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Abstract: Fed-batch crystallization is a crucial step for sugar production. In order to relate parameters
that are difficult to measure (average diameter of the crystals and total mass formed) to other easier
to measure parameters (volume, temperature, and concentration), a model was developed for a B
massecuite vacuum pan composed of mass and energy balances together with empirical relations that
describe the crystal development inside equipment. The generated system of ordinary differential
equations (ODE) had eight parameters which were adjusted through minimization of relative
differences between the model results and experimental data. It was solved through the function
fmincon, available in MATLABTM, which is a deterministic and gradient-based optimization method.
The objective of this paper is to improve the model obtained and, for this purpose, two metaheuristic
functions were used: genetic algorithm and particle swarm. To compare the results, the convergence
time of each algorithm was used as well as the resulting quadratic deviation. The particle swarm
method was the best option among the three used, presenting a shorter execution time and lower
quadratic relative deviation.
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1. Introduction

Crystallization is the main process in the sugar industry for the separation and obtaining of sucrose
in its commercial form, sugar, and is one of the crucial steps to increase the yield from the plant [1].
Among all steps of sugar production, fed-batch crystallization is the most complex in operational terms
since it requires greater care by the plant operators [2].

The industrial sucrose crystallization process consists of three basic equipment: vacuum pan,
crystallizer, and centrifuge. In the vacuum pan, sugar crystals form and grow, at a constant temperature,
in a fed-batch process. In crystallizers, the crystals grow due to the cooling of the massecuite,
which increases supersaturation. The centrifuges separate the crystals formed from the mother liquor
which, once exhausted, is called molasses. In this sequence, about half of the sucrose is recovered as
sugar crystal. To maximize this recovery, crystallization schemes are used, inserting new sequences of
this equipment that are fed by the molasses from the previous step. These sequences can be repeated
once (two massecuites scheme), or twice (three massecuites scheme). It is interesting to note that
because each sequence of these equipment recovers around half of the crystals, a two massecuite
scheme recovers 75% of the sucrose as crystal, while a three massecuite scheme recovers around 87.5%.
Because the cost of establishing a three massecuites plant is 50% higher with a mere 12.5% increase in
sucrose recovery and most Brazilian industries have an ethanol plant attached that consumes molasses,
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the two massecuites scheme is the most widespread in the country [2,3]. Figure 1 shows the flowchart
of the two massecuites scheme.
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As Brazil is among the largest sugar producers in the world, the scheme of the two massecuites
shown in Figure 1 was the one used in the experiments [3]. As local plants also produce electricity with
the steam from the boilers, the massecuite cooling in the crystallizers is not used, which eliminates the
need to reheat the massecuite to feed the centrifuges (cooling increases the viscosity of the mother
liquor) [3,4]. Thus, the crystallization of sucrose occurs only in vacuum pans, making its study the
focus of this work.

The instrumentation of massecuite vacuum pans is a challenge for automation companies due
to the high values of the sensors and large amount of equipment to be monitored [5,6]. In order
to reduce these costs, two models were developed to relate the mean diameter of the crystals D
(4,3) and the total formed crystal mass (FCM)—the data of which are difficult to measure—with the
equipment concentration, volume, and temperature; one for A massecuite vacuum pan and the other
for B massecuite vacuum pan [7]. Both models were solved through the function fmincon, available in
MATLABTM, which is a deterministic and gradient-based optimization method [8,9].

With these models, it is possible to develop soft sensors to measure crystal size and quantity in
the vacuum pan. It is essential that the program is fast and accurate. Thus, to improve the model
obtained for B massecuite vacuum pan, which has eight parameters for adjustment (seven kinetic
parameters and a thermodynamic data), two metaheuristic methods were used—genetic algorithm
(GA) and particle swarm. To compare the results, the convergence time of each algorithm was used as
well as the relative resulting quadratic deviation.

2. Methodology

The equipment used to obtain the experimental data is installed in a São Paulo state sugarcane
industry. During the experiment, the volume, concentration, and temperature data of the fluid were
recorded by the sensors installed in the equipment. Each batch occurred in two hours, and samples
were taken every fifteen minutes through the equipment probe to evaluate both FCM and D (4,3)
through a Nikon Eclipse E200-LED Binocular microscope. Figure 2 shows how the crystals look at the
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end of the crystallization process in B massecuite vacuum pan and Figure 3 shows the distribution
curve of the crystal size at the last point of the first experiment.
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Figure 3. Size distribution curve of the last point of the first experiment.

