
processes

Article

Deep Ensemble of Slime Mold Algorithm and Arithmetic
Optimization Algorithm for Global Optimization

Rong Zheng 1,* , Heming Jia 1,* , Laith Abualigah 2,3,4, Qingxin Liu 5 and Shuang Wang 1

����������
�������

Citation: Zheng, R.; Jia, H.;

Abualigah, L.; Liu, Q.; Wang, S. Deep

Ensemble of Slime Mold Algorithm

and Arithmetic Optimization

Algorithm for Global Optimization.

Processes 2021, 9, 1774. https://

doi.org/10.3390/pr9101774

Academic Editor: Jae-Yoon Jung

Received: 18 August 2021

Accepted: 2 October 2021

Published: 4 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information Engineering, Sanming University, Sanming 365004, China; wang_shuang@fjsmu.edu.cn
2 Research and Innovation Department, Skyline University College, Sharjah 1797, United Arab Emirates;

Aligah.2020@gmail.com
3 Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan
4 School of Computer Science, Universiti Sains Malaysia, Gelugor 11800, Malaysia
5 School of Computer Science and Technology, Hainan University, Haikou 570228, China;

qxliu@hainanu.edu.cn
* Correspondence: zhengr@fjsmu.edu.cn (R.Z.); jiaheming@fjsmu.edu.cn (H.J.)

Abstract: In this paper, a new hybrid algorithm based on two meta-heuristic algorithms is presented
to improve the optimization capability of original algorithms. This hybrid algorithm is realized by the
deep ensemble of two new proposed meta-heuristic methods, i.e., slime mold algorithm (SMA) and
arithmetic optimization algorithm (AOA), called DESMAOA. To be specific, a preliminary hybrid
method was applied to obtain the improved SMA, called SMAOA. Then, two strategies that were
extracted from the SMA and AOA, respectively, were embedded into SMAOA to boost the optimizing
speed and accuracy of the solution. The optimization performance of the proposed DESMAOA was
analyzed by using 23 classical benchmark functions. Firstly, the impacts of different components
are discussed. Then, the exploitation and exploration capabilities, convergence behaviors, and
performances are evaluated in detail. Cases at different dimensions also were investigated. Compared
with the SMA, AOA, and another five well-known optimization algorithms, the results showed that
the proposed method can outperform other optimization algorithms with high superiority. Finally,
three classical engineering design problems were employed to illustrate the capability of the proposed
algorithm for solving the practical problems. The results also indicate that the DESMAOA has very
promising performance when solving these problems.

Keywords: slime mold algorithm; arithmetic optimization algorithm; meta-heuristics algorithm;
global optimization; engineering design problem

1. Introduction

Nowadays, optimization problems exist in various scenarios, for instance, the en-
gineering design problems. The objective of these optimization problems is to find the
extreme values with determined constraint conditions. Then, commonly, the cost is re-
duced as much as possible. To tackle these problems, researchers have proposed many
optimization algorithms [1–4]. Generally speaking, traditional optimization algorithms,
such as gradient-based methods, are susceptible to the initial positions and have difficulties
to deal with the non-convex problems that may contain a mass of local optimums. In
practice, when we are faced with complex constraint conditions in the real world, it is
more essential to obtain the optimal solutions within limited time and cost. At this point,
the important thing is not to find the theoretical optimal result but to obtain as good an
approximate solution as possible under restricted conditions. For this purpose, many
stochastic optimizers have been developed and employed to solve complex optimization
problems. As its name implies, the random operator is the main feature for a stochastic
optimizer, which allows the algorithms to avoid the stagnation and search the whole search
region for global optimization result.

Processes 2021, 9, 1774. https://doi.org/10.3390/pr9101774 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-8829-0417
https://orcid.org/0000-0002-4339-8464
https://orcid.org/0000-0002-3081-5185
https://doi.org/10.3390/pr9101774
https://doi.org/10.3390/pr9101774
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9101774
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9101774?type=check_update&version=2

Processes 2021, 9, 1774 2 of 25

The meta-heuristic algorithms (MAs) have shown very powerful capability in the
fields of computational sciences. In general, MAs have four types according to the sources
of inspiration, namely, physics-inspired (PI), evolution-inspired (EI), swarm-inspired (SI),
and human-inspired (HI). Some representative algorithms are shown below:

• Physics-inspired: multi-verse optimizer (MVO) [5], gravitational search algorithm
(GSA) [6], thermal exchange optimization (TEO) [7], heat transfer relation-based
optimization algorithm (HTOA) [8].

• Evolution-inspired: genetic algorithm (GA) [9], differential evolution (DE) [10], evolu-
tionary programming (EP) [11].

• Swarm-inspired: particle swarm optimization (PSO) [12], emperor penguin optimizer
(EPO) [13], Aquila optimizer (AO) [14], remora optimization algorithm (ROA) [4],
marine predators algorithm (MPA) [15].

• Human-inspired: teaching–learning-based optimization (TLBO) [16], social group op-
timization (SGO) [17], β-hill climbing (βHC) [18], coronavirus optimization algorithm
(COA) [19].

For a meta-heuristic algorithm, one important thing is to balance of the global search
and local search [20]. It is known that the search agents are first randomly generated
within the search spaces. Then, positions of these search agents are updated according to
the formulas in the algorithm. In the early stage, drastic exploration in the search space
should be performed as much as possible in the early stage. Then, in the later phase,
more local exploitation should be conducted to improve the accuracy of obtained optimal
solution. Although hundreds of MAs have been proposed for the optimization problems,
there is still need for new algorithms to solve these optimization problems. According
to the No-Free-Lunch (NFL) theory [21], on one optimization algorithm can solve all the
optimization problems. Generally speaking, it is common that MAs suffer from local
optimum stagnation and poor convergence speed as a result of poor optimization ability.
Thus, it is very important to develop new optimization algorithms or improve existing
MAs by taking some effective measures. Up until now, there have been three primary
methods for the improvements of the existing algorithms, which are listed in Table 1.

The slime mold algorithm (SMA) [33] and arithmetic optimization algorithm (AOA) [34]
are two newly proposed MAs, and both have the merits of simplicity, efficiency, and flexibility.
The SMA has good population diversity and stable performance when solving optimization
problems. However, it gets stuck in local optima sometimes for the limited global search
capability. On the contrary, the AOA has powerful exploration capability by using the
arithmetic operators. However, the performance of AOA is not stable because of the poor
population diversity. Therefore, the SMA and AOA are considered to be hybridized together
in this paper for solving the global optimization problems. To evaluate the performance
of proposed algorithm, we employed 23 classical benchmark functions and 4 constrained
engineering design problems. The main contributions of this works are as follows:

1. Hybridizing the slime mold algorithm (SMA) [33] and arithmetic optimization al-
gorithm (AOA) [34] named SMAOA to improve the exploration capability of origi-
nal SMA.

2. Applying the random contraction strategy (RCS), which is inspired from SMA to help
the SMAOA jump out from local optimum.

3. Applying the subtraction and addition strategy (SAS), which is extracted from AOA
to enhance the exploitation ability of SMAOA.

4. When the RCS and SAS were applied on SMAOA, the DESMAOA was finally ob-
tained. By comparing seven well-known optimization algorithms, we identified the
proposed DESMAOA to be powerful according to the experimental results.

Processes 2021, 9, 1774 3 of 25

Table 1. A summary of methods for improving the optimization algorithms developed in the literature.

Name of Method Representative Algorithm Description

Hybridize two or
more algorithms

Hybrid sperm swarm optimization and
gravitational search algorithm (HSSOGSA) [22]

The capability of exploitation in SSO and the capability of
exploration in GSA are combined for better performance.

Imperialist competitive Harris hawks optimization
(ICHHO) [23]

The exploration of ICA is utilized to improve the HHO for
global optimization.

Hybrid particle swarm and spotted hyena
optimizer (HPSSHO) [24]

Particle swarm algorithm is used to improve the hunting strategy of
spotted hyena optimizer.

Sine-cosine and spotted hyena-based chimp
optimization algorithm (SSC) [25]

Sine-cosine functions and attacking strategy of SHO are embedded
in ChoA for better exploration and exploitation.

Add one or more
strategies onto
an algorithm

Representative-based grey wolf optimizer
(R-GWO) [26]

A search strategy named representative-based hunting (RH) is
utilized to improve the exploration and diversity of the population

Reinforced salp swarm algorithm
(CMSRSSSA) [27]

An ensemble/composite mutation strategy (CMS) is applied to
boost the exploitation and exploration speed of SSA, while restart

strategy (RS) is used to get away from local optimum.

Boosting quantum rotation gate embedded slime
mold algorithm (WQSMA) [28]

The quantum rotation gate mechanism and the operation from
water cycle are applied to balance the exploration and

exploitation inclinations.

Enhanced salp swarm algorithm (ESSA) [29]
Orthogonal learning, quadratic interpolation, and generalized

oppositional learning are embedded into SSA to boost the global
exploration and local exploitation.

Hybridize two or
more algorithms that
are further improved

by one or
more strategies

Whale optimization with seagull algorithm
(WSOA) [30]

WOA’s contraction surrounding mechanism and SOA’s spiral
attack behavior work together, and then levy flight strategy is

employed on the search process of SOA.

Chaotic sine-cosine firefly (CSCF) algorithm [31] Chaotic form of SCA and FA are integrated together to improve the
convergence speed and efficiency.

Hybrid grasshopper optimization algorithm with
bat algorithm (BGOA) [32]

In BGOA, Levy fight, local search part of BA, and random strategy
are introduced into basic GOA.

The rest of this paper is organized as follows: The basics of SMA and AOA are
described in Section 2. Then, the hybrid method is presented in Section 3, including two
strategies that are obtained from these two algorithms. In Section 4, a series of experimental
tests are conducted to evaluate the performance of proposed DESMAOA. In Section 5,
three engineering design problems are employed to assess the applicability of proposed
algorithm in practice. Finally, Section 6 concludes this paper and provides some directions
for meaningful future research.

2. Preliminaries
2.1. Slime Mold Algorithm (SMA)

The slime mold algorithm (SMA) is a recent meta-heuristic algorithm proposed by
Li et al. in 2020 [33]. The basic idea of SMA is based on the foraging behavior of slime mold,
which have different feedback characteristics according to the food quality. Three special
behaviors of the slime mold are mathematical formulated in the SMA, i.e., approaching
food, wrapping food, and finally grabbling food. First, the process of approaching food
can be expressed as

Xi(t + 1) =

{
Xb(t) + vb · (W · XA(t)− XB(t)), r1 < p

vc · Xi(t), r1 ≥ p
(1)

where t is the number of current iteration, Xi(t + 1) is the newly generated position, Xb(t)
denotes the best position found by slime mold in iteration t, XA(t) and XB(t) are two random
positions selected from the population of slime mold, and r1 is a random value in [0, 1].

vb and vc are the coefficients that simulate the oscillation and contraction mode of
slime mold, respectively, and vc is designed to linearly decrease from one to zero during
the iterations. The range of vb is from −a to a, and the computational formula of a is

a = arctanh(1 − t
T
) (2)

where T is the maximum number of iterations.

Processes 2021, 9, 1774 4 of 25

According to Equations (1) and (2), it can be seen that as the number of iterations
increases, the slime mold will wrap the food.

W is a very important factor that indicates the weight of slime mold, and it is calculated
as follows:

W(Smell Index(i)) =

 1 + rand · log(bF−S(i)
bF−wF + 1), i ≤ N/2

1− rand · log(bF−S(i)
bF−wF + 1), i > N/2

(3)

Smell Index(i) = sort(S(i)) (4)

where rand means a random value between 0 and 1; bF and wF are the best and worst
fitness values, respectively, obtained by far; S(i) is the fitness value of ith slime mold; N is
the popsize of the population; and SmellIndex is a ranking of fitness values for individuals
in the population.

In Equation (1), it is also worth noting that p is the probability of determining the
update location for slime mold, which is related to the fitness values of slime mold and
food and can be calculated as follows:

p = tanh|S(i)− DF| (5)

where DF denotes the best fitness obtained by population.
Finally, when the slime mold has found the food (i.e., grabble food), it still has a certain

chance (z) to search other new food, which is formulated as

X(t + 1) = rand · (UB− LB) + LB, r2 < z (6)

where UB and LB are the upper boundary and lower boundary, respectively, and r2 implies
a random value in the region [0, 1].

In general, z should be very small; thus, it is set to 0.03 in SMA. Finally, the pseudo-
code of SMA is given in Algorithm 1.

