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FIG. 2. Dynamics of HIV infection. Solutions of Equations (5a)-(5d). Parameters
are given in Table 1. In each graph the three curves correspond to different values of
N, the number of infectious virus particles produced per actively infected cell. Here
Neri, = 774 and N = 1000 (*), N = 1200 (0), and N = 1400 (0).

6 years, with the T-cell decline occurring between years 6 and 8. For
larger values of N, the decline in both uninfected and total CD4+ cells
is more substantial but the lag is shorter. The two lower panels in
Figure 2 indicate the changes in the latently infected T* and actively
infected T** populations. The curves are essentially identical, up to a
scale factor, as might be expected from the establishment of a quasi-
steady state in which dT** / dt = 0. In a quasi-steady state, Equation
(5c) predicts that T** = k2T*/ /lb. Figure 2 shows that such a quasi-
steady state is established, because k2 = 1.25 x 10-2 is the ratio of
T** to T* seen at long times. The number of actively infected cells
remains less than 10-i mm-3 for 2-5 years depending on N. At this
level of expression, less than 1 in 104 T cells would be actively infected,
as has been observed. Late in the infection process, however, one can
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FIG. 4. The change in free virus population for different values of N. Parameters
are given in Table 1. For N < Ncd, = 774, that is, N = 600 (*), the virus decays and
the system returns to the uninfected state. For N> Ncrit, that is, N = 1000 (0), the
virus grows, whereas at N = N11 (0) the virus remains constant.

Changing the parameters in the model changes the details of the
dynamics. For example, increasing N gives rise to larger amounts of
T-cell depletion, which is more characteristic of AIDS, but also speeds
up the depletion, which is less characteristic (Figure 5). Earlier, we
predicted that increased depletion would also occur if it.v were de-
creased, that is, if infective virus lived longer. This is what we see in
Figure 6. Changing the initial conditions affects the time from infection
to depletion. As shown in Figure 7, depletion is noticeable once V(t)
reaches a level of about 50 mm-3. Thus, as expected, increasing I/0
decreases the time to depletion. Similar effects are seen if infected cells
are used as initial conditions rather than free virus.

6.1. OSCILLATIONS

When the infected steady state is in the positive orthant, that is, for
N > N0,16, it is also stable for most parameter values of biological
interest. In parameter regimes where the infected state is unstable, the
system undergoes sustained oscillations around the infected state. We
studied the behavior of the system in these regimes by numerical
integration, using GRIND [8], and by numerical bifurcation, using
AUTO [9]. The parameter regime for oscillations is necessarily different
from that in Table 1. Table 2 gives the default parameters used in our
study of oscillations. Figure 8 illustrates the dynamics of the system
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FIG. 7. The effect of changing the initial viral load. Parameters are given in Table
1; N =1400, I/0 = 10-6 (*), 10-4 (0), and 10-2 (0) mm-3.

using the parameters in Table 2. The effects of changing the parameters
r, 1c1, and AT, which are all quite different than in Table 1, were studied
using AUTO. All parameters were set at the default vaues given in
Table 2 except N. Examining Figure 9 for the transcritical bifurcation
[62] obtained with these parameters, one notes that the endemically
infected state that became stable at N = Ncrit = 502 loses its stability at
a slightly larger value of N and then regains its stability at N --r, 1229.
Oscillations arise via a Hopf bifurcation when the endemically infected
state becomes unstable (light curve in Figure 9). In order to determine
the boundary in parameter space for oscillations, we trace one of the
two Hopf bifurcations (the upper one at N = 1229.34), varying r and /IT
simultaneously in Figure 10a. The region in which oscillations are found
is indicated. At the boundaries of the region, the endemically infected
steady state changes stability via a Hopf bifurcation. Thus, for example,
for AT = 0.1 day-1 at r = 1.04, there is a Hopf bifurcation giving birth to

YEARS

:#

3

',EARS

100

106

103

10.

100

W.

MOO

900

BOO

/00

900

ALAN S. PERELSON ET AL.

