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Abstract: Bioinks are usually cell-laden hydrogels widely studied in bioprinting performing
experimental tests to tune their rheological properties, thus increasing research time and development
costs. Computational Fluids Dynamics (CFD) is a powerful tool that can minimize iterations and costs
simulating the material behavior using parametric changes in rheological properties under testing.
Additionally, most bioinks have specific functionalities and their properties might widely change
with temperature. Therefore, commercial bioinks are an excellent way to standardize bioprinting
process, but they are not analyzed in detail. Therefore, the objective of this work is to study how three
temperatures of the Cellink Bioink influence shear stress pressure and velocity through computational
simulation. A comparison of three conical nozzles (20, 22, and 25G) for each temperature has been
performed. The results show that shear stress, pressure, and velocity vary in negligible ranges for
all combinations. Although these ranges are small and define a good thermo-responsive bioink,
they do not generate a filament on the air and make drops during extrusion. In conclusion, this bioink
provides a very stable behavior with low shear stress, but other bioprinting parameters must be set
up to get a stable filament width.

Keywords: bioprinting; computational simulation; bioprinting material; commercial bioink;
temperature; level-set; fluid dynamics

1. Introduction

Additive manufacturing technology is currently contributing with many possibilities to tissue
engineering. In this sense, 2D structures created by standard procedures of tissue engineering can
evolve into complex 3D structures using bioprinting [1]. Specifically, bioprinting could produce these
complex structures by superposing biomaterial layers with several biological compounds that finally
can generate artificial tissues and organs [2]. Bioprinting can also minimize rejection risk when patient’s
cells are used in the creation of autologous tissues and/or organs [1]. Bioprinting is usually divided into
four main technologies: micro-extrusion, inkjet, laser-assisted, and stereolithography [3]. However,
properties such as versatility, printing speed, and the possibility of using high viscous materials with a
high cell density make micro-extrusion the most used bioprinting technique [1,3,4].

Because of their high importance in the bioprinting process, several studies analyzed how
different materials affect cellular survival [5,6], printability [7–9], curing or cross-linking [9–12],
and shape fidelity [13,14]. The bioinks used in bioprinting are usually cell-laden hydrogels with
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very specific rheological properties. One of the most important properties is viscosity, which has a
great impact on the bioink behavior of the bioink during bioprinting [15,16]. Most hydrogels are
classified as non-Newtonian fluids, so their viscosity changes when a force is applied. Attending
to this viscous behavior, non-Newtonian fluids are mainly classified into shear thickening (viscosity
rises when shear rate increases) or shear thinning (viscosity decreases when shear rate increases).
Some reviews focus their interest on these hydrogel properties and their influence on the bioprinting
process [17–19]. Specifically, the material concentration was experimentally tested to analyze the
behavior of the hydrogel at different temperatures and to optimize printability [8,9,20]. Usually,
the higher the material viscosity, the higher the printability, at least up to a viscosity value in which
internal pressures generated can damage cells. Additionally, other works analyze how temperature
affects the bioink viscosity [21–24]. All of them conclude that viscosity decreases when temperature is
increased in most bioprinting materials, such as GelMA, alginate and, many other thermo-responsive
materials. However, each bioink must be studied separately to quantify these rheological changes
with temperature. Therefore, the behavior of the bioink flowing inside a nozzle is an important aspect
to determine, but difficult to achieve with experimental tests, mainly due to the small size of the
nozzles, which are hardly sensorized without any scaling technique. In this sense, experimental tests
of bioink behavior are usually focused on bioprinting results, such as printability, shape fidelity, or
cell viability, but not so commonly on the parameters of the process that can influence the results,
such as shear stress, pressure or velocity, during bioprinting. This approach is far from ideal due
to the high number of test iterations and economic costs associated, so computational simulation is
proposed as a very helpful tool to perform parametrical series of studies [25,26]. Computational Fluids
Dynamics (CFD) are widely used to obtain flow behavior in simple (e.g., pipes) or more complicated
(e.g., cranial aneurysms) designs [27]. Specifically, CFD can calculate microfluidics inner parameters,
such as velocity, pressure or shear stress, which are experimentally difficult to measure. It is well
known that nozzle inner pressures, and more specifically shear stress, have a major impact on cell
viability [28]. Therefore, the higher the shear stress is, the lower the cellular viability. Specifically,
Blaeser et al. [29] determined that cells affected by low shear stress (<5 kPa) have high cellular viability
(up to 96%), while increasing the shear stress (5-10 and >10 kPa) results in lower cellular viability
(91% and 76%, respectively). Other authors have performed several computational simulations to
study shear stress [30], non-commercial nozzle geometries [31–33], different bioprinting materials [34]
or tuned rheological properties of specific materials [26,35]. It is important to note that printability
and shape fidelity are bioprinting measures which are highly dependent on the dynamic relationship
between nozzle and printing substrate. For this reason, several studies analyze parameters such as the
separation between nozzle and printing substrate and the XY-plane speed of the nozzle while printing
in detail [9,30,34]. These bioprinting settings will affect the bioink filament width that directly relates
not only to shape fidelity, but also to filament width stability. In this sense, we understand stability,
such as the property of a bioink, produces a well-known width of filament that could be maintained
during the whole bioprinting process. A computational simulation of this dynamic interaction is highly
complex, so, in this study, the interaction with the printing substrate is removed and a preliminary
analysis of the bioink filament stability on the air is proposed.