The mathematical modeling was adapted to a model of a process in pilot scale—batch crystallization
with cooling (using evaporation and cooling the solution)—as developed in [10]. The pilot scale process
starts with approximately 752 cm3 of syrup, operating for 40 min at 60 ◦C and is then cooled for 50 min
to 40 ◦C. During its operation, the massecuite volume decreases since it is not fed with syrup and due
to evaporation of part of its contents. The B massecuite vacuum pan operation starts with one-third of
the equipment volume (10 m3) filled with syrup, occurring for two hours at a constant temperature of
80 ◦C, receiving a variable flow of A molasses so that the volume of equipment reaches its end capacity
(30 m3) in compensating for evaporation of the solvent. The differences between the two processes are
summarized in Table 1.
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Table 1. Differences between batch crystallization and B massecuite pan.

Characteristic Batch Crystallizer B Massecuite Vacuum Pan

Scale Pilot Industrial
Feed Just in beginning Throughout the process

Crystals initial size 0.0019126 cm 0.030 cm
Equipment’s fluid volume Decreases Increases

Operation temperature 60 ◦C, followed by cooling to 42 ◦C 80 ◦C throughout the process

The population balance of crystals of the model used in this paper is calculated using the following
partial differential equation (PDE) [7,10,11]. This PDE is shown in Equation (1):

∂(nV)

∂t
+

V∂(Gn)
∂L

= V(α(L)) (1)

with initial condition
n(L, t) = n0(L, t) t = 0

and the boundary condition

n(L0, t) =
B0

GL=L0

. (2)

α(L) is known as production-reduction term and it groups the rates of birth and destruction of
crystals. Applying the method of moments (MOM) in Equation (1), the following system of ordinary
differential equations (ODEs), presented in Equations (3) and (4), is obtained [10]:

dµ0

dt
= B0 (3)

dµk

dt
= kGµk−1(1 + ln(V)) k = 1 . . . 3 (4)

where V is the mass volume inside the equipment in cm3. The number of moments necessary for
the model resolution can tend to infinity, but due to the use of the empirical equation shown below
(Equation (5)), the moment µ3 enters the mass balance, causing the four moments (µ0, µ1, µ2, and µ3)
to be enough to solve the ODE system [12].

B0 (N◦ particles/cm3 min) and G (cm/min) are the nucleation and growth rates, respectively,
that can be modeled by the empirical power equations presented in Equations (5) and (6) [10]:

B0 = KbSr
bMT

jNr
p (5)

G = KgSr
gNr

q (6)

Nr is the stirrer speed in rpm. The terms Kb (N◦ part/cm3
·min·(g/cm3)j

·(rpm)p), b, j, p, Kg

(cm/min·(rpm)q), g, and q are the kinetic parameters of these equations and were estimated and
optimized using the experimental data.

In Equation (5), MT represents the total mass of crystals and can be obtained using Equation (7):

MT = ρcKvµ3(t) (7)

where ρc is the density of the sucrose in g/cm3, and Kv = π/6 is the characteristic form factor for sugar
crystals [10,13].
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In Equations (5) and (6), Sr represents the relative supersaturation, and is defined by Equation (8):

Sr =
C−Csat

Csat
(8)

where C is the sucrose concentration and Csat is the saturation concentration point, both in g/cm3.
The mass percentage of sucrose in the saturated solution (Brixsat) can be calculated as a function of
temperature using Equation (9) [4,7,14].

Brixsat = 5.1844× 10−4T2 + 1.3575× 10−1T + 64.168 (9)

where T is the temperature in ◦C.
The density of a sucrose solution (ρ) can be obtained by Equation (10) (T in ◦C) [7,15]:

ρ =

(
1 + Brix

(Brix + 200)
54000

)
×

(
1− 0.036

(T − 20)
(160− T)

)
. (10)

The solution concentration, as well as its saturation concentration, can be obtained by Equation (11):

C =
ρ× Brix

100
. (11)

The mass balance of the process is presented in Equation (12) [7]:

msucrose(t) = CmA VmA + msucrose0 (12)

where msucrose and msucrose
0 is the total mass of sucrose (g) in the equipment at time t and 0, respectively,

CmA is the concentration of A-molasses (g/cm3), and VmA is the accumulated flow of A-molasses added
in equipment (cm3). Equation (13) shows that the total mass of sucrose inside the equipment is partly
in solution (CVS) and partly crystallized (ρcVc):

msucrose(t) = C VS + ρcVc. (13)

Equation (14) shows that the volume of the solution (VS) plus the volume of the crystals (Vc) is
equivalent to the volume of massecuite in the equipment (V).