2 3 .
YEARS

YEARS

FIG. 7. The effect of changing the initial viral load. Parameters are given in Table
1; N =1400, I/0 = 10-6 (*), 10-4 (0), and 10-2 (0) mm-3.

using the parameters in Table 2. The effects of changing the parameters
r, 1c1, and AT, which are all quite different than in Table 1, were studied
using AUTO. All parameters were set at the default vaues given in
Table 2 except N. Examining Figure 9 for the transcritical bifurcation
[62] obtained with these parameters, one notes that the endemically
infected state that became stable at N = Ncrit = 502 loses its stability at
a slightly larger value of N and then regains its stability at N --r, 1229.
Oscillations arise via a Hopf bifurcation when the endemically infected
state becomes unstable (light curve in Figure 9). In order to determine
the boundary in parameter space for oscillations, we trace one of the
two Hopf bifurcations (the upper one at N = 1229.34), varying r and /IT
simultaneously in Figure 10a. The region in which oscillations are found
is indicated. At the boundaries of the region, the endemically infected
steady state changes stability via a Hopf bifurcation. Thus, for example,
for AT = 0.1 day-1 at r = 1.04, there is a Hopf bifurcation giving birth to

YEARS

:#

3

',EARS

100

Perelson, Alan S., Denise E. Kirschner, and Rob De Boer. "Dynamics of HIV infection of CD4+ T cells." Mathematical biosciences 114.1 (1993): 81-125.
https://www.sciencedirect.com/science/article/pii/002555649390043A

V0 = 10-6

V0 = 10-4

V0 = 10-2

SBMLWebApp Results



Reproduction of the analysis (Simulation) : Figure 7, Tstar

Perelson Result

106

103

10.

100

W.

MOO

900

BOO

/00

900

ALAN S. PERELSON ET AL.

2 3 .
YEARS

YEARS

FIG. 7. The effect of changing the initial viral load. Parameters are given in Table
1; N =1400, I/0 = 10-6 (*), 10-4 (0), and 10-2 (0) mm-3.

using the parameters in Table 2. The effects of changing the parameters
r, 1c1, and AT, which are all quite different than in Table 1, were studied
using AUTO. All parameters were set at the default vaues given in
Table 2 except N. Examining Figure 9 for the transcritical bifurcation
[62] obtained with these parameters, one notes that the endemically
infected state that became stable at N = Ncrit = 502 loses its stability at
a slightly larger value of N and then regains its stability at N --r, 1229.
Oscillations arise via a Hopf bifurcation when the endemically infected
state becomes unstable (light curve in Figure 9). In order to determine
the boundary in parameter space for oscillations, we trace one of the
two Hopf bifurcations (the upper one at N = 1229.34), varying r and /IT
simultaneously in Figure 10a. The region in which oscillations are found
is indicated. At the boundaries of the region, the endemically infected
steady state changes stability via a Hopf bifurcation. Thus, for example,
for AT = 0.1 day-1 at r = 1.04, there is a Hopf bifurcation giving birth to

YEARS

:#

3

',EARS

100

106

103

10.

100

W.

MOO

900

BOO

/00

900

ALAN S. PERELSON ET AL.

2 3 .
YEARS

YEARS

FIG. 7. The effect of changing the initial viral load. Parameters are given in Table
1; N =1400, I/0 = 10-6 (*), 10-4 (0), and 10-2 (0) mm-3.

using the parameters in Table 2. The effects of changing the parameters
r, 1c1, and AT, which are all quite different than in Table 1, were studied
using AUTO. All parameters were set at the default vaues given in
Table 2 except N. Examining Figure 9 for the transcritical bifurcation
[62] obtained with these parameters, one notes that the endemically
infected state that became stable at N = Ncrit = 502 loses its stability at
a slightly larger value of N and then regains its stability at N --r, 1229.
Oscillations arise via a Hopf bifurcation when the endemically infected
state becomes unstable (light curve in Figure 9). In order to determine
the boundary in parameter space for oscillations, we trace one of the
two Hopf bifurcations (the upper one at N = 1229.34), varying r and /IT
simultaneously in Figure 10a. The region in which oscillations are found
is indicated. At the boundaries of the region, the endemically infected
steady state changes stability via a Hopf bifurcation. Thus, for example,
for AT = 0.1 day-1 at r = 1.04, there is a Hopf bifurcation giving birth to