Computational simulations are used to study several inner nozzle parameters of the nozzle in two
main fields: either referring to the effect of nozzle geometry with fixed bioink properties [31–33,36,37]
or to the bioink behavior with fixed geometry [26,30,34,38–40]. However, very few authors also perform
simulations and studying cells deformation during the bioprinting procedure [37]. Some authors
performed more complex simulations to study droplet formation using a Two-Phase Level Set [40,41]
and to analyze the filament deposition and the final bioprinted shape using a surface tension model [26].
Liravi et al. [40] and Smanipour et al. [41] used COMSOL Multiphysics to simulate the generation
of droplets with a 27G conical tip and a custom-made micro-encapsulation device, respectively.
Both studies focused on obtaining a realistic geometrical droplet compared to an experimental test.
Thus, inner nozzle flow parameters (pressure, velocity or shear stress) were not reported, although
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these parameters are essential to determine whether cells survive. Despite using the same mathematical
model, none of them reported the numerical methods used, so the reproducibility of their research is
hindered. Furthermore, three main differences can be noticed between both works. Firstly, they provide
different levels of detail for the mesh. Liravi et al. [40] used a very specific mesh generation with a
remeshing procedure developed by Wilkes et al. [42] to properly generate droplets. On the contrary,
Samanipour et al. [41] did not even mention the mesh they generated for their simulations. Secondly,
the characterization of the material is done under different fluid assumptions. Liravi et al. [40] used
a Carreau–Yasuda potential model to fit the rheological data of a non-Newtonian material, while
Samanipour et al. [41] used a constant value for viscosity for simplicity. The former method is used
to fit all data, at the expense of using a complex equation, while a simpler Potential Law cannot fit
very low or very high shear rate values. Lastly, regarding materials, Liravi et al. [40] used several
concentrations of a polysiloxane-based hydrogel extruded into the air. Samanipour et al. [41] used
a GelMA hydrogel extruded into oil. Therefore, all previous simulations analyze the behavior of
non-commercial bioinks and, as far as the authors know, no previous computational analysis has been
performed for Cellink Bioink. This bioink is made of alginate with nanocellulose fibers and some
authors have experimentally demonstrated the adequate bioprinting properties of this type of bioink
(good rheological behavior, cellular viability or mechanical response) [43–45]. Among those authors,
Müller et al. have also performed additional CFD computational simulations to study pressure and
shear stress inside a needle [46].

Hence, the objective of this work is to analyze the Cellink Bioink behavior while bioprinting
using computational simulations. Specifically, the pressure, velocity, and shear stress of this bioink are
studied using three temperatures (15, 25, and 37 ◦C) and three conical tips’ geometries (20, 22, and 25G)
as inlet parameters. Additionally, an analysis of the bioink filament volume is performed to measure
its stability undero nine different combinations of temperatures and geometries in simple conditions.

2. Materials and Methods

2.1. Computational Model

Three geometrical models were created and simulated in COMSOL Multiphysics 5.4a (COMSOL
Inc., Burlington, MA, USA, 2018) through a 2D axisymmetric model and a Two-Phase Flow level set
interface. Commercial 20G, 22G, and 25G conical tip geometries (Figure 1) were selected for simulations.
A 22G conical tip is the recommended tip for Cellink Bioink by Cellink in its bioprinting manual [46],
while 20 and 25G were selected because they are the bigger and smaller most used sizes after 22G.
All conical tips were modelled after experimental measurements using a caliper. The geometrical
model and its measurements can be seen in Figure 2. left, where X is 0.30, 0.20, and 0.13 mm for 20,
22, and 25G, respectively. The conical tip was modelled using a trapezium and a rectangle, while the
air was composed of a rectangle and a trapezium. Two different domains were considered in the
geometrical model. The first domain was related to the nozzle where the hydrogel was placed, and the
second domain was the outside of the nozzle and corresponds to the air where the bioprinting material
was ejected (Figure 2 right). Models were meshed using COMSOL-optimized mesh generation for
fluid dynamics with 2D triangular elements obtaining a total of 6353 elements with sizes ranging from
0.015 to 0.335 mm. The average skewness mesh quality is 0.9121 with a minimum value of 0.5715.
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Figure 1. Cellink bioprinting conical tips. From left to right: 20, 22, and 25G. Reproduced with 
permission from Cellink®. 