Algorithm 1. Pseudo-code of SMA

Initialize the parameters popsize (N) and maximum iterations (T)
Initialize the positions of all slime mold Xi (i = 1, 2, . . . , N)
While (t ≤ T)
Calculate the fitness of all slime mold
Update bestFitness, Xb
Calculate the weight W by Equation (3) and (4)
For each search agent
If r2 < z
Update position by Equation (6)
Else
Update p, vb, and vc
Update position by Equation (1)
End if
End for
t = t + 1
End While
Return bestFitness, Xb

2.2. Arithmetic Optimization Algorithm (AOA)

Arithmetic optimization algorithm (AOA) is a very new meta-heuristic method pro-
posed by Abualigah and others in 2021 [34]. The main inspiration of this algorithm is to
combine the four traditional arithmetic operators in mathematics, i.e., multiplication (M),
division (D), subtraction (S), and addition (A). Similar to sine-cosine algorithm (SCA) [35],
AOA also has a very simple structure and low computation complexity. Considering the

Processes 2021, 9, 1774 5 of 25

M and D operators can produce large steps in the iterations, M and D are hence mainly
conducted in the exploration phase. The expression is as follows:

Xi(t + 1) =

{
Xb(t)/(MOP + eps) · ((UB− LB)µ + LB), rand < 0.5

Xb(t) ·MOP · ((UB− LB)µ + LB), rand ≥ 0.5
(7)

where eps is a very small positive number, and µ is a constant coefficient (0.499) that is
carefully designed for this algorithm.

MOP is non-linearly decreased from 1 to 0 during the iterations, and the expression is
as follows:

MOP = 1− (
t
T
)

1/α

(8)

where α is a constant value, which is set to 5 according to the AOA.
From Equation (7), it can be seen that both M and D operators can generate very

stochastic positions for the search agent on the basis of the best position. By contrast, S and
A operators are applied to emphasize the local exploitation that will generate smaller steps
in the search space. The mathematical expression is defined as

Xi(t + 1) =

{
Xb(t)−MOP · ((UB− LB)µ + LB), rand < 0.5

Xb(t) + MOP · ((UB− LB)µ + LB), rand ≥ 0.5
(9)

There is no doubt that the importance of balance between exploration and exploitation
for an optimization algorithm. In AOA, the parameter MOA is utilized to switch the
exploration and exploitation over the course of iterations, which is expressed as

MOA(t) = Min + t(
Max−Min

T
) (10)

where Min and Max are constant values.
According to Equation (10), MOA increases from Min to Max. Thus, in the early phase,

search agent has more chance to perform exploration in the search space, while in the
later stage, search agent will be more likely to conduct search near the best position. The
pseudo-code of AOA is shown in Algorithm 2.

Algorithm 2. Pseudo-code of AOA

Initialize the parameters popsize (N) and maximum iterations (T)
Initialize the positions of all search agents Xi (i = 1, 2, . . . , N)
Set the parameters α, µ, Min, and Max
While (t ≤ T)
Calculate the fitness of all search agents
Update bestFitness, Xb
Calculate the MOP by Equation (8)
Calculate the MOA by Equation (10)
For each search agent
If rand > MOA
Update position by Equation (7)
Else
Update position by Equation (9)
End if
End for
t = t + 1
End While
Return bestFitness, Xb

Processes 2021, 9, 1774 6 of 25

3. The Proposed Hybridized Algorithm (DESMAOA)

It is well known that MAs have the merits of concision, flexibility, and especially utility.
Hence, many scholars are working on developing new meta-heuristic-based approaches
for optimization problems. However, several optimization algorithms such as slime mold
algorithm and arithmetic optimization algorithm still have some drawbacks. For instance,
when dealing with complex optimization problems, SMA tends to drop into local best,
and also converges slowly. Similarly, AOA only utilizes the information of best position
in the population, which may suffer the problem of low precision. Therefore, this paper
aimed to develop a new hybridization algorithm composed of SMA and AOA for better
optimization performance.

In this paper, the SMA and AOA are firstly integrated to form a hybridized style
named SMAOA. Then, the preliminary hybrid algorithm is further enhanced by adding
two strategies. One is the random contraction strategy (RCS), which is an improved version
of contraction formula in SMA. The other is the subtraction and addition strategy (SAS),
which is extracted from the local search in AOA. Finally, the deep ensemble of SMA and
AOA is accomplished, and the hybridized algorithm (i.e., DESMAOA) is obtained. The
detailed implement of proposed algorithm is delineated in the following.

3.1. The Hybridization of SMA and AOA

In SMA, the contraction formula (see Equations (1) and (2)) is utilized to help slime
mold jump out of local minima, which will tend to zero in the later iterations. Thus, it
will not play the role of global exploration. On the other hand, the multiplication and
division methods in AOA display a powerful capability in global exploration. Thus, the
formulas of multiplication and division (see in Equation (7)) are considered to replace the
contraction equation. Therefore, the hybrid algorithm SMAOA will perform good global
search in the whole stage. To be specific, for the search agent that is close to best position,
the multiplication and division operators will make it more likely to search other spaces.

3.2. Random Contraction Strategy (RCS)

In this work, we present the RCS on the basis of the mathematical formula of contrac-
tion mode in SMA, which is applied to expand exploration space and avoid local optimum.
The coefficient vc is replaced by a random value lying between −1 and 1. The position
update formula is calculated as follows:

Vi2(t + 1) = (2 rand− 1)Xi(t) (11)

From Equation (11), we should note that the generated position of RCS is within the
range [−|Xi(t)|, |Xi(t)|] with uniform distribution, which adds more flexibility for the
search agents in the proposed algorithm. Note that the generated position of RCS is taken
as a candidate solution.

3.3. Subtraction and Addition Strategy (SAS)

The other strategy proposed here is the SAS, which is also the exploitation method of
AOA. According to the AOA, SAS can be performed locally and increase the accuracy of
solutions effectively. It is worth mentioning here that the SAS is conducted behind the RCS.

In the same way, the position generated by SAS is treated as a candidate solution, and
if a better position is found, then it will be adopted.

3.4. The Deep Ensemble of SMA and AOA

As mentioned above, the SMA and AOA are hybridized together firstly to achieve the
SMAOA. Then, two strategies are introduced in the SMAOA, namely, random contraction
strategy and subtraction and addition strategy. In order to perform a better balance
effect between exploration and exploitation, we utilize a parameter, b, that is related with

Processes 2021, 9, 1774 7 of 25

iterations to represent the probability of conducting the strategies. Its computational
formula is given below:

b = 1− t
T

(12)

The pseudo-code of DESMAOA is shown in Algorithm 3. Moreover, the flowchart of
proposed method is shown in Figure 1.

Processes 2021, 9, x FOR PEER REVIEW 9 of 27

Start
Initialize the positions of

all search agents

While

t T

Calculate the fitness of

all search agents

Update the bestFitness

Calculate a, b, p, W, vb

and MOP

Check if

i < = N

Return bestFitness End

Generate Vi2 by Eq (11)

f(Vi2) < f(Xi) ?

Update Xi by Vi2

Yes

No

t=t+1

No

No

Yes

Yes

Generate Vi1 by

Eq (1) (1)'

Check if

r2 < z

Update Xi by Eq (6)

Check if

r1 < p

Check if

rand < b

Generate Vi3 by Eq (9)

f(Vi3) < f(Xi) ?

Update Xi by Vi3

Yes

Check if

rand > b

f(Vi1) < f(Xi) ?

Update Xi by Vi1

Yes

Yes Yes

Yes

No No

No

No

No

Yes

Generate Vi1 by

Eq (7)

No

RCSSAS

SMAOA

Figure 1. Flowchart of the proposed DESMAOA.

Table 2. Benchmark function properties (D indicates dimension).

Function Type Function Dimension Range Theoretical Optimization Value

Unimodal test functions

F1 30, 50, 200, 1000 [−100, 100] 0

F2 30, 50, 200, 1000 [−10, 10] 0

F3 30, 50, 200, 1000 [−100, 100] 0

F4 30, 50, 200, 1000 [−100, 100] 0

F5 30, 50, 200, 1000 [−30, 30] 0

F6 30, 50, 200, 1000 [−100, 100] 0

F7 30, 50, 200, 1000 [−1.28, 1.28] 0

Multimodal test functions

F8 30, 50, 200, 1000 [−500, 500] −418.9829 × D

F9 30, 50, 200, 1000 [−5.12, 5.12] 0

F10 30, 50, 200, 1000 [−32, 32] 0

F11 30, 50, 200, 1000 [−600, 600] 0

F12 30, 50, 200, 1000 [−50, 50] 0

F13 30, 50, 200, 1000 [−50, 50] 0

Fixed-dimension multimodal test functions

F14 2 [−65, 65] 0.998004

F15 4 [−5, 5] 0.0003075

F16 2 [−5, 5] −1.03163

F17 2 [−5, 5] 0.398

F18 2 [−2, 2] 3

F19 3 [−1, 2] −3.8628

Figure 1. Flowchart of the proposed DESMAOA.

3.5. The Computational Complexity of DESMAOA

The computational complexity of DESMAOA depends on the population size (N),
dimension size (D), and maximum iterations (T). First, the computational complexity
of initialization is O(N × D). Then, in the iterations, the computational complexity of
calculating the fitness values of all search agents is O(N). The computational complexity of
sorting is O(N × logN). Moreover, the computational complexity of updating the positions
of search agents in SMAOA is O(N × D). Considering the worst cases, the computational
complexity of RCS and SAS is O(2N × D). In summary, the final computational complexity
of the DESMAOA is O(N × D + T × N(1 + logN + 3D)).

Processes 2021, 9, 1774 8 of 25

Algorithm 3. Pseudo-code of DESMAOA

Initialize the parameters popsize (N) and maximum iterations (T)
Initialize the positions of all search agents Xi (i = 1, 2, . . . , N)
Set the parameters α, µ, Min, and Max
While (t ≤ T)
Calculate the fitness of all search agents
Update bestFitness, Xb
Calculate a, b, p, and W by Equation (2)–(5)
Calculate the MOP by Equation (8)
Update vb
For each search agent
If r2 < z
Update position by Equation (6)
Else
If r1 < p
Update position Vi1 by Equation (1) (1)’
Else
Update position Vi1 by Equation (7)
End if
If f (Vi1) < f (Xi)
Xi = Vi1
End if
If rand < b
Apply RCS and generate candidate position Vi2 by Equation (11)
If f (Vi2) < f (Xi)
Xi = Vi2
End if
End if
If rand > b
Apply SAS and generate candidate position Vi3 by Equation (9)
If f (Vi3) < f (Xi)
Xi = Vi3
End if
End if
End if
End for
t = t + 1
End While
Return bestFitness, Xb

4. Experimental Results and Discussions

In this section, we provide the results of a series of comparative experiments that were
conducted by using 23 classical benchmark functions and 10 IEEE CEC2021 single objective
optimization functions to evaluate the performance of proposed DESMAOA [36,37]. Table 2
lists the detailed parameter values of these test functions. It can be seen that these clas-
sical test functions included unimodal functions (F1–F7), multimodal functions (F8–F13),
and also fixed-dimension multimodal functions (F14–F23). Moreover, the CEC2021 test
functions contained four types of functions: unimodal function, basic functions, hybrid
functions, and composition functions. The unimodal functions are suitable for testing
the exploitation capability of algorithms, while the other types of test functions that con-
tain a large number of local minimas can reveal the exploration capability and stability
of algorithms.

In the experiments of test functions, the impacts of two applied strategies were
firstly analyzed by using the classical test functions. Then, the test results of DESMAOA
in classical test functions were compared with seven well-known algorithms. Multiple
aspects of the analysis including exploitation capability, exploration capability, qualitative
analysis, and convergence behavior are described. Moreover, the results of CEC2021 test
functions were also analyzed to investigate the performance of proposed algorithm.

Processes 2021, 9, 1774 9 of 25

Table 2. Benchmark function properties (D indicates dimension).