YEARS

:#

3

',EARS

100

Perelson, Alan S., Denise E. Kirschner, and Rob De Boer. "Dynamics of HIV infection of CD4+ T cells." Mathematical biosciences 114.1 (1993): 81-125.
https://www.sciencedirect.com/science/article/pii/002555649390043A

V0 = 10-6

V0 = 10-4

V0 = 10-2

SBMLWebApp Results



Reproduction of the analysis (Simulation) : Figure 7, Tstarstar

Perelson Result

106

103

10.

100

W.

MOO

900

BOO

/00

900

ALAN S. PERELSON ET AL.

2 3 .
YEARS

YEARS

FIG. 7. The effect of changing the initial viral load. Parameters are given in Table
1; N =1400, I/0 = 10-6 (*), 10-4 (0), and 10-2 (0) mm-3.

using the parameters in Table 2. The effects of changing the parameters
r, 1c1, and AT, which are all quite different than in Table 1, were studied
using AUTO. All parameters were set at the default vaues given in
Table 2 except N. Examining Figure 9 for the transcritical bifurcation
[62] obtained with these parameters, one notes that the endemically
infected state that became stable at N = Ncrit = 502 loses its stability at
a slightly larger value of N and then regains its stability at N --r, 1229.
Oscillations arise via a Hopf bifurcation when the endemically infected
state becomes unstable (light curve in Figure 9). In order to determine
the boundary in parameter space for oscillations, we trace one of the
two Hopf bifurcations (the upper one at N = 1229.34), varying r and /IT
simultaneously in Figure 10a. The region in which oscillations are found
is indicated. At the boundaries of the region, the endemically infected
steady state changes stability via a Hopf bifurcation. Thus, for example,
for AT = 0.1 day-1 at r = 1.04, there is a Hopf bifurcation giving birth to

YEARS

:#

3

',EARS

100

106

103

10.

100

W.

MOO

900

BOO

/00

900

ALAN S. PERELSON ET AL.

2 3 .
YEARS

YEARS

FIG. 7. The effect of changing the initial viral load. Parameters are given in Table
1; N =1400, I/0 = 10-6 (*), 10-4 (0), and 10-2 (0) mm-3.

using the parameters in Table 2. The effects of changing the parameters
r, 1c1, and AT, which are all quite different than in Table 1, were studied
using AUTO. All parameters were set at the default vaues given in
Table 2 except N. Examining Figure 9 for the transcritical bifurcation
[62] obtained with these parameters, one notes that the endemically
infected state that became stable at N = Ncrit = 502 loses its stability at
a slightly larger value of N and then regains its stability at N --r, 1229.
Oscillations arise via a Hopf bifurcation when the endemically infected
state becomes unstable (light curve in Figure 9). In order to determine
the boundary in parameter space for oscillations, we trace one of the
two Hopf bifurcations (the upper one at N = 1229.34), varying r and /IT
simultaneously in Figure 10a. The region in which oscillations are found
is indicated. At the boundaries of the region, the endemically infected
steady state changes stability via a Hopf bifurcation. Thus, for example,
for AT = 0.1 day-1 at r = 1.04, there is a Hopf bifurcation giving birth to

YEARS

:#

3

',EARS

100

Perelson, Alan S., Denise E. Kirschner, and Rob De Boer. "Dynamics of HIV infection of CD4+ T cells." Mathematical biosciences 114.1 (1993): 81-125.
https://www.sciencedirect.com/science/article/pii/002555649390043A

V0 = 10-6

V0 = 10-4

V0 = 10-2

SBMLWebApp Results



Reproduction of the analysis (Simulation) : Figure 7, V

106

103

10.

100

W.

MOO

900

BOO

/00

900

ALAN S. PERELSON ET AL.