V = VS + Vc (14)

Rearranging:
VS = V −Vc. (15)

Thus, replacing Equations (13) and (14) in Equation (12):

C (V −Vc) + ρcVc = CmA VmA + msucrose0 , (16)

deriving Equation (16) the Equation (17) is obtained:

dC
dt

(V −Vc) + C
(

dV
dt
−

dVc

dt

)
+ ρc

dVc

dt
= CmA

dVmA
dt

. (17)

Substituting Vc for Kvµ3(t) and isolating dC/dt leads to Equation (18):

dC
dt

=

(
1

V − µ3(t)Kv

)
×

(
CmA

dVmA
dt

+ (C− ρc)Kv
dµ3

dt
−C

dV
dt

)
(18)
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with initial condition
C(0) = C0. (19)

The energy balance of B massecuite vacuum pan is shown in Equation (20) [2]:

E(t) = Q−W + Finhin − Fouthout (20)

where E(t) is the internal energy of the system in J, Fin and Fout are the mass input and output in g,
hin and hout the relative enthalpies in J/g. Replacing the Equation (20) variables with those of the B
vacuum pan [7,10]:

mVCCpVC∆TVC = Q−W + mmACpmA∆TmA −mevHev −mc∆Hc. (21)

The subscripts mA and VC represent A molasses and mass in vacuum pan, respectively. Deriving
Equation (21):

mVCCpVC
dT
dt

=
.

Q−
.

W + CpmA∆TmA
dmmA

dt
−

d(mevHev)

dt
− ∆Hc

dmc

dt
. (22)

The heat rate can be obtained by Equation (23) [2]:

.
Q = UlAl

(
T j − T

)
. (23)

Tj is the temperature of the steam in the equipment’s calandria (◦C), Ul is the global coefficient of
thermal exchange (J/(◦C·min·cm2)), and Al is the heat exchanger area (cm2). The work rate is calculated
by Equation (24) [11]:

.
W = −

d(PV)

dt
(24)

where P is the absolute pressure in J/cm3. Replacing Equations (23) and (24) in Equation (22) and
explaining the volumes of A molasses and crystals formed, Equation (25) is obtained:

dT
dt

=

d(PV)
dt −

d(Hevmev)
dt + (ρCpT)mA

dVmA
dt − ∆HcρcKv

dµ3
dt + UlAl

(
T j − T

)
(ρVCp)VC

(25)

with initial condition
T(0) = T0. (26)

∆Hc is the crystallization heat in J/g, which can be calculated by means of Equation (27)
(T in ◦C) [10,13]:

∆Hc = −12.2115− 0.7937T. (27)

Also in Equation (25), mev is the evaporated accumulated mass flow rate and Hev is the vaporization
enthalpy in J/g, which can be obtained by Equation (28) (T in ◦C) [16]:

Hev = 4.1868× (607− 0.7T). (28)

The absolute pressure P, in J/cm3, within the equipment can be obtained using the Antoine
equation presented in Equation (29) (T in ◦C) [16]:

P = 2.21× 101e(6.53247− 7173.79
1.8T+421.4747 ). (29)

The specific heat of sucrose solutions, Cp in J/g ◦C, can be obtained by means of Equation (30)
(T in ◦C) [7,15,17]:

Cp = p1 + p2.Brix + p3.Brix.T + p4.T + p5.T2. (30)



Processes 2020, 8, 1145 7 of 12

The dynamics of the volume of liquid inside the equipment, V in cm3, is described by Equation (31),
which is a cubic correlation obtained through the equipment data during the experiment (t in min):

V(t) = −1.5896t3
− 75.299t2 + 1.9859× 105t + 107. (31)

Table 2 presents the parameters used in this modeling:

Table 2. Process parameters to solve the population, mass, and energy balances.