Function Type Function Dimension Range Theoretical
Optimization Value

Unimodal test functions

F1 30, 50, 200, 1000 [−100, 100] 0
F2 30, 50, 200, 1000 [−10, 10] 0
F3 30, 50, 200, 1000 [−100, 100] 0
F4 30, 50, 200, 1000 [−100, 100] 0
F5 30, 50, 200, 1000 [−30, 30] 0
F6 30, 50, 200, 1000 [−100, 100] 0
F7 30, 50, 200, 1000 [−1.28, 1.28] 0

Multimodal test functions

F8 30, 50, 200, 1000 [−500, 500] −418.9829 × D
F9 30, 50, 200, 1000 [−5.12, 5.12] 0
F10 30, 50, 200, 1000 [−32, 32] 0
F11 30, 50, 200, 1000 [−600, 600] 0
F12 30, 50, 200, 1000 [−50, 50] 0
F13 30, 50, 200, 1000 [−50, 50] 0

Fixed-dimension multimodal test
functions

F14 2 [−65, 65] 0.998004
F15 4 [−5, 5] 0.0003075
F16 2 [−5, 5] −1.03163
F17 2 [−5, 5] 0.398
F18 2 [−2, 2] 3
F19 3 [−1, 2] −3.8628
F20 6 [0, 1] −3.3220
F21 4 [0, 10] −10.1532
F22 4 [0, 10] −10.4028
F23 4 [0, 10] −10.5363

CEC2021 unimodal test functions CEC_01 10 [−100, 100] 100

CEC2021 basic test functions
CEC_02 10 [−100, 100] 1100
CEC_03 10 [−100, 100] 700
CEC_04 10 [−100, 100] 1900

CEC2021 hybrid test functions
CEC_05 10 [−100, 100] 1700
CEC_06 10 [−100, 100] 1600
CEC_07 10 [−100, 100] 2100

CEC2021 composition test functions
CEC_08 10 [−100, 100] 2200
CEC_09 10 [−100, 100] 2400
CEC_10 10 [−100, 100] 2500

4.1. Impacts of Components

The impacts of different versions are investigated in this section. SMA showed very
outstanding performance in optimization problems. However, it still had the problems
of premature convergence and local optima. According to the works of Abualigah [34],
AOA shows powerful global exploration and local exploitation capability. Hence, we first
hybridized the SMA and AOA to obtain the SMAOA. Then, in order to help the search
agent jump out of local optima, we integrated the RCS into SMAOA. Moreover, SAS was
introduced into SMAOA to improve the local search capability. Different combinations
between SMAOA and two strategies are listed below:

• SMAOA;
• SMAOA combined with RCS (SMAOA1);
• SMAOA combined with SAS (SMAOA2);
• SMAOA combined with RCS and SAS (DESMAOA).

For impartial comparison, the number of iterations and population size for all tests
were set as 500 and 30, respectively. Moreover, we conducted independent tests 30 times
for each algorithm. The averages and standard deviations were utilized for analysis and
comparison between these algorithms. The results are listed in Table 3. Note that the
dimension of F1–F13 was set to 30.

Processes 2021, 9, 1774 10 of 25

Table 3. Comparison of the SMAOA, SMAOA1, SMAOA2, and DESMAOA.

Function
SMAOA SMAOA1 SMAOA2 DESMAOA

Mean Std Mean Std Mean Std Mean Std

F1 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

F2 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

F3 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

F4 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

F5 2.82 × 100 7.00 × 100 5.85 × 10−1 1.07 × 100 2.46 × 10−1 1.33 × 100 1.17 × 10−3 1.55 × 10−3

F6 2.44 × 10−2 2.34 × 10−2 7.77 × 10−3 1.21 × 10−2 5.80 × 10−6 1.92 × 10−6 4.95 × 10−6 2.01 × 10−6

F7 1.16 × 10−4 9.72 × 10−5 5.67 × 10−5 5.61 × 10−5 6.72 × 10−5 6.77 × 10−5 4.27 × 10−5 4.76 × 10−5

F8 −12,569.2361 1.89 × 10−1 −12,569.3229 1.38 × 10−1 −12,569.4866 4.96 × 10−6 −12,569.4866 4.11 × 10−6

F9 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

F10 8.8818 × 10−16 0.00 × 100 8.8818 × 10−16 0.00 × 100 8.8818 × 10−16 0.00 × 100 8.8818 × 10−16 0.00 × 100

F11 2.13 × 10−1 2.92 × 10−1 0.00 × 100 0.00 × 100 8.85 × 10−3 2.30 × 10−2 0.00 × 100 0.00 × 100

F12 2.63 × 10−3 4.65 × 10−3 5.08 × 10−5 8.33 × 10−5 4.84 × 10−8 7.54 × 10−8 1.09 × 10−7 1.59 × 10−7

F13 1.70 × 10−2 3.67 × 10−2 8.82 × 10−4 1.15 × 10−3 2.50 × 10−3 6.04 × 10−3 5.91 × 10−7 1.06 × 10−6

F14 9.98 × 10−1 2.60 × 10−11 9.98 × 10−1 9.58 × 10−12 9.98 × 10−1 9.91 × 10−16 9.98 × 10−1 8.05 × 10−16

F15 4.16 × 10−4 1.56 × 10−4 3.63 × 10−4 9.61 × 10−5 4.07 × 10−4 1.90 × 10−4 3.34 × 10−4 8.63 × 10−5

F16 −1.0316 × 100 3.97 × 10−8 −1.0316 × 100 9.46 × 10−8 −1.0316 × 100 1.67 × 10−11 −1.0316 × 100 1.87 × 10−11

F17 3.9789 × 10−1 6.82 × 10−7 3.9789 × 10−1 3.97 × 10−7 3.9789 × 10−1 5.63 × 10−12 3.9789 × 10−1 5.94 × 10−12

F18 3.00 × 100 2.79 × 10−9 3.00 × 100 6.69 × 10−10 3.00 × 100 8.56 × 10−11 3.00 × 100 9.42 × 10−11

F19 −3.8627 × 100 4.32 × 10−5 −3.8628 × 100 4.68 × 10−5 −3.8628 × 100 5.61 × 10−5 −3.8627 × 100 7.91 × 10−5

F20 −3.25 × 100 5.98 × 10−2 −3.2859 × 100 5.59 × 10−2 −3.2583 × 100 6.06 × 10−2 −3.286 × 100 5.59 × 10−2

F21 −1.01528 × 101 4.26 × 10−4 −1.01529 × 101 3.67 × 10−4 −1.01531 × 101 9.07 × 10−5 −1.01531 × 101 1.42 × 10−4

F22 −1.04023 × 101 4.61 × 10−4 −1.04025 × 101 4.47 × 10−4 −1.04028 × 101 8.31 × 10−5 −1.04028 × 101 7.38 × 10−5

F23 −1.0536 × 101 3.47 × 10−4 −1.05362 × 101 2.47 × 10−4 −1.05363 × 101 9.44 × 10−5 −1.05363 × 101 8.26 × 10−5

Processes 2021, 9, 1774 11 of 25

From Table 3, it can be seen that these four improved algorithms could obtain the
same optimal fitness in F1–F4, F9, F10, F14, and F16–F18. In particular, the theoretical
optimization values were obtained in F1–F4, F9, and F18. Compared to SMAOA, SMAOA1,
and SMAOA2, DESMAOA won in F5–F8, F11, F13, F15, and F20–F24. This demonstrates
that the significant effect with the combination of RCS and SAS. In addition, it is worth
mentioning here that the results of DESMAOA in F12 and F19 were very close to the best
ones. From the values of standard deviations, it was also shown that DESMAOA had good
stability and strong robustness in solving these test functions.

4.2. The Classical Benchmark Functions

This section outlines the 23 classical test functions that were employed for experiments.
The performance of DESMAOA was compared with two newly proposed algorithms (SMA
and AOA) and another five very famous optimization algorithms (GWO [38], WOA [39],
SSA [40], MVO [5], and PSO [12]). Table 4 lists the main parameter values used in each
algorithm. Note that the parameter values used in DESMAOA were the same as those
used in two original algorithms. Therefore, the stable performance could be guaranteed to
some extent for the proposed algorithm. In addition, the test conditions were the same as
previously for equal comparison.

Table 4. Parameter values for the optimization algorithms.

Algorithm Parameter Settings

DESMAOA z = 0.03; α = 5; µ = 0.499
SMA [33] z = 0.03
AOA [34] α = 5; µ = 0.499; Min = 0.2; Max = 1
GWO [38] a = [2, 0]
WOA [39] a1 = [2, 0]; a2 = [−2, −1]; b = 1
SSA [40] c1∈[0, 1]; c2∈[0, 1]
MVO [5] WEP∈[0.2, 1]; TDR∈[0, 1]; r1, r2, r3∈[0, 1]
PSO [12] c1 = 2; c2 = 2; W∈[0.2, 0.9]; vMax = 6

4.2.1. Exploration and Exploitation Capability Analysis

Table 5 lists the experimental results of these algorithms. It was shown that the
performance of DESMAOA is not only better than the original SMA and AOA but also
superior to other comparative algorithms on 20 out of 23 benchmark functions. In F1–F5,
F7–F15, F22, and F23, DESMAOA had the lowest average values and stand deviations. This
reveals that DESMAOA possesses very good stability and also can find the optimal solution.
It is worth noting that the proposed algorithm can obtain the theoretical optimization values
in test functions F1–F4, F9, F11, and F18. In F6, F19, and F20, the results of DESMAOA
were very close to the best ones. Therefore, these results demonstrated the remarkable
effect of the proposed hybrid method. With the help of RCS, the proposed algorithm can
jump out of the local minima and obtain the global optimal solution. In the meantime, high
precision results could be obtained by using SAS.

In addition, the Wilcoxon signed-rank test was utilized to confirm the statistical
superiority of DESMAOA [41], which revealing the statistical differences between two
algorithms. The results are given in Table 6. On the basis of these results and the results
in Table 5, DESMAOA outperformed SMA for 15 benchmark functions (except F1, F3, F7,
F9, F10, F11, F15, and F20) and AOA for 20 benchmark functions (except F7, F15, and
F17). Moreover, DESMAOA was found to be better than other comparative algorithms in
most of the functions. Furthermore, the results of test functions were also evaluated using
the Friedman ranking test [42], which can reveal the overall performance ranking of the
comparative algorithms to the test functions. As can be seen from Figure 2, the proposed
DESMAOA achieved the first rank among these algorithms. In summary, DESMAOA had
excellent optimization performance that was significantly better than SMA and AOA.

Processes 2021, 9, 1774 12 of 25

Table 5. The result statistics of benchmark functions for the DESMAOA and competitor algorithms.

Function Metric DESMAOA SMA AOA GWO WOA SSA MVO PSO

F1 Mean 0.00 × 100 9.93 × 10−302 5.37 × 10−6 7.21 × 10−28 2.42 × 10−73 3.96 × 10−7 1.34 × 100 1.76 × 10−4

Std 0.00 × 100 0.00 × 100 2.14 × 10−6 1.17 × 10−27 8.81 × 10−73 9.50 × 10−7 5.38 × 10−1 1.82 × 10−4

F2 Mean 0.00 × 100 5.05 × 10−138 1.74 × 10−3 8.26 × 10−17 8.81 × 10−52 2.07 × 100 2.20 × 100 7.05 × 100

Std 0.00 × 100 2.77 × 10−137 2.08 × 10−3 6.54 × 10−17 2.46 × 10−51 1.33 × 100 7.31 × 100 7.01 × 100

F3 Mean 0.00 × 100 5.43 × 10−323 1.24 × 10−3 1.55 × 10−5 4.41 × 104 1.66 × 103 2.04 × 102 7.93 × 101

Std 0.00 × 100 0.00 × 100 8.14 × 10−4 3.50 × 10−5 1.08 × 104 9.24 × 102 6.63 × 101 2.57 × 101

F4 Mean 0.00 × 100 7.56 × 10−154 1.53 × 10−2 8.03 × 10−7 4.68 × 101 1.15 × 101 2.16 × 100 1.12 × 100

Std 0.00 × 100 4.14 × 10−153 1.06 × 10−2 6.71 × 10−7 2.77 × 101 4.04 × 100 8.66 × 10−1 2.40 × 10−1

F5 Mean 1.17 × 10−3 8.56 × 100 2.79 × 101 2.71 × 101 2.82 × 101 2.90 × 102 7.89 × 102 8.16 × 101

Std 1.55 × 10−3 1.21 × 101 3.01 × 10−1 8.49 × 10−1 4.97 × 10−1 4.77 × 102 8.74 × 102 7.03 × 101

F6 Mean 4.95 × 10−6 5.74 × 10−3 3.06 × 100 7.58 × 10−1 3.72 × 10−1 1.78 × 10−7 1.34 × 100 1.37 × 10−4

Std 2.01 × 10−6 3.38 × 10−3 2.69 × 10−1 4.94 × 10−1 2.18 × 10−1 1.51 × 10−7 3.43 × 10−1 1.65 × 10−4

F7 Mean 4.27 × 10−5 1.24 × 10−4 6.74 × 10−5 1.69 × 10−3 3.15 × 10−3 1.73 × 10−1 3.21 × 10−2 2.55 × 100

Std 4.76 × 10−5 1.07 × 10−4 7.11 × 10−5 8.95 × 10−4 3.61 × 10−3 5.61 × 10−2 1.32 × 10−2 4.54 × 100

F8 Mean −12,569.4866 −12,569.1799 −5.48 × 103 −6.01 × 103 −1.06 × 104 −7.47 × 103 −7.55 × 103 −4.69 × 103

Std 4.11 × 10−6 2.66 × 10−1 3.69 × 102 6.42 × 102 1.69 × 103 8.76 × 102 6.27 × 102 1.21 × 103

F9 Mean 0.00 × 100 0.00 × 100 1.66 × 10−6 2.26 × 100 3.79 × 10−15 5.53 × 101 1.20 × 102 1.02 × 102

Std 0.00 × 100 0.00 × 100 1.27 × 10−6 3.27 × 100 2.08 × 10−14 1.83 × 101 3.29 × 101 3.19 × 101