2 3 .
YEARS

YEARS

FIG. 7. The effect of changing the initial viral load. Parameters are given in Table
1; N =1400, I/0 = 10-6 (*), 10-4 (0), and 10-2 (0) mm-3.

using the parameters in Table 2. The effects of changing the parameters
r, 1c1, and AT, which are all quite different than in Table 1, were studied
using AUTO. All parameters were set at the default vaues given in
Table 2 except N. Examining Figure 9 for the transcritical bifurcation
[62] obtained with these parameters, one notes that the endemically
infected state that became stable at N = Ncrit = 502 loses its stability at
a slightly larger value of N and then regains its stability at N --r, 1229.
Oscillations arise via a Hopf bifurcation when the endemically infected
state becomes unstable (light curve in Figure 9). In order to determine
the boundary in parameter space for oscillations, we trace one of the
two Hopf bifurcations (the upper one at N = 1229.34), varying r and /IT
simultaneously in Figure 10a. The region in which oscillations are found
is indicated. At the boundaries of the region, the endemically infected
steady state changes stability via a Hopf bifurcation. Thus, for example,
for AT = 0.1 day-1 at r = 1.04, there is a Hopf bifurcation giving birth to

YEARS

:#

3

',EARS

100

106

103

10.

100

W.

MOO

900

BOO

/00

900

ALAN S. PERELSON ET AL.

2 3 .
YEARS

YEARS

FIG. 7. The effect of changing the initial viral load. Parameters are given in Table
1; N =1400, I/0 = 10-6 (*), 10-4 (0), and 10-2 (0) mm-3.

using the parameters in Table 2. The effects of changing the parameters
r, 1c1, and AT, which are all quite different than in Table 1, were studied
using AUTO. All parameters were set at the default vaues given in
Table 2 except N. Examining Figure 9 for the transcritical bifurcation
[62] obtained with these parameters, one notes that the endemically
infected state that became stable at N = Ncrit = 502 loses its stability at
a slightly larger value of N and then regains its stability at N --r, 1229.
Oscillations arise via a Hopf bifurcation when the endemically infected
state becomes unstable (light curve in Figure 9). In order to determine
the boundary in parameter space for oscillations, we trace one of the
two Hopf bifurcations (the upper one at N = 1229.34), varying r and /IT
simultaneously in Figure 10a. The region in which oscillations are found
is indicated. At the boundaries of the region, the endemically infected
steady state changes stability via a Hopf bifurcation. Thus, for example,
for AT = 0.1 day-1 at r = 1.04, there is a Hopf bifurcation giving birth to

YEARS

:#

3

',EARS

100

Perelson Result

Perelson, Alan S., Denise E. Kirschner, and Rob De Boer. "Dynamics of HIV infection of CD4+ T cells." Mathematical biosciences 114.1 (1993): 81-125.
https://www.sciencedirect.com/science/article/pii/002555649390043A

V0 = 10-6

V0 = 10-4

V0 = 10-2

SBMLWebApp Results



Reproduction of the analysis (Simulation) : Figure 8, T

HIV INFECTION OF CD4+ T CELLS 107
2

10

10

\ \

1.0 I 5 2.0 2.5 3 0
YEARS

11100

1400

1200

1000

200

000

n 400

200

lo.

o s s
YEARS

0r°

1.0 1.5 2.0
YEARS

2.5 3 0

FIG. 8. Dynamics of the system with parameters set in the oscillatory region given
in Table 2.

a stable limit cycle. For smaller values of r the infected steady state is
stable. If one fixes r, say, at r = 10 day', and varies AT, one finds that
for small values of 1.17 the infected state is stable; it then loses stability
by a Hopf bifurcation at AT rz., 6.1 x 10-2 and then goes stable again via
a second Hopf bifurcation at AT 0.146. Thus, there are two stable
regions for the infected steady state, and in between lies a region of
oscillatory behavior.