 
Figure 2. Representation of models’ geometry, in millimeters, based on real measures of a commercial 
conical tip where X = 0.30, 0.20, and 0.13 mm for 20, 22, and 25G, respectively (right). Representation 
of bioink domain (light grey) and air domain (dark grey) with all boundary conditions (left). 
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Level Set method is a Eulerian transport method capable of capturing the interface of two fluids
and the changes of the interface because of motion. This method couples the track of the interface with
a fluids dynamic of each fluid, expressed by incompressible Navier–Stokes equations

ρ
∂u
∂t

+ ρ (u·∇)u = ∇·
[
−pI + µ

(
∇u +∇uT

)]
+ Fst + ρg (1)

∇·u = 0 (2)

where ρ is the density, u is the speed of the fluid, p denotes the pressure, I is the identity matrix, µ is
the fluid viscosity, g is the gravity, and Fst is the surface tension force calculated as

Fst = ∇·


σ

I −
∇φ∣∣∣∇φ∣∣∣

 ∇φ∣∣∣∇φ∣∣∣
T

δ
 (3)

where σ is the surface tension, φ is the contour line of the gas–liquid two-phase flow interface, and δ is
the Dirac delta function formulized as follows

δ =
∣∣∣φ(1−φ)∣∣∣∣∣∣∇φ∣∣∣ (4)

Initially, the flow is assumed to be laminar, but a posterior verification is needed after simulation
by calculating the Reynolds number.

The material used for the simulations was the commercially available Cellink Bioink, composed of
alginate and nanocellulose fibers, with a density equal to 1000 kg/m3. Its surface tension was measured
and calculated using a KRUSS G20/DSA10 drop shape analyzer, obtaining a value of 55.8 mN/m.
Additionally, its viscosity/shear rate at 15, 25, and 37 ◦C was provided by Cellink and fitted to a simple
viscosity Potential Law

µ = m
( .
γ
)n−1

(5)

where µ is the dynamic viscosity (Pa·s), m is the fluid consistency index,
.
γ is the shear rate (s−1),

and n is the flow behavior index. The selection of a simpler viscosity law pursues minimizing the
computational cost, as long as the shear rate is within the proper values. The fitting parameters and
goodness of the fit are listed in Table 1 and in Figure 3.

Table 1. Consistency index (m) and flow behavior index (n) of Cellink Bioink at 15, 25, and 37 ◦C.

Parameters 15 ◦C 25 ◦C 37 ◦C

m (Pa·sn) 92.735 102.53 87.906
n (adimensional) 0.146 0.170 0.208

Goodness of the fit (R2) 0.9985 0.9925 0.9906

All bioink data were introduced in COMSOL as a user defined material and air data was obtained
from COMSOL material library.

In the Level Set method, Cellink Bioink is expressed by φ = 0, the air is expressed by φ = 1,
and the level set interface (transition area between both materials) is expressed by φ = 0.5. The level
set equation can be seen as the volume percentage of liquid in the gas-liquid two-phase flow [47].

Density and viscosity of the involved material can change in the interface following the
level-set functions

ρ = ρair + (ρbioink − ρair)φ (6)

µ = µair + (µbioink − µair)φ (7)
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The track of the level set interface is described in the following equation when it moves under the
velocity field u

∂φ

∂t
+ u·∇φ = 0 (8)

Only the normal component of the velocity is needed because the level-set method considers the
interface movement to be normal to itself. Therefore, Equation (8) can be reformulated as follows

∂φ

∂t
+ un

∣∣∣∇φ∣∣∣ = 0 (9)Processes 2020, 8, x FOR PEER REVIEW 6 of 19 
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The Level Set method needs its function to be a distance function within all simulation to depict
the interface. To assure a correct depict of the interface, numerical reinitialization and stabilization
terms are added to the level set equation. Therefore, the non-conservative reinitialized level set function
can be formulated as

∂φ

∂t
+ u·∇φ = γ∇

ε∇φ+ φ(1−φ)
(∇φ)∣∣∣∇φ∣∣∣

 (10)

where φ is the contour line of the gas-liquid two-phase flow interface, γ is the reinitialization parameter
(approximately the maximum value of the velocity field), and ε is the interface thickness parameter
(usually half of the mesh size in the region). Here, the bioprinting material corresponds to the domain
where φ < 0.5, and air corresponds to the domain where φ > 0.5.

Boundary conditions were set as shown in Figure 2, they were stablished taking into account
that all simulations are a 2D axisymmetric simulation and to make possible a realistic shear-thinning
non-Newtonian flow. In this sense, the laminar flow inlet was set as a full developed flow, described with
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the following equations to assure tangential flow component on the boundary is zero (Equation (11))
and to set the real inlet value (Equation (12))

u− (u·n)n = 0 (11)

[−pI + K] = −pinn (12)

where p is the user average pressure (N/m2), in our simulations 15 kPa, as recommended by Cellink in
their bioprinting manuals for Cellink Bioink [46], K is the viscous stress (N/m2), and pin is the real inlet
pressure (N/m2).