F10 Mean 8.8818 × 10−16 8.8818 × 10−16 4.36 × 10−4 1.01 × 10−13 3.85 × 10−15 2.56 × 100 2.03 × 100 1.69 × 10−2

Std 0.00 × 100 0.00 × 100 1.62 × 10−4 1.81 × 10−14 2.10 × 10−15 6.94 × 10−1 5.47 × 10−1 1.30 × 10−2

F11 Mean 0.00 × 100 0.00 × 100 8.42 × 10−4 6.19 × 10−3 1.68 × 10−2 1.88 × 10−2 8.60 × 10−1 4.39 × 10−3

Std 0.00 × 100 0.00 × 100 3.12 × 10−3 8.92 × 10−3 6.38 × 10−2 1.46 × 10−2 8.21 × 10−2 6.85 × 10−3

F12 Mean 1.09 × 10−7 5.81 × 10−3 7.44 × 10−1 4.42 × 10−2 2.81 × 10−2 7.54 × 100 2.43 × 100 2.07 × 10−2

Std 1.59 × 10−7 6.50 × 10−3 3.03 × 10−2 1.86 × 10−2 2.18 × 10−2 3.43 × 100 1.39 × 100 4.22 × 10−2

F13 Mean 5.91 × 10−7 6.35 × 10−3 2.96 × 100 6.94 × 10−1 6.36 × 10−1 1.38 × 101 1.96 × 10−1 5.55 × 10−3

Std 1.06 × 10−6 7.05 × 10−3 1.03 × 10−2 2.45 × 10−1 3.53 × 10−1 1.10 × 101 1.26 × 10−1 9.01 × 10−3

F14 Mean 9.98 × 10−1 9.98 × 10−1 9.87 × 100 4.16 × 100 2.54 × 100 1.36 × 100 9.98 × 10−1 2.97 × 100

Std 8.05 × 10−16 3.93 × 10−13 3.89 × 100 4.28 × 100 2.91 × 100 8.82 × 10−1 4.31 × 10−11 2.55 × 100

F15 Mean 3.34 × 10−4 4.84 × 10−4 8.39 × 10−3 3.15 × 10−3 8.25 × 10−4 2.91 × 10−3 5.24 × 10−3 7.22 × 10−3

Std 8.63 × 10−5 2.15 × 10−4 1.29 × 10−2 6.88 × 10−3 5.40 × 10−4 5.93 × 10−3 1.26 × 10−2 9.03 × 10−3

F16 Mean −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100

Std 1.87 × 10−11 8.36 × 10−10 2.28 × 10−11 3.13 × 10−8 1.68 × 10−9 3.89 × 10−14 4.19 × 10−7 6.25 × 10−16

F17 Mean 3.9789 × 10−1 3.9789 × 10−1 4.0217 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1

Std 5.94 × 10−12 5.40 × 10−9 1.52 × 10−2 8.10 × 10−7 6.71 × 10−6 7.99 × 10−15 1.27 × 10−7 0.00 × 100

F18 Mean 3.0000 × 100 3.0000 × 100 4.8000 × 100 5.7000 × 100 3.0001 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100

Std 9.42 × 10−11 1.17 × 10−9 6.85 × 100 1.48 × 101 8.14 × 10−5 2.13 × 10−13 3.49 × 10−6 1.79 × 10−15

F19 Mean −3.8627 × 100 −3.8628 × 100 −3.8627 × 100 −3.8605 × 100 −3.8572 × 100 −3.8628 × 100 −3.8628 × 100 −3.8628 × 100

Std 7.91 × 10−5 1.58 × 10−7 2.62 × 10−4 4.08 × 10−3 1.02 × 10−2 1.17 × 10−12 7.73 × 10−6 2.58 × 10−15

F20 Mean −3.286 × 100 −3.2503 × 100 −3.2942 × 100 −3.2339 × 100 −3.2225 × 100 −3.2255 × 100 −3.2454 × 100 −3.2402 × 100

Std 5.59 × 10−2 5.95 × 10−2 5.12 × 10−2 7.30 × 10−2 1.10 × 10−1 5.45 × 10−2 5.93 × 10−2 8.13 × 10−2

F21 Mean −1.01531 × 101 −1.01531 × 101 −7.8781 × 100 −8.8066 × 100 −8.4438 × 100 −6.9755 × 100 −7.048 × 100 −6.3883 × 100

Std 1.42 × 10−4 1.05 × 10−4 2.68 × 100 2.54 × 100 2.44 × 100 3.35 × 100 3.28 × 100 3.27 × 100

F22 Mean −1.04028 × 101 −1.04028 × 101 −7.2814 × 100 −1.02239 × 101 −7.0271 × 100 −8.938 × 100 −9.0327 × 100 −8.71250 × 100

Std 7.38 × 10−5 1.82 × 10−4 3.52 × 100 9.70 × 10−1 3.08 × 100 2.99 × 100 2.83 × 100 2.91 × 100

F23 Mean −1.05363 × 101 −1.05363 × 101 −6.6743 × 100 −1.05349 × 101 −7.7815 × 100 −8.1138 × 100 −8.5201 × 100 −9.1233 × 100

Std 8.26 × 10−5 9.71 × 10−5 3.31 × 100 8.48 × 10−4 3.28 × 100 3.51 × 100 3.20 × 100 2.93 × 100

Processes 2021, 9, 1774 13 of 25

Table 6. p-values of the Wilcoxon signed-rank test between DESMAOA and other competitor algorithms.

Function DESMAOA
vs. SMA

DESMAOA
vs. AOA

DESMAOA
vs. GWO

DESMAOA
vs. WOA

DESMAOA
vs. SSA

DESMAOA
vs. MVO

DESMAOA
vs. PSO

F1 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F2 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F3 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F6 1.22 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 8.54 × 10−4

F7 2.52 × 10−1 1.88 × 10−1 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F8 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F9 1.00 × 100 1.22 × 10−4 6.10 × 10−5 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F10 1.00 × 100 6.10 × 10−5 6.10 × 10−5 9.77 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F11 1.00 × 100 6.10 × 10−5 2.50 × 10−1 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F12 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 8.36 × 10−3

F13 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.22 × 10−4

F14 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 8.14 × 10−2 6.10 × 10−5 7.93 × 10−3

F15 3.30 × 10−1 5.54 × 10−2 4.54 × 10−1 5.54 × 10−2 6.10 × 10−5 1.16 × 10−3 1.22 × 10−4

F16 2.56 × 10−2 3.36 × 10−3 6.10 × 10−5 2.52 × 10−1 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F17 6.10 × 10−4 6.39 × 10−1 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F18 1.81 × 10−2 7.62 × 10−1 8.36 × 10−3 8.36 × 10−3 6.10 × 10−5 8.36 × 10−3 6.10 × 10−5

F19 6.10 × 10−5 1.03 × 10−2 2.56 × 10−2 6.10 × 10−5 6.10 × 10−5 4.27 × 10−3 6.10 × 10−5

F20 6.39 × 10−1 1.81 × 10−2 2.52 × 10−1 2.52 × 10−1 1.51 × 10−2 5.99 × 10−1 2.08 × 10−1

F21 3.05 × 10−4 3.02 × 10−2 6.10 × 10−5 1.22 × 10−4 1.88 × 10−1 1.53 × 10−3 8.04 × 10−1

F22 6.10 × 10−5 4.27 × 10−3 6.10 × 10−4 1.22 × 10−4 8.04 × 10−1 3.03 × 10−1 7.62 × 10−1

F23 6.10 × 10−4 1.21 × 10−1 1.22 × 10−4 6.10 × 10−5 3.30 × 10−1 6.79 × 10−1 6.79 × 10−1

Processes 2021, 9, x FOR PEER REVIEW 14 of 27

F23 6.10×10−4 1.21×10−1 1.22×10−4 6.10×10−5 3.30×10−1 6.79×10−1 6.79×10−1

Figure 2. Average Friedman ranking values of DESMAOA and other comparative algorithms on 30

dimensions.

4.2.2. Qualitative Analysis

Figure 3 shows the qualitative results of proposed algorithm in F4, F5, F6, F8, F12,

F13, F15, and F21. From the scatter plot of the search history, we were able to see that

search agents were distributed in the whole search space in the early stage. During the

iteration progresses, they concentrated in a quick time. The density of distribution for dif-

ferent functions indicates that DESMAOA had balanced performance between explora-

tion and exploitation. Moreover, some sudden changes in the amplitude were observed

clearly in the trajectory of the first search agent, which revealed that DESMAOA had

strong exploration capability over the course of iterations when handing these test func-

tions. The drastic fluctuation of average fitness also showed that DESMAOA can jump out

of local optima and explore more spaces when dealing with different types of optimiza-

tion issues. Hence, the local optimal solution can be avoided effectively. Finally, the

DESMAOA was able to find better solutions in most of the functions compared with SMA

and AOA, which demonstrates the effectiveness of the proposed method.

4.2.3. Analysis of Convergence Behavior

It is important to study the convergence behavior of optimization algorithms when

they are searching for the optimal solution. In general, fast convergence speed is required

in the early exploration, which implies the algorithm has powerful exploration capability.

On the other hand, local optima also should be avoided, which can be seen from the con-

vergence curve. Figure 4 shows the convergence curves of DESMAOA and other com-

pared algorithms on 30 dimensions. Some benchmark functions are used for analysis in-

cluding F4, F5, F6, F8, F12, F13, F15, and F21. From these functions, it can be seen that the

initial convergence speed of DESMAOA is the fastest in most cases. In Figure 5, step-like

or cliff-like declines in the convergence curves of DESMAOA can be observed. This sug-

gests that the DESMAOA has a prominent exploration capability. From F5, F6, F12, and

F13, the precision of solutions for DESMAOA is further improved with the help of SAS

during the iteration. In sum, DESMAOA achieved the best solutions in these functions.

4.2.4. Scalability Test

DESMAOA
SMA

AOA
GWO

WOA
SSA

MVO
PSO

0

2

4

6

8

10

Friedman ranking

Figure 2. Average Friedman ranking values of DESMAOA and other comparative algorithms on
30 dimensions.

4.2.2. Qualitative Analysis

Figure 3 shows the qualitative results of proposed algorithm in F4, F5, F6, F8, F12, F13,
F15, and F21. From the scatter plot of the search history, we were able to see that search
agents were distributed in the whole search space in the early stage. During the iteration
progresses, they concentrated in a quick time. The density of distribution for different
functions indicates that DESMAOA had balanced performance between exploration and
exploitation. Moreover, some sudden changes in the amplitude were observed clearly

Processes 2021, 9, 1774 14 of 25

in the trajectory of the first search agent, which revealed that DESMAOA had strong
exploration capability over the course of iterations when handing these test functions. The
drastic fluctuation of average fitness also showed that DESMAOA can jump out of local
optima and explore more spaces when dealing with different types of optimization issues.
Hence, the local optimal solution can be avoided effectively. Finally, the DESMAOA was
able to find better solutions in most of the functions compared with SMA and AOA, which
demonstrates the effectiveness of the proposed method.

4.2.3. Analysis of Convergence Behavior

It is important to study the convergence behavior of optimization algorithms when
they are searching for the optimal solution. In general, fast convergence speed is required
in the early exploration, which implies the algorithm has powerful exploration capability.
On the other hand, local optima also should be avoided, which can be seen from the
convergence curve. Figure 4 shows the convergence curves of DESMAOA and other
compared algorithms on 30 dimensions. Some benchmark functions are used for analysis
including F4, F5, F6, F8, F12, F13, F15, and F21. From these functions, it can be seen that the
initial convergence speed of DESMAOA is the fastest in most cases. In Figure 5, step-like or
cliff-like declines in the convergence curves of DESMAOA can be observed. This suggests
that the DESMAOA has a prominent exploration capability. From F5, F6, F12, and F13, the
precision of solutions for DESMAOA is further improved with the help of SAS during the
iteration. In sum, DESMAOA achieved the best solutions in these functions.

4.2.4. Scalability Test

The performance fluctuations of optimization algorithms can be revealed according to
the scalability test. In this work, the performance of DESMAOA in different dimensions
(D = 50, 200, 1000) were also tested. It is easy to understand that the higher dimension
will make it harder for the algorithm to find the global optimal solution. Note that only
F1–F13 in the 23 benchmark functions were selected for this test. As mentioned previously,
F1–F7 are single-mode functions that only have one locally optimal solution. In contrast,
F8–F13 are multimode functions that have many locally optimal solutions. Moreover, the
experimental parameters were kept the same as previous experiments. Tables 7 and 8 show
the results of DESMAOA and other algorithms in different dimensions.