Because k1 is also important in determining the stability of the
endemically infected state, we trace the Hopf bifurcations, varying k1
and Ihr simultaneously (Figure Mb), and lc, and r simultaneously
(Figure 10c). As in Figure 10a, the curves in these diagrams delimit the
region where we find oscillatory behavior from the region where the
infected state is stable. We have also studied the size of the region with
oscillatory behavior as a function of the other parameters. First, if
parameters that are part of krit are changed such that Arcth is increased
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by a Hopf bifurcation at AT rz., 6.1 x 10-2 and then goes stable again via
a second Hopf bifurcation at AT 0.146. Thus, there are two stable
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a stable limit cycle. For smaller values of r the infected steady state is
stable. If one fixes r, say, at r = 10 day', and varies AT, one finds that
for small values of 1.17 the infected state is stable; it then loses stability
by a Hopf bifurcation at AT rz., 6.1 x 10-2 and then goes stable again via
a second Hopf bifurcation at AT 0.146. Thus, there are two stable
regions for the infected steady state, and in between lies a region of
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Because k1 is also important in determining the stability of the
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FIG. 2. Dynamics of HIV infection. Solutions of Equations (5a)-(5d). Parameters
are given in Table 1. In each graph the three curves correspond to different values of
N, the number of infectious virus particles produced per actively infected cell. Here
Neri, = 774 and N = 1000 (*), N = 1200 (0), and N = 1400 (0).

6 years, with the T-cell decline occurring between years 6 and 8. For
larger values of N, the decline in both uninfected and total CD4+ cells
is more substantial but the lag is shorter. The two lower panels in
Figure 2 indicate the changes in the latently infected T* and actively
infected T** populations. The curves are essentially identical, up to a
scale factor, as might be expected from the establishment of a quasi-
steady state in which dT** / dt = 0. In a quasi-steady state, Equation
(5c) predicts that T** = k2T*/ /lb. Figure 2 shows that such a quasi-
steady state is established, because k2 = 1.25 x 10-2 is the ratio of
T** to T* seen at long times. The number of actively infected cells
remains less than 10-i mm-3 for 2-5 years depending on N. At this
level of expression, less than 1 in 104 T cells would be actively infected,
as has been observed. Late in the infection process, however, one can
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PerelsonModel_Table1_result_SteadyState
Name Type Concentration (mol/l) Rate (mol/l/s) Transition Time (s)

V REACTIONS 8.88696582051918E-23 -5.64132808747389E-220.15753322059484500

Tstarstar REACTIONS -1.45296982190835E-24 9.95425490563638E-334.166666666666670

Tstar REACTIONS -1.16237582434583E-22 4.80633619292001E-2424.18423883993120

T REACTIONS 1000.0000000000000 3.56598043618295E-1550.00000000000000
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are given in Table 1. In each graph the three curves correspond to different values of
N, the number of infectious virus particles produced per actively infected cell. Here
Neri, = 774 and N = 1000 (*), N = 1200 (0), and N = 1400 (0).

6 years, with the T-cell decline occurring between years 6 and 8. For
larger values of N, the decline in both uninfected and total CD4+ cells
is more substantial but the lag is shorter. The two lower panels in
Figure 2 indicate the changes in the latently infected T* and actively
infected T** populations. The curves are essentially identical, up to a
scale factor, as might be expected from the establishment of a quasi-
steady state in which dT** / dt = 0. In a quasi-steady state, Equation
(5c) predicts that T** = k2T*/ /lb. Figure 2 shows that such a quasi-
steady state is established, because k2 = 1.25 x 10-2 is the ratio of
T** to T* seen at long times. The number of actively infected cells
remains less than 10-i mm-3 for 2-5 years depending on N. At this
level of expression, less than 1 in 104 T cells would be actively infected,
as has been observed. Late in the infection process, however, one can
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PerelsonModel_Table1_result_SteadyState
Name Type Concentration (mol/l) Rate (mol/l/s) Transition Time (s)

V REACTIONS 185.7818104642200 0 0.4134722222222220

Tstarstar REACTIONS 1.8721714188534100 0 4.166666666666670
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T REACTIONS 772.5898555592880 0 40.88514131131750
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FIG. 8. Dynamics of the system with parameters set in the oscillatory region given
in Table 2.

a stable limit cycle. For smaller values of r the infected steady state is
stable. If one fixes r, say, at r = 10 day', and varies AT, one finds that
for small values of 1.17 the infected state is stable; it then loses stability
by a Hopf bifurcation at AT rz., 6.1 x 10-2 and then goes stable again via
a second Hopf bifurcation at AT 0.146. Thus, there are two stable
regions for the infected steady state, and in between lies a region of
oscillatory behavior.