The outlet boundary condition was set as an open boundary condition with no normal stress to
allow bioprinting material to fill this domain and air to leave. Additionally, wall boundaries were set
with a non-slip condition, which means that the velocity on the walls is zero, and level set interface in
the wall is described by

n·

ε∇φ−φ(1−φ) ∇φ∣∣∣∇φ∣∣∣
 = 0 (13)

Because the simulation is an 2D axisymmetric simulation, a symmetry boundary condition was set,
as shown in Figure 2. It was modelled as a combination of Neumann and Dirichlet boundary conditions,
allowing flow to not penetrate this boundary, and vanishing shear stress for an incompressible flow

u·n = 0 (14)(
−pI + µ

(
∇u + (∇u)T

))
n = 0 (15)

2.2. Simulation

Nine simulations of 10 s with a 1 ms step were carried out for each geometry and temperature.
Each simulation was composed of two study steps: Phase Initialization and Time-Dependent. The Phase
Initialization step is in charge of obtaining all initial values of the Level Set method on every mesh
element. In this sense, Phase Initialization is solved in COMSOL using the distance to the initial
interface, Dwi (m), and initializes the level set variable φ to ensure a smoothly variation between 0
and 1 (maximum and minimum values) and to minimize numerical instabilities. Then, this initial
level set value is translated to the Time-Dependent step using the following expressions for the two
different domains

φ0 =
1

1 + eDwi
ε

(16)

in domains initially filled with bioprinting material, and

φ0 =
1

1 + e−Dwi
ε

(17)

in domains initially filled with air, where φ is the domain reference (volumetric fraction), and ε is the
interface thickness (m).

For the Phase Initialization step, a stationary solver was used to calculate the level set initial
values that later were used as t = 0 values by the time-dependent solver of the Time-Dependent step.
Both the Phase initialization and the Time-Dependent steps used a Newton non-linear method in a
fully coupled solver with a Parallel Direct sparse Solver (PARDISO). The Newton non-linear method is
in charge of the successive iterative calculation of all coupled Fluids Dynamics and Level Set formulas
described before. This method evaluates all non-linear expressions and the Jacobean on each iteration
and assures that the calculation error between successive iterations is below the user tolerance (set at
10−6). If the error is higher than tolerance, the damping factor is automatically changed, and the time
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step is reduced. The time step is calculated using a Backward Euler BDF method which is known for
its stability and is the most recommended one for fluid transportation in COMSOL.

The PARDISO is a solver based on LU decomposition that tries to improve the sequential and
parallel sparse numerical factorization performance. This method can use all computer cores to perform
parallel calculations, reducing the simulation time to the detriment of computer expenditure.

3. Results and Discussion

Reynolds numbers were calculated for all simulations obtaining a maximum value of the order of
10−4, which means that the initial assumption of laminar flow is correct. In the same way, the shear
rate of all simulations has been checked, ranging from 0.1 to 155 1/s. Therefore, the Cellink Bioink
behavior curve can be modelled using the Potential Law.

All simulation errors were measured in the velocity field. The error between successive time steps
was below 10−6 in the 18th step with a later average error of 10−13. To achieve these low errors, a very
small-time step (approximately 10−6 s) is calculated by the BDF method, ranging the simulation time
between 3 and 10 h.

3.1. Outlet Pressure

Simulated outlet pressure was measured using a line probe at the very end of the nozzle, specifically
in the initial gas–liquid interface. Figure 4 shows all pressures for 20, 22, and 25G conical tips at 15, 25,
and 37 ◦C.Processes 2020, 8, x FOR PEER REVIEW 9 of 19 
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and 37 ◦C.

Three out of nine simulations present a low-pressure peak in their temporal evolution of maximum
outlet pressure (25 and 37 ◦C for 20G and 37 ◦C for 22G). Additionally, the outlet pressure of 22G
conical tip at 25 ◦C decreases at the end of the simulation, which implies that a low-pressure peak is
being formed beyond the 10 s, similarly to the peaks in the other simulations. In this sense, to properly
analyze and compare the pressure behavior of all simulations, a set of relevant points are identified.
These points are: (1) the maximum value before the low-pressure peak, (2) the minimum pressure
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value, (3) the stable pressure value just after the peak, and (4) the pressure value at the end of the
simulation. All plots were analyzed to identify these key points when available (for plots without peak,
only the value at the end of the simulation is provided) and their pressure values are shown in Table 2.

Table 2. Maximum outlet pressure values (Pa) and time (s).

Geometry Temp Before Peak
(Time) Peak (Time) After Peak

(Time)
End Simulation

(Time)

20G
15 ◦C 1143.6 (4.10) - - 1102.3 (10.00)
25 ◦C 1115.3 (0.67) 409.4 (3.14) 1178.3 (4.10) 1246.9 (10.00)
37 ◦C 1144.3 (0.52) 526.8 (2.31) 1187.6 (3.01) 1269.9 (10.00)

22G
15 ◦C - - - 1585.5 (10.00)
25 ◦C 1505.2 (1.72) - - 1222.4 (10.00)
37 ◦C 1547.2 (1.13) 1074.9 (6.86) 1563.2 (8.01) 1530.9 (10.00)

25G
15 ◦C - - - 1711.3 (10.00)
25 ◦C - - - 1738.2 (10.00)
37 ◦C - - - 1757.1 (10.00)