Both results of unimodal and multimode functions indicated that DESMAOA had
excellent performance in the conditions of high dimensions. Compared with SMA, AOA,
and other well-known algorithms, DESMAOA was the first in all functions except F7. In
F7, AOA became better and had more stable results in different dimensions. It is also
noted that these comparative algorithms (GWO, WOA, SSA, MVO, and PSO) presented
poor optimization capability in some cases, especially in higher dimensions. Furthermore,
the Wilcoxon signed-rank test and Friedman ranking test were utilized to analyze the
differences between DESMAOA and other algorithms, as listed in Tables 9–12. From
Tables 9–11, it can be seen that DESMAOA had significant differences compared with
these comparative algorithms. Moreover, in Table 12, the proposed DESMAOA ranked
first compared to other algorithms in different dimensions. It is noted that the distance
between the first and second was evident. In summary, the proposed DESMAOA had
better optimization behavior and stability in dealing with high-dimensional problems.

4.3. The IEEE CEC2021 Standard Test Functions

This section describes the IEEE CEC2021 test functions that were employed to further
analyze the performance of proposed DESMAOA on solving global optimization problems.
The comparative algorithms included the SMA, AOA, GWO, WOA, SSA, MVO, and PSO.
To achieve the statistical results, 30 repeated independent tests were conducted for each
function. The experimental results are given in Table 13.

Processes 2021, 9, 1774 15 of 25
Processes 2021, 9, x FOR PEER REVIEW 16 of 27

Figure 3. Qualitative results for the benchmark functions F4, F5, F6, F8, F12, F13, F15, and F21. Figure 3. Qualitative results for the benchmark functions F4, F5, F6, F8, F12, F13, F15, and F21.

Processes 2021, 9, 1774 16 of 25

Processes 2021, 9, x FOR PEER REVIEW 17 of 27

Figure 4. The convergence curves of F4, F5, F6, F8, F12, F13, F15, and F21. Figure 4. The convergence curves of F4, F5, F6, F8, F12, F13, F15, and F21.

Processes 2021, 9, 1774 17 of 25

Table 7. Unimodal benchmark function result statistics of the DESMAOA and competitor algorithms in different dimensions.

Function D Metric DESMAOA SMA AOA GWO WOA SSA MVO PSO

F1 50 Mean 0.00 × 100 3.94 × 10−310 4.05 × 10−5 5.96 × 10−20 3.97 × 10−71 6.27 × 10−1 9.07 × 100 2.05 × 10−1

Std 0.00 × 100 0.00 × 100 1.33 × 10−5 5.86 × 10−20 2.17 × 10−70 5.32 × 10−1 2.48 × 100 1.82 × 10−1

200 Mean 0.00 × 100 5.15 × 10−244 4.63 × 10−2 1.09 × 10−7 2.33 × 10−71 1.76 × 104 2.84 × 103 3.31 × 102

Std 0.00 × 100 0.00 × 100 1.24 × 10−2 7.08 × 10−8 9.24 × 10−71 1.60 × 103 3.15 × 102 4.11 × 101

1000 Mean 0.00 × 100 2.20 × 10−246 1.50 × 100 2.53 × 10−1 3.57 × 10−68 2.29 × 105 7.94 × 105 4.11 × 104

Std 0.00 × 100 0.00 × 100 4.79 × 10−2 5.65 × 10−2 1.95 × 10−67 1.19 × 104 2.70 × 104 2.32 × 103

F2 50 Mean 0.00 × 100 1.50 × 10−145 6.70 × 10−3 2.60 × 10−12 1.56 × 10−49 9.29 × 100 3.50 × 103 2.58 × 101

Std 0.00 × 100 8.24 × 10−145 3.05 × 10−3 1.52 × 10−12 7.19 × 10−49 3.59 × 100 1.73 × 104 1.89 × 101

200 Mean 0.00 × 100 7.90 × 10−138 7.23 × 10−2 3.25 × 10−5 2.93 × 10−48 1.55 × 102 5.08 × 1077 4.66 × 102

Std 0.00 × 100 3.91 × 10−137 1.18 × 10−2 7.69 × 10−6 1.17 × 10−47 1.44 × 101 2.73 × 1078 6.40 × 101

1000 Mean 0.00 × 100 5.92 × 10−1 1.58 × 100 6.78 × 10−1 1.44 × 10−47 1.19 × 103 3.59 × 10278 1.41 × 103

Std 0.00 × 100 2.92 × 100 1.08 × 10−1 5.77 × 10−1 7.74 × 10−47 2.48 × 101 Inf 6.51 × 101

F3 50 Mean 0.00 × 100 1.03 × 10−293 1.81 × 10−2 3.84 × 10−1 2.01 × 105 9.10 × 103 6.50 × 103 1.48 × 103

Std 0.00 × 100 0.00 × 100 8.60 × 10−3 1.01 × 100 4.50 × 104 4.69 × 103 1.95 × 103 4.64 × 102

200 Mean 0.00 × 100 3.94 × 10−219 7.32 × 10−1 1.98 × 104 4.55 × 106 2.05 × 105 3.16 × 105 8.34 × 104

Std 0.00 × 100 0.00 × 100 1.86 × 10−1 9.23 × 103 1.51 × 106 7.25 × 104 3.10 × 104 2.24 × 104

1000 Mean 0.00 × 100 4.81 × 10−125 3.35 × 101 1.53 × 106 1.36 × 108 5.19 × 106 7.98 × 106 2.27 × 106

Std 0.00 × 100 2.64 × 10−124 6.49 × 100 3.16 × 105 6.32 × 107 2.46 × 106 8.76 × 105 4.56 × 105

F4 50 Mean 0.00 × 100 3.80 × 10−158 3.56 × 10−2 7.25 × 10−4 7.35 × 101 1.94 × 101 1.67 × 101 3.74 × 100

Std 0.00 × 100 2.06 × 10−157 7.14 × 10−3 1.42 × 10−3 1.99 × 101 3.14 × 100 4.24 × 100 7.18 × 10−1

200 Mean 0.00 × 100 3.11 × 10−114 9.10 × 10−2 2.39 × 101 8.41 × 101 3.52 × 101 8.32 × 101 1.93 × 101

Std 0.00 × 100 1.19 × 10−113 1.18 × 10−2 5.51 × 100 1.89 × 101 3.49 × 100 3.80 × 100 1.45 × 100

1000 Mean 0.00 × 100 3.86 × 10−101 1.54 × 10−1 7.88 × 101 7.94 × 101 4.43 × 101 9.81 × 101 3.31 × 101

Std 0.00 × 100 1.90 × 10−100 7.55 × 10−3 3.25 × 100 2.09 × 101 3.19 × 100 6.42 × 10−1 1.52 × 100

F5 50 Mean 4.84 × 100 1.89 × 101 4.83 × 101 4.72 × 101 4.83 × 101 1.64 × 103 7.66 × 102 4.21 × 102

Std 1.47 × 101 1.93 × 101 1.40 × 10−1 7.35 × 10−1 4.05 × 10−1 3.66 × 103 7.47 × 102 2.18 × 102

200 Mean 1.29 × 101 6.23 × 101 1.98 × 102 1.98 × 102 1.98 × 102 3.79 × 106 3.91 × 105 5.98 × 105

Std 3.68 × 101 7.20 × 101 7.40 × 10−2 4.19 × 10−1 1.65 × 10−1 9.40 × 105 1.21 × 105 1.04 × 105

1000 Mean 1.11 × 102 4.01 × 102 1.00 × 103 1.05 × 103 9.94 × 102 1.21 × 108 2.33 × 109 2.95 × 108

Std 2.50 × 102 4.15 × 102 2.71 × 10−1 2.55 × 101 1.03 × 100 1.12 × 107 1.85 × 108 4.28 × 107

F6 50 Mean 1.66 × 10−4 8.78 × 10−2 7.29 × 100 2.57 × 100 1.20 × 100 8.30 × 10−1 9.61 × 100 1.97 × 10−1

Std 5.60 × 10−5 6.54 × 10−2 4.04 × 10−1 4.02 × 10−1 5.39 × 10−1 7.25 × 10−1 1.88 × 100 1.74 × 10−1

200 Mean 3.73 × 10−2 8.26 × 100 3.59 × 101 2.91 × 101 1.11 × 101 1.76 × 104 2.99 × 103 3.21 × 102

Std 3.21 × 10−2 8.04 × 100 1.19 × 100 1.28 × 100 2.90 × 100 2.45 × 103 4.10 × 102 4.66 × 101

1000 Mean 3.34 × 100 6.80 × 101 2.42 × 102 2.02 × 102 6.68 × 101 2.37 × 105 8.04 × 105 4.02 × 104

Std 4.80 × 100 8.81 × 101 1.23 × 100 2.57 × 100 1.52 × 101 1.11 × 104 2.79 × 104 2.17 × 103

F7 50 Mean 1.36 × 10−4 1.96 × 10−4 6.63 × 10−5 3.54 × 10−3 3.97 × 10−3 4.86 × 10−1 1.07 × 10−1 3.97 × 101

Std 1.18 × 10−4 1.69 × 10−4 5.90 × 10−5 1.90 × 10−3 4.79 × 10−3 1.53 × 10−1 2.32 × 10−2 2.76 × 101

200 Mean 1.29 × 10−4 4.32 × 10−4 5.35 × 10−5 1.63 × 10−2 4.14 × 10−3 1.72 × 101 5.40 × 100 2.95 × 103

Std 1.52 × 10−4 3.04 × 10−4 5.09 × 10−5 5.34 × 10−3 4.22 × 10−3 4.14 × 100 7.17 × 10−1 4.68 × 102

1000 Mean 1.17 × 10−4 6.93 × 10−4 8.25 × 10−5 1.55 × 10−1 3.29 × 10−3 1.74 × 103 2.88 × 104 2.39 × 105

Std 1.28 × 10−4 4.85 × 10−4 6.96 × 10−5 3.32 × 10−2 3.73 × 10−3 1.75 × 102 2.72 × 103 7.66 × 103

Processes 2021, 9, 1774 18 of 25

Table 8. Unimodal benchmark function result statistics of the DESMAOA and competitor algorithms in different dimensions.

Function D Metric DESMAOA SMA AOA GWO WOA SSA MVO PSO

F8 50 Mean −2.0949 × 104 −2.0947 × 104 −8.3989 × 103 −9.1468 × 103 −1.8030 × 104 −1.2107 × 104 −1.2350 × 104 −7.6172 × 103

Std 1.54 × 10−4 2.27 × 100 5.06 × 102 1.59 × 103 2.78 × 103 1.00 × 103 1.11 × 103 2.18 × 103

200 Mean −8.3796 × 104 −8.3757 × 104 −2.1657 × 104 −2.7533 × 104 −7.1281 × 104 −3.4381 × 104 −4.0399 × 104 −1.5591 × 104

Std 6.62 × 10−1 6.42 × 101 1.27 × 103 5.65 × 103 1.28 × 104 2.25 × 103 2.30 × 103 6.41 × 103

1000 Mean −4.1892 × 105 −4.1862 × 105 −5.4566 × 104 −8.4602 × 104 −3.5941 × 105 −8.8084 × 104 −1.1041 × 105 −3.3236 × 104

Std 1.25 × 102 5.75 × 102 2.29 × 103 2.28 × 104 5.92 × 104 7.25 × 103 3.94 × 103 1.51 × 104

F9 50 Mean 0.00 × 100 0.00 × 100 1.61 × 10−5 5.24 × 100 1.89 × 10−15 8.82 × 101 2.54 × 102 2.84 × 102

Std 0.00 × 100 0.00 × 100 4.42 × 10−6 7.71 × 100 1.04 × 10−14 2.32 × 101 5.65 × 101 5.01 × 101

200 Mean 0.00 × 100 0.00 × 100 1.34 × 10−3 2.41 × 101 7.58 × 10−15 8.27 × 102 1.90 × 103 2.02 × 103

Std 0.00 × 100 0.00 × 100 1.82 × 10−4 9.14 × 100 4.15 × 10−14 8.74 × 101 1.30 × 102 1.25 × 102

1000 Mean 0.00 × 100 0.00 × 100 3.79 × 10−2 2.06 × 102 0.00 × 100 7.63 × 103 1.46 × 104 1.41 × 104

Std 0.00 × 100 0.00 × 100 1.94 × 10−3 5.67 × 101 0.00 × 100 2.12 × 102 2.44 × 102 2.98 × 102

F10 50 Mean 8.8818 × 10−16 8.8818 × 10−16 1.14 × 10−3 4.3720 × 10−11 4.3225 × 10−15 4.83 × 100 3.56 × 100 1.69 × 100

Std 0.00 × 100 0.00 × 100 1.93 × 10−4 2.44 × 10−11 2.38 × 10−15 1.23 × 100 3.13 × 100 5.70 × 10−1

200 Mean 8.8818 × 10−16 8.8818 × 10−16 1.06 × 10−2 2.18 × 10−5 4.09 × 10−15 1.30 × 101 2.04 × 101 6.61 × 100

Std 0.00 × 100 0.00 × 100 1.01 × 10−3 6.01 × 10−6 2.70 × 10−15 4.61 × 10−1 2.15 × 10−1 3.38 × 10−1

