically admissible velocity, proposed
in the present paper, is applicable if the radial and axial velocities vanish. Then, the
circumferential velocity is the only non-zero velocity component. Equation (16), in which U
should be replaced with ωR, is valid. Another difference between the high-pressure torsion
process and the process considered in the present paper is that the lateral surface of the
cylinder is not traction-free in the former. However, because the radial velocity vanishes
on this surface, it is only necessary to add, to the right-hand side of (30), the plastic work
due to friction. The latter can be calculated in the same manner as (41).
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