It might be expected Cellink Bioink at 37 ◦C to have the lowest pressure for each one of the
different conical tips. This supposition is based in the viscosity analysis, as a low viscosity fluid is
supposed to provoke lower inner pressures when compared to a higher-viscosity fluid for the same
conical tip. Specifically, in bioprinting materials, other authors as Bartnikowski et al. [48] have checked
that hydrogels’ viscosity usually decreases when temperature increases. However, there are some
cases, such as Pluronic, that an increment in temperature provokes an increase in viscosity. This specific
material contains (poly (ethylene oxide))100-(poly (propylene oxide))65-(poly (ethylene oxide))100. At a
low temperature, it is an individual block of copolymers but when temperature increases, its internal
structure changes and forms micelles that increase its viscosity [49]. In our case, Cellink Bioink is
composed by alginate and nanocellulose fibers. Its behavior was analyzed in several works [26,43,45,50]
and they all determine that the normal behavior of this kind of bioink is that the higher the temperature
is, the lower the viscosity. Therefore, considering Table 2 and Figure 4, it is clear that this expected
behavior is not obtained by all but one of the analyzed conical tips. More specifically, 22G conical tip
is the only geometry where outlet pressure is higher at 15 ◦C than at 25 and 37 ◦C. This unexpected
behavior is caused by the different inlet volumetric flow in all simulations. In this sense, the total
extruded volume of Cellink Bioink along the time is shown in Figure 5. Additionally, the total volume
values referring to the key points defined before can be seen in Table 3. Therefore, when pressure is
selected as simulation inlet parameter, the volumetric flow cannot be further controlled. It depends on
the fluid viscosity and the inner geometry where the fluid flows.

Therefore, two main considerations can be extracted from the pressure results. On the one hand,
the geometry can change the outlet pressure value. In general, the bigger the outlet diameter is (the
smaller the conical tip gauge), the lower the pressure is (Figure 4). On the other hand, the temperature
has a slight influence on pressure for the same geometry. Despite different bioink temperatures leading
to different pressures, the average differences are around 600 Pa, so they can be considered negligible.

In order to properly compare our pressure results with those from bibliography, we have selected
the values not considering excluding the low-pressure peak values. Thus, our maximum pressure
values vary between 1143 and 1757 Pa. As far as the authors know, Reid et al. [33] have performed
the only study that analyzed this pressure under experimental settings. They found that pressure
ranged from 101 to 107 kPa using “a fluid with similar properties to blood”, such as the bioink, but further
information is not provided. They focused on the geometrical optimization of the inner nozzle geometry
using different shapes and lengths and set up the inlet flow at 0.1 mm3/s. In this regard, the lack of
information about the used bioink makes difficult to compare results. However, it seems that their
high-pressure values are caused by the very small outlet diameter (60 µm) used.



Processes 2020, 8, 865 10 of 18

Processes 2020, 8, x FOR PEER REVIEW 10 of 19 

 

Table 2. Maximum outlet pressure values (Pa) and time (s). 

Geometry Temp Before Peak 
(Time) 

Peak (Time) After Peak 
(Time) 

End Simulation 
(Time) 

20G 
15 °C 1143.6 (4.10) - - 1102.3 (10.00) 
25 °C 1115.3 (0.67) 409.4 (3.14) 1178.3 (4.10) 1246.9 (10.00) 
37 °C 1144.3 (0.52) 526.8 (2.31) 1187.6 (3.01) 1269.9 (10.00) 

22G 
15 °C - - - 1585.5 (10.00) 
25 °C 1505.2 (1.72) - - 1222.4 (10.00) 
37 °C 1547.2 (1.13) 1074.9 (6.86) 1563.2 (8.01) 1530.9 (10.00) 

25G 
15 °C - - - 1711.3 (10.00) 
25 °C - - - 1738.2 (10.00) 
37 °C - - - 1757.1 (10.00) 

 
Figure 5. Total extruded volume for 20, 22, and 22G conical tips using Cellink Bioink at 15, 25, and  
37 °C. 

Table 3. Cellink Bioink extruded volume (mm3) and time (s). 

Geometry Temp 
Before Peak 

(Time) Peak (Time) 
After Peak 

(Time) 
End Simulation 

(Time) 

20G 
15 °C - - - 53.22 (10.00) 
25 °C - 107.06 (3.14) - 208.02 (10.00) 
37 °C - 105.31 (2.31) - 238.33 (10.00) 

22G 
15 °C - - - 17.31 (10.00) 
25 °C - - - 81.20 (10.00) 
37 °C - 90.28 (6.86) - 115.67 (10.00) 

25G 
15 °C - - - 5.00 (10.00) 
25 °C - - - 13.51 (10.00) 
37 °C - - - 19.78 (10.00) 

Therefore, two main considerations can be extracted from the pressure results. On the one hand, 
the geometry can change the outlet pressure value. In general, the bigger the outlet diameter is (the 
smaller the conical tip gauge), the lower the pressure is (Figure 4). On the other hand, the temperature 
has a slight influence on pressure for the same geometry. Despite different bioink temperatures 

Figure 5. Total extruded volume for 20, 22, and 22G conical tips using Cellink Bioink at 15, 25, and 37 ◦C.