1000 Mean 8.8818 × 10−16 8.8818 × 10−16 3.32 × 10−2 1.89 × 10−2 4.91 × 10−15 1.45 × 101 2.10 × 101 1.60 × 101

Std 0.00 × 100 0.00 × 100 7.69 × 10−4 3.23 × 10−3 2.42 × 10−15 1.94 × 10−1 3.27 × 10−2 2.33 × 10−1

F11 50 Mean 0.00 × 100 0.00 × 100 7.70 × 10−3 2.94 × 10−3 1.34 × 10−2 5.55 × 10−1 1.09 × 100 1.62 × 10−2

Std 0.00 × 100 0.00 × 100 1.91 × 10−2 6.06 × 10−3 5.11 × 10−2 2.74 × 10−1 2.30 × 10−2 1.19 × 10−2

200 Mean 0.00 × 100 0.00 × 100 7.85 × 100 6.27 × 10−3 0.00 × 100 1.46 × 102 2.73 × 101 2.28 × 100

Std 0.00 × 100 0.00 × 100 1.19 × 101 1.48 × 10−2 0.00 × 100 1.88 × 101 3.08 × 100 2.70 × 100

1000 Mean 0.00 × 100 0.00 × 100 1.33 × 104 2.37 × 10−2 0.00 × 100 2.12 × 103 7.25 × 103 2.74 × 102

Std 0.00 × 100 0.00 × 100 2.64 × 103 3.67 × 10−2 0.00 × 100 8.35 × 101 3.01 × 102 1.86 × 101

F12 50 Mean 6.67 × 10−7 6.02 × 10−3 9.06 × 10−1 1.22 × 10−1 3.46 × 10−2 1.26 × 101 5.51 × 100 8.03 × 10−2

Std 6.28 × 10−7 1.22 × 10−2 2.39 × 10−2 7.35 × 10−2 1.86 × 10−2 4.57 × 100 1.37 × 100 1.53 × 10−1

200 Mean 2.01 × 10−5 5.76 × 10−3 8.41 × 10−1 5.42 × 10−1 7.03 × 10−2 7.55 × 103 2.30 × 103 4.84 × 101

Std 1.57 × 10−5 8.11 × 10−3 5.60 × 10−2 6.68 × 10−2 3.52 × 10−2 1.01 × 104 2.88 × 103 3.71 × 101

1000 Mean 1.53 × 10−4 9.67 × 10−3 1.04 × 100 1.26 × 100 1.05 × 10−1 1.16 × 107 4.19 × 109 9.21 × 106

Std 2.46 × 10−4 1.70 × 10−2 1.12 × 10−2 2.99 × 10−1 5.30 × 10−2 4.67 × 106 4.67 × 108 2.30 × 106

F13 50 Mean 1.08 × 10−3 2.52 × 10−2 4.94 × 100 2.03 × 100 1.14 × 100 8.07 × 101 7.29 × 100 1.84 × 10−1

Std 4.27 × 10−3 3.02 × 10−2 6.56 × 10−4 2.80 × 10−1 4.84 × 10−1 1.61 × 101 1.15 × 101 1.16 × 10−1

200 Mean 1.85 × 10−3 4.73 × 10−1 1.97 × 101 1.67 × 101 6.18 × 100 1.61 × 106 1.11 × 105 5.27 × 103

Std 1.29 × 10−3 7.17 × 10−1 9.97 × 10−2 4.32 × 10−1 1.75 × 100 7.60 × 105 1.03 × 105 2.58 × 103

1000 Mean 6.06 × 10−2 3.82 × 100 1.00 × 102 1.21 × 102 4.02 × 101 1.47 × 108 9.13 × 109 8.26 × 107

Std 8.56 × 10−2 3.59 × 100 3.49 × 10−1 7.98 × 100 1.12 × 101 2.91 × 107 8.64 × 108 1.28 × 107

Processes 2021, 9, 1774 19 of 25

Table 9. p-values of the Wilcoxon signed-rank test between DESMAOA and other competitor algorithms on 50 dimensions.

Function DESMAOA
vs. SMA

DESMAOA
vs. AOA

DESMAOA
vs. GWO

DESMAOA
vs. WOA

DESMAOA
vs. SSA

DESMAOA
vs. MVO

DESMAOA
vs. PSO

F1 5.00 × 10−1 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F2 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F3 5.00 × 10−1 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F5 5.37 × 10−3 6.10 × 10−5 1.22 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F6 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F7 8.33 × 10−2 7.30 × 10−2 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F8 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F9 1.00 × 100 6.10 × 10−5 6.10 × 10−5 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F10 1.00 × 100 6.10 × 10−5 6.10 × 10−5 2.44 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F11 1.00 × 100 6.10 × 10−5 2.50 × 10−1 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F12 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F13 2.01 × 10−3 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

Table 10. p-Values of the Wilcoxon signed-rank test between DESMAOA and other competitor algorithms on 200 dimensions.

Function DESMAOA
vs. SMA

DESMAOA
vs. AOA

DESMAOA
vs. GWO

DESMAOA
vs. WOA

DESMAOA
vs. SSA

DESMAOA
vs. MVO

DESMAOA
vs. PSO

F1 2.50 × 10−1 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F2 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F3 6.10 × 10−5 6.10 × 10−5 9.77 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 8.54 × 10−4 6.10 × 10−5 6.10 × 10−5

F6 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.22 × 10−4 6.10 × 10−5

F7 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F8 2.56 × 10−2 6.10 × 10−5 1.22 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F9 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F10 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F11 1.00 × 100 6.10 × 10−5 6.10 × 10−5 1.00 × 100 6.10 × 10−5 4.88 × 10−4 6.10 × 10−5

F12 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.22 × 10−4

F13 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

Table 11. p-Values of the Wilcoxon signed-rank test between DESMAOA and other competitor algorithms on
1000 dimensions.

Function DESMAOA
vs. SMA

DESMAOA
vs. AOA

DESMAOA
vs. GWO

DESMAOA
vs. WOA

DESMAOA
vs. SSA

DESMAOA
vs. MVO

DESMAOA
vs. PSO

F1 3.91 × 10−3 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F2 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F3 6.10 × 10−5 6.10 × 10−5 1.22 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−4 6.10 × 10−5 6.10 × 10−5

F6 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.22 × 10−4 6.10 × 10−5

F7 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 8.36 × 10−3

F8 4.21 × 10−1 6.10 × 10−5 1.22 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F9 1.00 × 100 6.10 × 10−5 6.10 × 10−5 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F10 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F11 1.00 × 100 6.10 × 10−5 6.10 × 10−5 1.00 × 100 6.10 × 10−5 9.77 × 10−4 6.10 × 10−5

F12 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.16 × 10−3

F13 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

Processes 2021, 9, 1774 20 of 25

Table 12. Experimental results of Friedman test on 50, 200, and 1000 dimensions.

Algorithm
D = 50 D = 200 D = 1000

Mean Rank Mean Mean Rank

DESMAOA 1.1923 1 1.2308 1 1.2692 1
SMA 1.9615 2 2.0000 2 2.1923 2
AOA 4.7692 5 4.5385 5 4.4615 4
GWO 4.3077 3 4.3846 4 4.6923 5
WOA 4.3846 4 3.7692 3 3.4615 3
SSA 6.7692 7 7.0000 8 6.1538 7

MVO 6.8462 8 6.7692 7 7.4615 8
PSO 5.7692 6 6.3077 6 6.3077 6

Table 13. The result statistics of CEC2021 test functions for the DESMAOA and competitor algorithms.

Function Metric DESMAOA SMA AOA GWO WOA SSA MVO PSO

CEC_01 Mean 3.4126 × 103 8.4790 × 103 1.4400 ×
1010 8.5800 × 107 8.8200 × 107 3.0497 × 103 2.0700 × 104 2.6509 × 103

Std 3.2484 × 103 4.3942 × 103 5.4800 × 109 2.0600 × 108 1.0800 × 108 2.6586 × 103 1.2300 × 104 2.8147 × 103

CEC_02 Mean 1.6460 × 103 1.7230 × 103 2.3794 × 103 1.7650 × 103 2.3408 × 103 1.9202 × 103 1.7883 × 103 2.0353 × 103

Std 1.8064 × 102 2.0356 × 102 2.5500 × 102 4.0002 × 102 2.8907 × 102 3.0299 × 102 2.8914 × 102 3.3248 × 102

CEC_03 Mean 7.4197 × 102 7.3268 × 102 8.0255 × 102 7.3186 × 102 7.9430 × 102 7.4133 × 102 7.3257 × 102 7.3096 × 102

Std 1.3713 × 101 9.9242 × 100 8.5999 × 100 1.0358 × 101 2.9899 × 101 1.5608 × 101 9.4278 × 100 1.1527 × 101

CEC_04 Mean 1.9024 × 103 1.9015 × 103 3.9200 × 105 1.9028 × 103 1.9116 × 103 1.9015 × 103 1.9014 × 103 1.9011 × 103

Std 1.5132 × 100 4.7478 × 10−1 2.0400 × 105 1.1137 × 100 8.0854 × 100 4.6367 × 10−1 6.4272 × 10−1 6.8410 × 10−1

CEC_05 Mean 4.7672 × 103 2.0900 × 104 4.6200 × 105 1.1600 × 105 5.8000 × 105 3.2100 × 104 6.7593 × 103 5.0581 × 103

Std 4.2784 × 103 4.6800 × 104 1.1100 × 105 1.9300 × 105 8.5200 × 105 7.2900 × 104 4.2953 × 103 3.3481 × 103

CEC_06 Mean 1.7312 × 103 1.7684 × 103 2.2222 × 103 1.7776 × 103 1.8431 × 103 1.7573 × 103 1.7587 × 103 1.8632 × 103

Std 1.2285 × 102 9.1820 × 101 2.0670 × 102 1.1171 × 102 1.0223 × 102 8.6052 × 101 1.0387 × 102 1.0503 × 102

CEC_07 Mean 7.0311 × 103 6.5603 × 103 2.9700 × 106 1.8000 × 104 3.4500 × 105 7.3733 × 103 7.5164 × 103 6.0549 × 103

Std 7.7063 × 103 6.4319 × 103 3.8500 × 106 3.7100 × 104 5.3700 × 105 4.9714 × 103 6.1260 × 103 2.6469 × 103

CEC_08 Mean 2.2974 × 103 2.4032 × 103 3.5700 × 103 2.3384 × 103 2.4289 × 103 2.3012 × 103 2.3861 × 103 2.4193 × 103

Std 2.2368 × 101 3.1043 × 102 3.7790 × 102 9.1745 × 101 3.3946 × 102 1.4399 × 101 2.6287 × 102 3.7983 × 102

CEC_09 Mean 2.7018 × 103 2.7599 × 103 2.9038 × 103 2.7449 × 103 2.7752 × 103 2.7330 × 103 2.7514 × 103 2.7922 × 103

Std 1.0302 × 102 1.0211 × 101 9.9242 × 101 4.4570 × 101 6.2479 × 101 6.4081 × 101 9.5351 × 100 1.0509 × 102

CEC_10 Mean 2.9231 × 103 2.9323 × 103 3.6576 × 103 2.9366 × 103 2.9545 × 103 2.9289 × 103 2.9290 × 103 2.9234 × 103

Std 2.2799 × 101 3.1577 × 101 4.0387 × 102 2.4483 × 101 6.9125 × 101 2.4243 × 101 2.9085 × 101 2.3865 × 101

Average rank 2.3 3.9 7.9 4.6 6.9 3.3 3.7 3.4
Rank 1 5 8 6 7 2 4 3

Processes 2021, 9, x FOR PEER REVIEW 23 of 27

Figure 5. Pressure vessel design problem: model diagram (left) and structure parameters (right).

Table 14. Optimal results for comparative algorithms on the pressure vessel design problem.