Parameter Value Unit

Kv π/6 −

Al 1950000 cm2

L0 0.030 cm
p1 4.12553 J/g ◦C
p2 −0.024804 J/g ◦C
p3 0.000067 J/g (◦C)2

p4 0.0018691 J/g (◦C)2

p5 −0.000009271 J/g (◦C)3

TmA 80 ◦C
T0 80 ◦C
Tj 131 ◦C

CmA 1.0085 g/cm3

C0 1.0733 g/cm3

Nr 300 rpm

In Equations (5) and (6), the proposed mathematical model includes seven kinetic parameters
(Kb, b, j, p, Kg, g, and q) specific for each batch crystallization operating condition [10]. These values
need to be adjusted so that the model provides representative results of this process. The global
coefficient of thermal exchange (UI) was also added in the adjustment [7]. Based on this, it sought to
reduce the relative quadratic differences between the experimental data and those obtained by the
model, according to Equation (32):

min
n∑

i=1

(CSDexp,i −CSDmodel,i

CSDexp,i

)2

(32)

In the model deterministic solution, the non-linear optimization tool fmincon, available in
MATLABTM, was used in conjunction with the use of the ode23s [7,10]. In this paper Equation (32) was
also solved using two metaheuristic tools, one based on the genetic algorithm (ga) and the other on
the particle swarm (particleswarm) [18,19]. The results were obtained with the hardware configuration
shown in Table 3:

Table 3. Hardware configuration used in the modeling.

CPU i7 4770k
RAM 2 × DDR3 1600 MHz-08 GB
HD 240 GB SSD SATA 3

The algorithms were executed in order to record the convergence time and the relative quadratic
deviation of the obtained results with the experimental data.
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3. Results and Discussion

Table 4 presents the operational data from experiments 1 and 2:

Table 4. Operational data from experiments 1 and 2 (VmA is accumulative).

Experiment 1 Experiment 2

t (min) VVC
(m3) T (◦C) C

(g/cm3) Sr
VmA
(m3)

VVC
(m3) T (◦C) C

(g/cm3) Sr
VmA
(m3)

0 10.02 78.98 1.072 0.018 0.000 9.87 80.81 1.074 0.003 0.000
5 11.17 80.44 1.079 0.022 1.420 10.64 80.13 1.077 0.021 1.900

10 12.25 80.04 1.079 0.027 2.495 11.74 79.62 1.079 0.035 3.905
15 13.23 80.53 1.084 0.038 3.693 13.28 79.79 1.089 0.063 4.686
20 13.93 79.13 1.085 0.061 4.681 13.77 80.37 1.086 0.047 5.714
25 15.05 80.45 1.088 0.053 6.058 13.83 81.10 1.089 0.046 6.680
30 15.96 79.79 1.090 0.068 7.159 14.80 80.40 1.090 0.059 8.022
35 16.87 80.22 1.091 0.064 8.008 15.91 79.85 1.091 0.072 9.205
40 17.58 79.00 1.093 0.091 9.771 16.86 80.00 1.091 0.070 11.123
45 18.09 80.27 1.094 0.077 11.705 17.74 80.24 1.093 0.071 12.484
50 19.27 78.81 1.094 0.096 13.382 19.43 79.84 1.094 0.083 13.872
55 21.04 80.16 1.094 0.076 14.258 21.03 79.13 1.095 0.096 14.780
60 21.76 80.00 1.095 0.084 16.005 22.67 79.58 1.096 0.092 15.652
65 22.33 80.03 1.098 0.093 17.458 23.88 79.61 1.095 0.088 16.757
70 22.79 80.43 1.096 0.082 18.858 24.20 79.40 1.097 0.100 17.418
75 24.18 79.80 1.098 0.095 20.022 24.85 79.70 1.099 0.102 17.997
80 25.77 79.80 1.101 0.107 21.300 24.81 80.03 1.099 0.095 19.391
85 25.71 80.10 1.102 0.106 22.991 25.82 79.46 1.101 0.112 21.282
90 26.34 80.70 1.104 0.104 24.296 27.40 79.83 1.106 0.125 23.182
95 26.33 79.77 1.108 0.135 25.278 27.65 80.49 1.107 0.119 24.570
100 26.60 79.64 1.111 0.149 26.030 28.42 80.28 1.108 0.127 25.223
105 27.54 79.28 1.113 0.160 27.339 28.89 80.25 1.115 0.154 26.433
110 29.20 80.80 1.118 0.158 28.310 28.80 79.91 1.120 0.180 28.144
115 29.60 80.36 1.126 0.197 29.465 30.12 80.28 1.125 0.194 29.655
120 30.23 80.21 1.134 0.232 30.086 30.87 79.60 1.134 0.241 30.394

In these conditions, the size of formed crystals and their quantity were evaluated, shown in
Table 5:

Table 5. B Massecuite crystals experimental data.