Table 3. Cellink Bioink extruded volume (mm3) and time (s).

Geometry Temp Before Peak
(Time) Peak (Time) After Peak

(Time)
End Simulation

(Time)

20G
15 ◦C - - - 53.22 (10.00)
25 ◦C - 107.06 (3.14) - 208.02 (10.00)
37 ◦C - 105.31 (2.31) - 238.33 (10.00)

22G
15 ◦C - - - 17.31 (10.00)
25 ◦C - - - 81.20 (10.00)
37 ◦C - 90.28 (6.86) - 115.67 (10.00)

25G
15 ◦C - - - 5.00 (10.00)
25 ◦C - - - 13.51 (10.00)
37 ◦C - - - 19.78 (10.00)

Although Lee et al. [51] determined that alginate bioinks are not thermo-responsive and the
viscosity variation is not noticeable, our results (Table 3) show that temperature has an important
influence on bioprinting procedure. For a specific conical tip, an increase in temperature provokes
the bioink viscosity to decrease, therefore generating a higher flow rate. Controlling the amount of
extruded material is one of the key points in a successful bioprinting procedure. Most commercial
bioprinters are pneumatic-driven and their main limitation is that the bioink flow cannot be precisely
controlled [52]. To create any tissue, it is necessary to deposit a determined amount of material in a
certain point, so, if temperature influences the bioink flow, other printing parameters, such as XY-speed,
must be carefully selected to achieve proper results.

As mentioned before, there are three simulations with low-pressure peaks and a fourth one where
a peak is foreseen. Comparing Figures 4 and 5, the low-pressure peaks are produced at the exact time an
abrupt change in volumetric flow is observed. Those peaks are produced at different times depending
on the geometry and the temperature: 2.31, 3.14 and 6.86 s for 20G at 37 ◦C, 20G at 25 ◦C, and 22G at
37 ◦C, respectively. At those instants, an initial droplet is formed (Figure 6), which would eventually
fall, taking into account that the cross-area is reduced in such way that it can be considered that the
droplet will fall. This droplet creation also depends on the distance to the printing substrate. In the
light of the presented results, it seems that none of the simulated temperature/geometry configurations
at 15 kPa will form a stable filament but droplets. Simulation time (t = 10 s) is not enough to even
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generate the initial droplet at the lowest temperature (15 ◦C) or lowest inner diameter (25G). The four
images in Figure 6 show the simulations where a droplet is generated and drops (A, B, C) or is about
to drop (D). Table 3 shows that the bioink volume to produce a falling droplet varies depending on
the geometry. In this sense, the total volume of Cellink Bioink hanging from the conical tip is around
106 mm2 on average for 20G, and 90 mm2 for 22G. The formation of droplets depends on factors
such as the volumetric flow, the viscosity of the material, the cross-section area and, in particular
for hydrogels, the distance between the nozzle tip and the printing substrate. In our simulations,
droplets are formed because two main reasons. First, both 20 and 22G have the same wall thickness
(0.2 mm, Figure 2), but the total cross area of the conical tip outlet is 0.50 and 0.38 mm2 for 20 and 22G,
respectively. Since the total droplet volume before falling is dependent on the cross-area in contact as
well as the surface tension and this is constant, the cross-area limits the maximum volume of the droplet.
Secondly, the distance to the printing substrate, defined as “h” by He et al. [9], usually varies from µm
to few mm in a standard bioprinting procedure, but we have set a larger h in our simulations to check
whether Cellink Bioink is capable of creating a stable filament on the air. Therefore, in Figure 6A,B, it is
shown the simulations at the exact time (3.14 and 2.31 s, respectively) when a visible reduction in the
cross-area near the conical tip of 20G at 25 ◦C and 37 ◦C that will cause the droplet fall. Additionally,
in Figure 6D, the falling droplet of 22G at 37 ◦C in t = 6.86 s is represented, while Figure 6C shows
the 22G at 25 ◦C simulation in t = 10 s, in which the total extruded volume is not enough to generate
a falling droplet. According to our results, none of the analyzed combinations can generate a stable
filament flow on the air, due to either the generation of droplets or an insufficient extruded volume.
Therefore, other printing parameters related to these printability and shape fidelity features, such as h
and XY-plane speed, should be correctly selected to create such stable filament flow.Processes 2020, 8, x FOR PEER REVIEW 12 of 19 
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and white color represents the air.

Finally, Figure 4 shows an increase in pressure since 3.01 and 4.10 s in 20G at 37 ◦C and 20G at
25 ◦C, respectively, until the end of the simulations. This final increase in pressure is provoked by the
material accumulation on the printing substrate. This accumulation reaches de conical tip and causes
the rise of pressure to continue to the extruding material. Therefore, to the existing extrusion pressure,
the force needed to push away the already extruded material must be added.
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3.2. Outlet Velocity

Simulated maximum outlet velocity was measured using the same probe as in pressure, at the
very end of the nozzle. Figure 7 shows the maximum velocity for 20, 22, and 25G conical tips for 15, 25,
and 37 ◦C along the time.Processes 2020, 8, x FOR PEER REVIEW 13 of 19 
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Figure 7. Maximum outlet velocity of 20G, 22G, and 25G conical tips using Cellink Bioink at 15, 25,
and 37 ◦C.