Algorithm
Optimal Values for Variables

Optimal Cost
Ts Th R L

DESMAOA 7.943124×10-1 3.927124×10-1 4.288001×101 1.671866×102 5.8363262×103

SMA [33] 7.931×10-1 3.932×10-1 4.06711×101 1.962178×102 5.9941857×103

AOA [34] 8.303737×10-1 4.162057×10-1 4.275127×101 1.693454×102 6.0487844×103

MVO [5] 8.125×10-1 4.375×10-1 4.2090738×101 1.7673869×102 6.0608066×103

WOA [39] 8.12500×10-1 4.37500×10-1 4.2098209×101 1.76638998×102 6.0597410×103

MFO [44] 8.125×10-1 4.375×10-1 4.2098445×101 1.76636596×102 6.0597143×103

GWO [38] 8.125×10-1 4.345×10-1 4.20892×101 1.767587×102 6.0515639×103

MOSCA [45] 7.781909×10-1 3.830476×10-1 4.03207539×101 1.999841994×102 5.88071150×103

LWOA [46] 7.78858×10-1 3.85321×10-1 4.032609×101 2.00×102 5.893339×103

IMFO [47] 7.781948×10-1 3.846621×10-1 4.032097×101 1.999812×102 5.8853778×103

5.2. Three-Bar Truss Design

The aim of the three-bar truss design is to achieve the lowest weight of three-bar truss

with the constraints of stress, deflection, and buckling, which belongs to the field of civil

engineering [48]. In this design problem, two parameters x1 (or A1) and x2 (or A2) were

involved, as shown in Figure 6. The solutions obtained by the DESMAOA and other rep-

resentative algorithms are listed in Table 15. It can be seen that the proposed hybrid

method apparently outperformed other approaches. Moreover, 30 repeated tests were

also performed to evaluate the robustness of the proposed algorithm. The worst value,

mean value, best value, and stand deviation were 2.639079×102, 2.638562×102,

2.638523×102, and 1.0451×10−2. Hence, the statistical results revealed that the proposed al-

gorithm had very stable and superior performance in solving this design problem.

Figure 5. Pressure vessel design problem: model diagram (left) and structure parameters (right).

From Table 13, it can be observed that the DESMAOA was able to obtain the best
results in six functions: CEC_02, CEC_05, CEC_06, CEC_08, CEC_09, and CEC_10. Thus,
we can find that the DESMAOA has good performance in hybrid and composition test
functions. By comparing it with other optimization algorithms, we found that DESMAOA
showed very competitive performance for these CEC2021 test functions. Moreover, the
Friedman’s ranking test was also used to evaluate the performance of DESMAOA. The

Processes 2021, 9, 1774 21 of 25

average rank and rank were also given in Table 13. It can be seen that DESMAOA obtained
the best statistical ranking result among these algorithms.

Therefore, the results of CEC2021 test functions also showed the high performance for
solving optimization problems.

5. Applicability for Solving Engineering Design Problems

This section reports the three classical engineering design problems we employed to
evaluate the capability of DESMAOA to solve practical problems, which were the pressure
vessel design problem, three-bar truss design problem, and tension/compression spring
design problem. In the same way, 30 search agents and 500 iterations were utilized in the
design procedure of engineering problems for a fair comparison. Meanwhile, other related
results of optimization algorithms proposed by scholars are also given and compared with
proposed algorithm here. Detailed descriptions are shown below.

5.1. Pressure Vessel Design

The design of the pressure vessel is an optimization problem with four variables and
four constraints in the industrial field [43]. The lowest cost of pressure vessel was the
ultimate goal. The structure of pressure vessel is shown in Figure 5. The four design
variables were the thickness of the shell (Ts), thickness of the head (Th), inner radius (R),
and length of the cylindrical section (L). Table 14 lists the comparison between DESMAOA
and other competitor algorithms. From Table 14, we can see that DESMAOA was capable
of finding the optimal solution with the lowest cost.

Table 14. Optimal results for comparative algorithms on the pressure vessel design problem.

Algorithm
Optimal Values for Variables

Optimal Cost
Ts Th R L

DESMAOA 7.943124 × 10−1 3.927124 × 10−1 4.288001 × 101 1.671866 × 102 5.8363262 × 103

SMA [33] 7.931 × 10−1 3.932 × 10−1 4.06711 × 101 1.962178 × 102 5.9941857 × 103

AOA [34] 8.303737 × 10−1 4.162057 × 10−1 4.275127 × 101 1.693454 × 102 6.0487844 × 103

MVO [5] 8.125 × 10−1 4.375 × 10−1 4.2090738 × 101 1.7673869 × 102 6.0608066 × 103

WOA [39] 8.12500 × 10−1 4.37500 × 10−1 4.2098209 × 101 1.76638998 × 102 6.0597410 × 103

MFO [44] 8.125 × 10−1 4.375 × 10−1 4.2098445 × 101 1.76636596 × 102 6.0597143 × 103

GWO [38] 8.125 × 10−1 4.345 × 10−1 4.20892 × 101 1.767587 × 102 6.0515639 × 103

MOSCA [45] 7.781909 × 10−1 3.830476 × 10−1 4.03207539 × 101 1.999841994 × 102 5.88071150 × 103

LWOA [46] 7.78858 × 10−1 3.85321 × 10−1 4.032609 × 101 2.00 × 102 5.893339 × 103

IMFO [47] 7.781948 × 10−1 3.846621 × 10−1 4.032097 × 101 1.999812 × 102 5.8853778 × 103

5.2. Three-Bar Truss Design

The aim of the three-bar truss design is to achieve the lowest weight of three-bar
truss with the constraints of stress, deflection, and buckling, which belongs to the field of
civil engineering [48]. In this design problem, two parameters x1 (or A1) and x2 (or A2)
were involved, as shown in Figure 6. The solutions obtained by the DESMAOA and other
representative algorithms are listed in Table 15. It can be seen that the proposed hybrid
method apparently outperformed other approaches. Moreover, 30 repeated tests were also
performed to evaluate the robustness of the proposed algorithm. The worst value, mean
value, best value, and stand deviation were 2.639079 × 102, 2.638562 × 102, 2.638523 × 102,
and 1.0451 × 10−2. Hence, the statistical results revealed that the proposed algorithm had
very stable and superior performance in solving this design problem.

Processes 2021, 9, 1774 22 of 25
Processes 2021, 9, x FOR PEER REVIEW 24 of 27

Figure 6. Three-bar truss design problem: model diagram (left) and structure parameters (right).

Table 15. Optimal results for comparative algorithms on the three-bar truss design problem.

Algorithm
Optimal Values for Variables

Optimal Weight
x1 x2

DESMAOA 7.882549×10-1 4.085642×10-1 2.638523657×102

SMA [33] 7.729316×10-1 4.718874×10-1 2.658067955×102

AOA [34] 7.9369×10-1 3.9426×10-1 2.639154×102

MBA [48] 7.885650×10-1 4.085597×10-1 2.638958522×102

SSA [40] 7.88665414×10-1 4.08275784×10-1 2.638958434×102

MFO [44] 7.88244771×10-1 4.09466906×10-1 2.638959797×102

PSO-DE [49] 7.886751×10-1 4.082482×10-1 2.638958433×102

HSCAHS [50] 7.885721×10-1 4.084012×10-1 2.63881992×102

5.3. Tension/Compression Spring Design

In the design of a tension/compression spring [51], the objective is to obtain the min-

imum optimal weight under three constraints: (1) shear stress, (2) surge frequency, and (3)

deflection. As shown in Figure 7, there were three variables that needed to be considered.

They were the wire diameter (d), mean coil diameter (D), and the number of active coils

(N). The results of DESMAOA and other comparative algorithms are listed in Table 16. By

comparison, the proposed DESMAOA achieved the best solution for this problem, which

was 5.44827×10-2, 4.83109×10-1, and 5.746128×100 for d, D, and N, respectively. Moreover,

the optimal weight was 1.11083×10-2.

Figure 7. Tension/compression spring design problem: model diagram (left) and structure param-

eters (right).

Table 16. Optimal results for comparative algorithms on the tension/compression spring design

problem.

Figure 6. Three-bar truss design problem: model diagram (left) and structure parameters (right).

Table 15. Optimal results for comparative algorithms on the three-bar truss design problem.

Algorithm
Optimal Values for Variables

Optimal Weight
x1 x2

DESMAOA 7.882549 × 10−1 4.085642 × 10−1 2.638523657 × 102

SMA [33] 7.729316 × 10−1 4.718874 × 10−1 2.658067955 × 102

AOA [34] 7.9369 × 10−1 3.9426 × 10−1 2.639154 × 102

MBA [48] 7.885650 × 10−1 4.085597 × 10−1 2.638958522 × 102

SSA [40] 7.88665414 × 10−1 4.08275784 × 10−1 2.638958434 × 102

MFO [44] 7.88244771 × 10−1 4.09466906 × 10−1 2.638959797 × 102

PSO-DE [49] 7.886751 × 10−1 4.082482 × 10−1 2.638958433 × 102

HSCAHS [50] 7.885721 × 10−1 4.084012 × 10−1 2.63881992 × 102

5.3. Tension/Compression Spring Design

In the design of a tension/compression spring [51], the objective is to obtain the
minimum optimal weight under three constraints: (1) shear stress, (2) surge frequency,
and (3) deflection. As shown in Figure 7, there were three variables that needed to be
considered. They were the wire diameter (d), mean coil diameter (D), and the number of
active coils (N). The results of DESMAOA and other comparative algorithms are listed
in Table 16. By comparison, the proposed DESMAOA achieved the best solution for this
problem, which was 5.44827 × 10−2, 4.83109 × 10−1, and 5.746128 × 100 for d, D, and N,
respectively. Moreover, the optimal weight was 1.11083 × 10−2.

Processes 2021, 9, x FOR PEER REVIEW 24 of 27

Figure 6. Three-bar truss design problem: model diagram (left) and structure parameters (right).

Table 15. Optimal results for comparative algorithms on the three-bar truss design problem.

Algorithm
Optimal Values for Variables

Optimal Weight
x1 x2

DESMAOA 7.882549×10-1 4.085642×10-1 2.638523657×102

SMA [33] 7.729316×10-1 4.718874×10-1 2.658067955×102

AOA [34] 7.9369×10-1 3.9426×10-1 2.639154×102

MBA [48] 7.885650×10-1 4.085597×10-1 2.638958522×102

SSA [40] 7.88665414×10-1 4.08275784×10-1 2.638958434×102

MFO [44] 7.88244771×10-1 4.09466906×10-1 2.638959797×102

PSO-DE [49] 7.886751×10-1 4.082482×10-1 2.638958433×102

HSCAHS [50] 7.885721×10-1 4.084012×10-1 2.63881992×102

5.3. Tension/Compression Spring Design

In the design of a tension/compression spring [51], the objective is to obtain the min-

imum optimal weight under three constraints: (1) shear stress, (2) surge frequency, and (3)

deflection. As shown in Figure 7, there were three variables that needed to be considered.

They were the wire diameter (d), mean coil diameter (D), and the number of active coils

(N). The results of DESMAOA and other comparative algorithms are listed in Table 16. By

comparison, the proposed DESMAOA achieved the best solution for this problem, which

was 5.44827×10-2, 4.83109×10-1, and 5.746128×100 for d, D, and N, respectively. Moreover,

the optimal weight was 1.11083×10-2.

Figure 7. Tension/compression spring design problem: model diagram (left) and structure param-

eters (right).

Table 16. Optimal results for comparative algorithms on the tension/compression spring design

problem.

Figure 7. Tension/compression spring design problem: model diagram (left) and structure parame-
ters (right).

Processes 2021, 9, 1774 23 of 25

Table 16. Optimal results for comparative algorithms on the tension/compression spring design problem.

Algorithm
Optimal Values for Variables

Optimal Weight
d D p

DESMAOA 5.44827 × 10−2 4.83109 × 10−1 5.746128 × 100 1.11083 × 10−2

SMA [33] 5.8992 × 10−2 6.23402 × 10−1 3.590304 × 100 1.2128 × 10−2

AOA [34] 5.00 × 10−2 3.49809 × 10−1 1.18637 × 101 1.2124 × 10−2

MVO [5] 5.251 × 10−2 3.7602 × 10−1 1.033513 × 101 1.2790 × 10−2

AO [14] 5.02439 × 10−2 3.5262 × 10−1 1.05425 × 101 1.1165 × 10−2

SSA [40] 5.1207 × 10−2 3.45215 × 10−1 1.2004032 × 101 1.26763 × 10−2

GWO [38] 5.169 × 10−2 3.56737 × 10−1 1.128885 × 101 1.2666 × 10−2

GSA [6] 5.0276 × 10−2 3.23680 × 10−1 1.3525410 × 101 1.27022 × 10−2

WSA [51] 5.168626 × 10−2 3.5665047 × 10−1 1.129291654 × 101 1.267061 × 10−2

6. Conclusions and Future Works

To overcome the shortcomings of basic meta-heuristic algorithms, this paper presents
an effective deep ensemble method of two very new optimization algorithms, i.e., the SMA
and AOA. A preliminary hybrid of these two algorithms was firstly conducted to enhance
the capability of exploration. Then, two strategies were integrated to the hybridized
algorithm to assist it to jump out of the local minima and improve the accuracy of the
solution. The performance of proposed DESMAOA was extensively analyzed by using 23
classical test functions.

First, different combinations of SMAOA and two strategies were analyzed and dis-
cussed. The results revealed the effectiveness of proposed strategies. Then, the results of
DESMAOA were compared with SMA, AOA, and five well-known algorithms. The results
showed that the proposed method had the advantages of both SMA and AOA and that
it also was evidently better than other comparison algorithms. Afterward, experimental
tests in high dimensional environments (50, 200, and 1000) were also investigated among
these comparative algorithms, and the results of scalability test also confirmed the superior
performance of the proposed method. Finally, the proposed DESMAOA was employed to
deal with three engineering design problems. The results show that the proposed method
was good at solving these problems, and in particular it was very stable when solving the
three-bar truss design problem.