Experimental 1 Experimental 2

t (min) D (4,3) (cm) MCF (ton) D (4,3) (cm) MCF (ton)

0 0.029 3.68 0.030 3.83
15 0.034 5.86 0.034 5.86
30 0.034 6.04 0.036 6.95
45 0.038 8.46 0.039 9.07
60 0.044 12.26 0.042 10.98
75 0.044 12.62 0.043 11.53
90 0.047 15.34 0.047 15.34

105 0.053 21.49 0.049 17.80
120 0.054 23.60 0.056 25.40

With known data from Tables 2, 4 and 5, the ODE system was solved using the two meta-heuristic
methods to reduce the differences between the results of the model obtained in relation to the
two experiments (Equation (32)), thereby, obtaining the unknown parameters—the seven kinetic
parameters and global coefficient of thermal change (Ul) of system—presented in Tables 6 and 7 along
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with the parameters of deterministic solution. Although they have different values, the order of
magnitude remained.

Table 6. Kinetic parameters of crystals nucleation rate.

Solution Kb (N◦ Part/cm3
·min·(g/cm3)j

·(rpm)p) b j p

Deterministic 9.91 × 10−3 8.00 × 10−4 4.00 × 10−3 1.16
GA 9.10 × 10−3 6.00 × 10−4 3.53 × 10−3 1.16
Particle Swarm 9.00 × 10−3 5.11 × 10−4 7.99 × 10−3 0.90

Table 7. Kinetic parameters of crystals growth rate and global coefficient of thermal change.

Solution Kg (cm/min·(rpm)q) g Q Ul (J/(◦C min cm2))

Deterministic 1.89 × 10−6 1.50 × 10−1 4.55 × 10−1 0.8745
GA 4.35 × 10−6 1.51 × 10−1 3.09 × 10−1 0.8770
Particle Swarm 3.81 × 10−6 0.90 × 10−1 2.89 × 10−1 0.8720

Table 8 presents the average execution time of each algorithm and the relative quadratic deviation
obtained at the end of the execution of the algorithm.

Table 8. Quadratic deviations and the execution time of each algorithm.

Solution Deviation2 Time (min)

Deterministic 1.58% 7.12
GA 0.87% 4.27
Particle Swarm 0.77% 2.82

It is noted that the particle swarm method was able to obtain a smaller deviation with a shorter
execution time compared to the other methods. The genetic algorithm also performed better than
the deterministic method used by the fmincon function. It is noteworthy that some point results of
the deterministic solution were able to converge in less time than the average of the other methods,
but without approaching the deviations obtained by them. This occurs due to the high dependence of
the deterministic methods of the initial point, which in most cases leads them to local minimums [20].

In the graphs shown in Figures 4–6, it is possible to verify that all the algorithms made a good
adjustment to the data.
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The correlation coefficient (R2) values were obtained through multiple linear regressions with both
experiments, and followed the behavior of the relative square deviations shown in Table 8. The graphs
obtained for the metaheuristic methods were similar to those obtained for the deterministic method [7].

4. Conclusions

This paper has tried to refine a model obtained for B massecuite vacuum pan by implementing
metaheuristic methods in the optimization of the kinetic parameters and global coefficient of thermal
change. As shown in Table 8 and Figures 4–6, the particle swarm method was the best option among
the three used, presenting a shorter execution time, a lower quadratic relative deviation, and higher
correlation coefficients (R2). Nevertheless, when analyzing the data fit, it is noted that all solutions
were very close, making the execution time the determining variable for choosing the algorithm to be
used, keeping in mind that the development of a soft sensor to measure the size of crystals and their
quantity in the vacuum pan is the target of this work. The solution through the deterministic method
was highly influenced by the initial point, as expected. As a next step to this work, the refinement of
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the model of the operation for A massecuite vacuum pan can be carried out, as well as the use of other
functions for comparison.
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