Additionally, Table 4 presents all velocity values in the previously defined key points. It can be
observed that there are high-velocity peaks produced at the same time as the low-pressure peaks.
The velocity increment is produced by the droplet material pulling the bioink outside the nozzle.
When the droplet is completely separated from the nozzle, the velocity peak disappears, and the
previous value is restored.

Table 4. Maximum outlet velocities values (cm/s) and time (s).

Geometry Temp Before Peak
(Time) Peak (Time) After Peak

(Time)
End Simulation

(Time)

20G
15 ◦C 0.38 (4.10) - - 0.38 (10.00)
25 ◦C 1.98 (0.67) 2.39 (3.14) 1.94 (4.10) 1.89 (10.00)
37 ◦C 2.64 (0.52) 2.97 (2.31) 2.62 (3.01) 2.56 (10.00)

22G
15 ◦C - - - 0.27 (10.00)
25 ◦C 1.22 (1.72) - - 1.36 (10.00)
37 ◦C 1.84 (1.13) 2.19 (6.86) 1.84 (8.01) 1.85 (10.00)

25G
15 ◦C - - - 0.19 (10.00)
25 ◦C - - - 0.59 (10.00)
37 ◦C - - - 0.92 (10.00)

It would be expected that the outlet velocity depends on the outlet geometry for a certain inlet
flow, as defined by continuum equation. In this sense, and as explained before, an inlet boundary
condition of 15 kPa makes the bioink inlet flow to be dependent on its viscosity and the nozzle
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geometry. This dependency results from a variability in the flow for all simulations, as can be seen in
Figure 5. Similar to the findings in the pressure, there are two important considerations for velocity.
Firstly, for the same geometry, velocity changes with temperature. As explained before, the lower the
temperature is, the lower the viscosity and the higher the extruded volume. An increase in volumetric
flow leads to an increase in velocity according to continuum equation when cross-area remains constant.
Therefore, temperature changes the extrusion velocity. Lastly, the geometry has also an important
influence on velocity, and this influence is higher when the conical tip gauge increases. As shown in
Figure 7 the influence of temperature on velocity is higher at lower gauges, while at higher gauges the
effect of temperature is reduced and the cross-section area reduction plays a major role.

Regarding to other authors velocities, they obtained different results: velocities equal to 5.50
and 7.20 cm/s for a 60 µm diameter conical and needle tip, respectively [33], or 36.70 cm/s for a 28G
gauge needle [36]. Again, differences between their results and our simulations might be explained by
differences in viscosities, which cannot be assured, as authors do not provide this parameter for their
bioink. Nevertheless, our results confirm that differences in cross-area have an important influence
on velocities.

3.3. Shear Stress

Simulated shear stress is measured in the whole inner extruder domain using a surface probe.
Maximum shear rate values are presented in Figure 8 and Table 5.

Processes 2020, 8, x FOR PEER REVIEW 14 of 19 

 

important influence on velocity, and this influence is higher when the conical tip gauge increases. As 
shown in Figure 7 the influence of temperature on velocity is higher at lower gauges, while at higher 
gauges the effect of temperature is reduced and the cross-section area reduction plays a major role. 

Regarding to other authors velocities, they obtained different results: velocities equal to 5.50 and 
7.20 cm/s for a 60 μm diameter conical and needle tip, respectively [33], or 36.70 cm/s for a 28G gauge 
needle [36]. Again, differences between their results and our simulations might be explained by 
differences in viscosities, which cannot be assured, as authors do not provide this parameter for their 
bioink. Nevertheless, our results confirm that differences in cross-area have an important influence 
on velocities. 

3.3. Shear Stress  

Simulated shear stress is measured in the whole inner extruder domain using a surface probe. 
Maximum shear rate values are presented in Figure 8 and Table 5. 

 
Figure 8. Maximum shear stress of 20, 22, and 25G conical tips using Cellink Bioink at 15, 25, and  
37 °C. 

Since shear stress depends on shear rate, and shear rate depends on velocity, it might be expected 
that shear stress behaves similarly to velocity. In any case, the analysis of shear stress must be done 
carefully for non-Newtonians fluids, as the variations in viscosity with shear rate might change the 
shear stress behavior. As can be seen in Figure 8, both shear stress and velocity have a similar 
temporal behavior. 

Results show that shear stress varies with temperature and geometry. For a defined geometry, 
the shear stress decreases when temperature increases, and the temperature influence is reduced 
when the conical tip gauge increases. Additionally, high-shear stress peaks appear at the same time 
as pressure or velocity peaks. Nevertheless, an odd behavior of 25G at 15 °C, and 25G at 25 °C can be 
found, with an increment of shear rate at the end of the simulation, which might be caused by the 
high viscosity of the material at those temperatures where the bioink has a low velocity (shear rate). 
  