As future perspectives, the DESMAOA can be utilized to solve more optimization
problems in other disciplines, such as the feature selection, training of multi-layer per-
ceptron neural network, and image processing. Another investigation is to consider the
implementation of this hybrid method on other optimization algorithms for better opti-
mization performance.

Author Contributions: Conceptualization, R.Z. and H.J.; methodology, R.Z. and H.J.; software, R.Z.
and S.W.; validation, R.Z., H.J. and L.A.; formal analysis, R.Z. and S.W.; investigation, R.Z. and
H.J.; resources, R.Z., H.J. and L.A.; data curation, R.Z.; writing—original draft preparation, R.Z.;
writing—review and editing, R.Z. and H.J.; visualization, Q.L.; supervision, H.J. and L.A.; project
administration, R.Z. and H.J.; funding acquisition, R.Z. and H.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Sanming University introduces high-level talents to
start scientific research funding support project (21YG01, 20YG14), Fujian Natural Science Foun-
dation Project (2021J011128), Guiding science and technology projects in Sanming City (2021-S-8),
Educational research projects of young and middle-aged teachers in Fujian Province (JAT200618),
Scientific research and development fund of Sanming University (B202009), and Funded By Open
Research Fund Program of Fujian Provincial Key Laboratory of Agriculture Internet of Things
Application (ZD2101).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Processes 2021, 9, 1774 24 of 25

References
1. Abualigah, L.; Diaba, A. Advances in sine cosine algorithm: A comprehensive survey. Artif. Intell. Rev. 2021, 54, 2567–2608.

[CrossRef]
2. Abualigah, L.; Diaba, A. A comprehensive survey of the Grasshopper optimization algorithm: Results, variants, and applications.

Neural Comput. Appl. 2020, 32, 15533–15556. [CrossRef]
3. Jia, H.; Lang, C.; Oliva, D.; Song, W.; Peng, X. Dynamic Harris Hawks Optimization with Mutation Mechanism for Satellite Image

Segmentation. Remote Sens. 2019, 11, 1421. [CrossRef]
4. Jia, H.; Peng, X.; Lang, C. Remora optimization algorithm. Expert Syst. Appl. 2021, 185, 115665. [CrossRef]
5. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural

Comput. Appl. 2016, 27, 495–513. [CrossRef]
6. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
7. Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017,

110, 69–84. [CrossRef]
8. Asef, F.; Majidnezhad, V.; Feizi-Derakhshi, M.R.; Parsa, S. Heat transfer relation-based optimization algorithm (HTOA). Soft.

Comput. 2021, 25, 8129–8158. [CrossRef]
9. Corriveau, G.; Guilbault, R.; Tahan, A.; Sabourin, R. Bayesian network as an adaptive parameter setting approach for genetic

algorithms. Complex Intell. Syst. 2016, 2, 1–22. [CrossRef]
10. Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 2010, 23, 689–694.
11. Yao, X.; Liu, Y.; Lin, G. Evolutionary Programming Made Faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102.
12. Chen, G.; Yu, J. Particle swarm optimization algorithm. Inf. Control 2005, 186, 454–458.
13. Gaurav, D.; Vijay, K. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowl. Based Syst. 2018,

159, 20–50.
14. Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic

optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
15. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine predators algorithm: A nature-inspired metaheuristic. Expert

Syst. Appl. 2020, 152, 113377. [CrossRef]
16. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-learning-based optimization: A novel method for constrained mechanical design

optimization problems. Comput. Aided Des. 2011, 43, 303–315. [CrossRef]
17. Satapathy, S.; Naik, A. Social group optimization (SGO): A new population evolutionary optimization technique. Complex Intell.

Syst. 2016, 2, 173–203. [CrossRef]
18. Al-Betar, M.A. β-hill climbing: An exploratory local search. Neural Comput. Appl. 2017, 28, 153–168. [CrossRef]
19. Martínez-Lvarez, F.; Asencio-Cortés, G.; Torres, J.F.; Gutiérrez-Avilés, D.; Melgar-García, L.; Pérez-Chacón, R.; Rubio-Escudero, C.;

Riquelme, J.C.; Troncoso, A. Coronavirus Optimization Algorithm: A bioinspired metaheuristic based on the COVID-19
propagation model. Big Data 2020, 8, 308–322. [CrossRef] [PubMed]

20. Hussain, A.; Muhammad, Y.S. Trade-off between exploration and exploitation with genetic algorithm using a novel selection
operator. Complex Intell. Syst. 2019, 6, 1–14. [CrossRef]

21. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
22. Shehadeh, H.A. A hybrid sperm swarm optimization and gravitational search algorithm (HSSOGSA) for global optimization.

Neural Comput. Appl. 2021, 33, 11739–11752.
23. Kaveh, A.; Rahmani, P.; Eslamlou, A.D. An efficient hybrid approach based on Harris Hawks optimization and imperialist

competitive algorithm for structural optimization. Eng. Comput. 2021, 277, 1–29.
24. Dhiman, G.; Kaur, A. A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization. In Soft

Computing for Problem Solving; Springer: Singapore, 2019; Volume 1, pp. 599–615.
25. Dhiman, G. SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl. Based Syst.

2021, 222, 106926. [CrossRef]
26. Banaie-Dezfouli, M.; Nadimi-Shahraki, M.H.; Beheshti, Z. R-GWO: Representative-based grey wolf optimizer for solving

engineering problems. Appl. Soft Comput. 2021, 106, 107328. [CrossRef]
27. Zhang, H.; Wang, Z.; Chen, W.; Heidari, A.A.; Wang, M.; Zhao, X.; Liang, G.; Chen, H.; Zhang, X. Ensemble mutation-driven salp

swarm algorithm with restart mechanism: Framework and fundamental analysis. Expert Syst. Appl. 2021, 165, 113897. [CrossRef]
28. Yu, C.; Heidari, A.A.; Xue, X.; Zhang, L.; Chen, H.; Chen, W. Boosting quantum rotation gate embedded slime mould algorithm.

Expert Syst. Appl. 2021, 181, 115082. [CrossRef]
29. Zhang, H.; Cai, Z.; Ye, X.; Wang, M.; Kuang, F.; Chen, H.; Li, C.; Li, Y. A multi-strategy enhanced salp swarm algorithm for global

optimization. Eng. Comput. 2020. [CrossRef]
30. Che, Y.; He, D. A Hybrid Whale Optimization with Seagull Algorithm for Global Optimization Problems. Math. Probl. Eng. 2021,

2021, 1–31.
31. Hassan, B.A. CSCF: A chaotic sine cosine firefly algorithm for practical application problems. Neural Comput. Appl. 2021, 33,

7011–7030. [CrossRef]

http://doi.org/10.1007/s10462-020-09909-3
http://doi.org/10.1007/s00521-020-04789-8
http://doi.org/10.3390/rs11121421
http://doi.org/10.1016/j.eswa.2021.115665
http://doi.org/10.1007/s00521-015-1870-7
http://doi.org/10.1016/j.ins.2009.03.004
http://doi.org/10.1016/j.advengsoft.2017.03.014
http://doi.org/10.1007/s00500-021-05734-0
http://doi.org/10.1007/s40747-016-0010-z
http://doi.org/10.1016/j.cie.2021.107250
http://doi.org/10.1016/j.eswa.2020.113377
http://doi.org/10.1016/j.cad.2010.12.015
http://doi.org/10.1007/s40747-016-0022-8
http://doi.org/10.1007/s00521-016-2328-2
http://doi.org/10.1089/big.2020.0051
http://www.ncbi.nlm.nih.gov/pubmed/32716641
http://doi.org/10.1007/s40747-019-0102-7
http://doi.org/10.1109/4235.585893
http://doi.org/10.1016/j.knosys.2021.106926
http://doi.org/10.1016/j.asoc.2021.107328
http://doi.org/10.1016/j.eswa.2020.113897
http://doi.org/10.1016/j.eswa.2021.115082
http://doi.org/10.1007/s00366-020-01099-4
http://doi.org/10.1007/s00521-020-05474-6

Processes 2021, 9, 1774 25 of 25

32. Yue, S.; Zhang, H. A hybrid grasshopper optimization algorithm with bat algorithm for global optimization. Multimed. Tools Appl.
2021, 80, 3863–3884. [CrossRef]

33. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime Mould Algorithm: A new method for stochastic optimization. Future
Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]

34. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods
Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]

35. Mirjalili, S. SCA: A Sine Cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
36. Molga, M.; Smutnicki, C. Test Functions for Optimization Needs. 2005. Available online: http://www.zsd.ict.pwr.wroc.pl/files/

docs/functions.pdf (accessed on 1 October 2021).
37. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.; Agrawal, P.; Kumar, A.; Suganthan, P.N. Problem Definitions and Evaluation

Criteria for the CEC 2021 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization.
Cairo University. Tech. Rep. 2020. Available online: http://home.elka.pw.edu.pl/~{}ewarchul/cec2021-specification.pdf (accessed
on 1 October 2021).

38. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
39. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
40. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for

engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
41. Demsar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.
42. Garcia, S.; Fernandez, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of

experiments in computational intelligence and data mining: Experimental analysis of power. Inform. Sci. 2010, 180, 2044–2064.
[CrossRef]

43. Kannan, B.; Kramer, S.N. An augmented lagrange multiplier based method for mixed integer discrete continuous optimization
and its applications to mechanical design. J. Mech. Des. 1994, 116, 405–411. [CrossRef]

44. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249.
[CrossRef]

45. Rizk-Allah, R.M. Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems. J.
Comput. Des. Eng. 2018, 5, 249–273. [CrossRef]

46. Zhou, Y.; Ling, Y.; Luo, Q. Lévy flight trajectory-based whale optimization algorithm for engineering optimization. Eng. Comput.
2018, 35, 2406–2428. [CrossRef]

47. Pelusi, D.; Mascella, R.; Tallini, L.; Nayak, J.; Naik, B.; Deng, Y. An Improved Moth-Flame Optimization algorithm with hybrid
search phase. Knowl. Based Syst. 2020, 191, 105277. [CrossRef]

48. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm: A new population based algorithm for solving
constrained engineering optimization problems. Appl. Soft Comput. 2013, 13, 2592–2612. [CrossRef]

49. Liu, H.; Cai, Z.; Wang, Y. Hybridizing particle swarm optimization with differential evolution for constrained numerical and
engineering optimization. Appl. Soft Comput. 2010, 10, 629–640. [CrossRef]

50. Singh, N.; Kaur, J. Hybridizing sine-cosine algorithm with harmony search strategy for optimization design problems. Soft.
Comput. 2021. [CrossRef]

51. Baykasoğlu, A.; Akpinar, S. Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems–
part2: Constrained optimization. Appl. Soft Comput. 2015, 37, 396–415. [CrossRef]

http://doi.org/10.1007/s11042-020-09876-5
http://doi.org/10.1016/j.future.2020.03.055
http://doi.org/10.1016/j.cma.2020.113609
http://doi.org/10.1016/j.knosys.2015.12.022
http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf
http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf
http://home.elka.pw.edu.pl/~{}ewarchul/cec2021-specification.pdf
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1016/j.ins.2009.12.010
http://doi.org/10.1115/1.2919393
http://doi.org/10.1016/j.knosys.2015.07.006
http://doi.org/10.1016/j.jcde.2017.08.002
http://doi.org/10.1108/EC-07-2017-0264
http://doi.org/10.1016/j.knosys.2019.105277
http://doi.org/10.1016/j.asoc.2012.11.026
http://doi.org/10.1016/j.asoc.2009.08.031
http://doi.org/10.1007/s00500-021-05841-y
http://doi.org/10.1016/j.asoc.2015.08.052

	Introduction
	Preliminaries
	Slime Mold Algorithm (SMA)
	Arithmetic Optimization Algorithm (AOA)

	The Proposed Hybridized Algorithm (DESMAOA)
	The Hybridization of SMA and AOA
	Random Contraction Strategy (RCS)
	Subtraction and Addition Strategy (SAS)
	The Deep Ensemble of SMA and AOA
	The Computational Complexity of DESMAOA

	Experimental Results and Discussions
	Impacts of Components
	The Classical Benchmark Functions
	Exploration and Exploitation Capability Analysis
	Qualitative Analysis
	Analysis of Convergence Behavior
	Scalability Test

	The IEEE CEC2021 Standard Test Functions

	Applicability for Solving Engineering Design Problems
	Pressure Vessel Design
	Three-Bar Truss Design
	Tension/Compression Spring Design

	Conclusions and Future Works
	References