Because k1 is also important in determining the stability of the
endemically infected state, we trace the Hopf bifurcations, varying k1
and Ihr simultaneously (Figure Mb), and lc, and r simultaneously
(Figure 10c). As in Figure 10a, the curves in these diagrams delimit the
region where we find oscillatory behavior from the region where the
infected state is stable. We have also studied the size of the region with
oscillatory behavior as a function of the other parameters. First, if
parameters that are part of krit are changed such that Arcth is increased
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PerelsonModel_CalibratedForReproductionOfFigure8_result_SteadyState
Name Type Concentration (mol/l) Rate (mol/l/s) Transition Time (s)

V REACTIONS 6.473530498547430 7.13196087236589E-15 0.1165

Tstarstar REACTIONS 0.19294022706686400 0 4.166666666666670

Tstar REACTIONS 385.88045413372900 -3.56598043618295E-1516.633399866932800

T REACTIONS 1.4932045779685300 3.56598043618295E-150.06411705950442200
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FIG. 2. Theoretical curves using estimated parameters vs. observed viral load data (!) for all patients. Time values of the
data points di!er from those in Table 1 since all data sets have been translated in time as described in the text.
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FIG. 2. Theoretical curves using estimated parameters vs. observed viral load data (!) for all patients. Time values of the
data points di!er from those in Table 1 since all data sets have been translated in time as described in the text.
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FIG. 2. Theoretical curves using estimated parameters vs. observed viral load data (!) for all patients. Time values of the
data points di!er from those in Table 1 since all data sets have been translated in time as described in the text.
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data points di!er from those in Table 1 since all data sets have been translated in time as described in the text.
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FIG. 2. Theoretical curves using estimated parameters vs. observed viral load data (!) for all patients. Time values of the
data points di!er from those in Table 1 since all data sets have been translated in time as described in the text.
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data points di!er from those in Table 1 since all data sets have been translated in time as described in the text.
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data points di!er from those in Table 1 since all data sets have been translated in time as described in the text.
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Reproduction of the analysis (Parameter Estimation) : For Patient 8 (pt8)

Stafford, Max A., et al. "Modeling plasma virus concentration during primary HIV infection." Journal of theoretical biology 203.3 (2000): 285-301.  
https://www.sciencedirect.com/science/article/pii/S0022519300910762

Perelson Result

FIG. 2. Theoretical curves using estimated parameters vs. observed viral load data (!) for all patients. Time values of the
data points di!er from those in Table 1 since all data sets have been translated in time as described in the text.
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Reproduction of the analysis (Parameter Estimation) : For Patient 9 (pt9)

Stafford, Max A., et al. "Modeling plasma virus concentration during primary HIV infection." Journal of theoretical biology 203.3 (2000): 285-301.  
https://www.sciencedirect.com/science/article/pii/S0022519300910762

Perelson Result
FIG. 2. Theoretical curves using estimated parameters vs. observed viral load data (!) for all patients. Time values of the

data points di!er from those in Table 1 since all data sets have been translated in time as described in the text.
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Reproduction of the analysis (Parameter Estimation) : For Patient 10 (pt10)

Stafford, Max A., et al. "Modeling plasma virus concentration during primary HIV infection." Journal of theoretical biology 203.3 (2000): 285-301.  
https://www.sciencedirect.com/science/article/pii/S0022519300910762

Perelson Result
FIG. 2. Theoretical curves using estimated parameters vs. observed viral load data (!) for all patients. Time values of the

data points di!er from those in Table 1 since all data sets have been translated in time as described in the text.
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