Figure 8. Maximum shear stress of 20, 22, and 25G conical tips using Cellink Bioink at 15, 25, and 37 ◦C.

Since shear stress depends on shear rate, and shear rate depends on velocity, it might be expected
that shear stress behaves similarly to velocity. In any case, the analysis of shear stress must be done
carefully for non-Newtonians fluids, as the variations in viscosity with shear rate might change
the shear stress behavior. As can be seen in Figure 8, both shear stress and velocity have a similar
temporal behavior.

Results show that shear stress varies with temperature and geometry. For a defined geometry,
the shear stress decreases when temperature increases, and the temperature influence is reduced when
the conical tip gauge increases. Additionally, high-shear stress peaks appear at the same time as
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pressure or velocity peaks. Nevertheless, an odd behavior of 25G at 15 ◦C, and 25G at 25 ◦C can be
found, with an increment of shear rate at the end of the simulation, which might be caused by the high
viscosity of the material at those temperatures where the bioink has a low velocity (shear rate).

Table 5. Maximum shear rate values (Pa) and time (s).

Geometry Temp Before Peak
(Time) Peak (Time) After Peak

(Time)
End Simulation

(Time)

20G
15 ◦C 220.34 (4.10) - - 220.04 (10.00)
25 ◦C 233.41 (0.67) 243.48 (3.14) 232.46 (4.10) 231.42 (10.00)
37 ◦C 254.71 (0.52) 264.16 (2.31) 254.01 (3.01) 252.66 (10.00)

22G
15 ◦C - - - 207.41 (10.00)
25 ◦C 212.32 (1.72) - - 216.41 (10.00)
37 ◦C 234.10 (1.13) 242.16 (6.86) 234.01 (8.01) 234.48 (10.00)

25G
15 ◦C - - - 205.88 (10.00)
25 ◦C - - - 202.35 (10.00)
37 ◦C - - - 221.96 (10.00)

The measurement of shear stress is done in the whole domain, so the maximum value may not be
found in a fixed position. However, Liu et al. [30] observed that maximum shear stress is placed at the
very tip of the conical tip nozzle. In this regard, the shear stress distribution in all simulations is very
similar to the 22G at 37 ◦C (Figure 9).
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Many authors agree that shear stress is one of the main parameters to analyze and control in order
to reduce cell death during the bioprinting process. Similarly to the finding of Yan et al. [28], our results
specifically confirm that increasing pressures or increasing outlet diameter provoke wall shear stress to
increase. On the contrary, our simulations do not coincide with Liu et al. [30], as we obtain lower shear
stress with higher viscosity of the bioink. This different behavior might be caused by the different inlet
used in our simulations and their experiments, because Liu et al. used a constant mass flow, while we
have used a constant pressure. Müller et al. [45] also studied the shear stress using several nozzles with
a very similar bioink, but in the same way as with Liu et al., their results are not directly comparable
to ours due to the different geometries and inlet pressures. Hence, previous experimental tests are
hardly comparable due to different boundary conditions or scarce definition of bioprinting parameters.
On the other hand, shear stress can be found ranging from approximately 200 Pa to 20 kPa. In this
sense, our results are quite similar to those obtained by Li et al. [37]. Specifically, those related to an
inlet flow of 0.015 mL/s using an alginate hydrogel (0.41 Pa·s).
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According to Blaeser et al. [29], shear stresses below 5 kPa do not have a harmful effect on cells
(cellular viability over 96%). Although our results show high variability in shear stress values, all of
them remain below 5 kPa. Therefore, low damage effect on cells is expected, which allows for high
cellular viability.

4. Conclusions

In this work, several simulations have been done to study the impact of temperature and geometry
in a commercial bioink: Cellink Bioink, its rheological data and inlet pressures were provided by the
company bioprinting protocols. The simulation results demonstrated the suitability of this commercial
bioink to be used in micro-extrusion bioprinting techniques, regardless of the temperature or the conical
tip used (15, 25, and 37 ◦C and 20, 22, and 25G). However, it is recommended to use this bioink at 37 ◦C,
not with the aim of having a minimum shear stress, but in order to obtain the higher volumetric flow.
A higher volumetric flow leads to higher bioprinting speed, so cells are under pressure for a shorter
time. Additionally, shear stress obtained from simulations forecasts a proper cellular viability at all
temperatures, according to previous studies for values under 5 kPa.

Despite the suitability of this studied bioink, simulations have been performed with several
simplifications, such as not-defined wall friction, the use of a bioink without cells inside, and no
interaction between the bioink filament and the printing substrate. Additionally, only conical nozzle
geometries have been simulated. As future works, a comparative study of how conical and needle tips
geometries should deeply analyze the effect of shear stress under different temperatures of the bioink.
Furthermore, other bioprinting settings, such as different height (h) or XY-plane speed, should be
also included in future simulations to analyze the bioink filament in dynamic conditions during its
deposition on the printing substrate. Finally, experimental tests using this commercial bioink with a
3D bioprinter should be performed to validate simulation results with the actual behavior of bioinks.
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