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Abstract: We address the question of how to reduce the inevitable loss of performance that is incurred
by robust multi-stage NMPC due to the lack of knowledge compared to the case where the exact
plant model (no uncertainty) is available. Multi-stage NMPC in the usual setting over-approximates
a continuous parametric uncertainty set by a box and includes the corners of the box and the center
point into the scenario tree. If the uncertainty set is not a box, this augments the uncertainty set and
results in a performance loss. In this paper, we propose to mitigate this problem by two different
approaches where the scenario tree of the multi-stage NMPC is built using sigma points. The chosen
sigma points help to capture the true mean and covariance of the uncertainty set more precisely.
The first method computes a box over-approximation of the reachable set of the system states whereas
the second method computes a box over-approximation of the reachable set of the constraint function
using the unscented transformation. The advantages of the proposed schemes over the traditional
multi-stage NMPC are demonstrated using simulation studies of a simple semi-batch reactor and a
more complex industrial semi-batch polymerization reactor benchmark example.

Keywords: adaptive control; economic model predictive control; multi-stage decision making;
robust model predictive control; parameter estimation; parameter uncertainty; unscented transformation

1. Introduction

The process industries strive to cut down their operational costs while adhering to strict
quality, safety, and environmental specifications. This results in an increased interest in using
optimization-based control strategies to control the plants. Among the different optimization-based
controllers, model predictive control (MPC) is most widely used because of its ability to handle
multivariate systems with constraints efficiently [1,2].

MPC uses a plant model to predict the future evolution of the plant over a certain period, known as
the prediction horizon, and optimizes the future control moves with respect to a performance criterion
(tracking or economic). Only the control input that was obtained for the first time step by solving the
optimization problem is applied to the plant. At the next time step, the MPC optimization problem
is reinitialized with the plant measurements and resolved. This is commonly known as the moving
horizon strategy [3,4].

The performance of any model-based controller depends strongly on the accuracy of the model
used. Often there exists a discrepancy between the true plant dynamics and the model predictions due
to external disturbances, inaccurate model parameters or structural plant–model mismatch. This may
lead to constraint violations or performance degradation when the plant is controlled using the MPC
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controller with a nominal model. Robust MPC strategies take the uncertainties into account when
computing the control moves [5–10]. The most prominent ones are min-max MPC, tube-based MPC,
and multi-stage MPC.

Min-max MPC extends the idea behind min-max optimal control [11] to the MPC framework.
Min-max MPC solves the MPC optimization problem for the worst-case realization of uncertainty [6].
The initial work on min-max MPC does not take into account the presence of future feedback
information, hence it is rather conservative and may easily result in infeasible optimization problems [7].
A closed-loop min-max MPC formulation was presented in [12,13] where the future availability
of measurement information and that the future control moves can be adapted depending on the
realization of the uncertainty is taken into account. The closed-loop formulation requires solving an
optimization over all possible feedback policies and results in a computationally very hard problem.
It can be simplified by assuming a fixed control structure along the prediction horizon [12] at the
expense of reduced performance.

Tube-based MPC [8,14] computes robust control actions using set-theoretic methods. It consists
of two controllers, the nominal controller and the ancillary controller. The nominal controller
considers tightened constraints and uses the nominal model of the plant to predict the trajectory
of the system in the absence of uncertainty. The ancillary controller keeps the true plant dynamics
in the neighborhood of the nominal trajectory in the presence of uncertainty such that the original
constraints are satisfied. Several variants of the tube-based MPC are proposed in the literature with
various levels of computational complexity and conservatism [15–19]. The main differences among
these approaches lie in the computation of the uncertainty region around the nominal trajectory and
the chosen ancillary controller. A variant of tube-based nonlinear MPC without the ancillary controller
has been presented in [20]. The controller constructs a robust forward reachability tube that encloses
the true plant trajectories in the presence of feedback actions using min-max differential inequalities.

Multi-stage MPC models the uncertainty by a tree of discrete scenarios [10]. It leads to an
open-loop formulation of the optimal closed-loop control problem for the uncertainties that are
included in the scenario tree and is less conservative when compared to other robust NMPC
approaches [21]. For a nonlinear system, multi-stage NMPC rigorously guarantees constraint
satisfaction for the uncertainties that are explicitly considered in the scenario tree. In the presence of
continuous-valued uncertainty, representing all possible values of the uncertainty is infeasible. Usually,
a good trade-off between robustness and computational cost is achieved by generating the scenario
tree for all combinations of the minimum, nominal and maximum values of the uncertain parameters
or disturbances [21,22]. This results in a box over-approximation of the true uncertainty region.

The application of any robust control mechanism inevitably results in conservatism and a
loss of performance compared to the case when perfect information about the system is available.
The performance loss of the robust schemes is related to the amount of uncertainty that is considered.
If the parameters are estimated from data, the uncertainty can often be represented by ellipsoids that
define the confidence region of the uncertain parameters [23,24]. Over-approximating an ellipsoidal
confidence region by a box when generating the scenario tree of multi-stage NMPC then leads to an
additional loss of performance.

The scenario tree of multi-stage NMPC can be generated using sigma points such that it more
tightly approximates the uncertainty set, resulting in better performance. The sigma points capture
the mean and the covariance of the uncertainty set [25,26]. In the unscented Kalman Filter [25,27,28],
the sigma points in the state space are propagated to get an approximation of the distribution of the
a-priori state estimate. Here we propagate the uncertain parameters which usually are less than the
dimension of the state space. Then a box over-approximation of the reachable set can be computed
from the propagated sigma points.

Several other papers also develop robust nonlinear model predictive control schemes using the
unscented transformation principle [29–33]. Robust NMPC using the unscented transformation
computes the statistical moments of the process trajectory in the presence of uncertain initial
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conditions and parameters using the unscented transformation [30]. This approach was extended to
stochastic model predictive control with chance constraints in [31] and its advantages were shown
for an automotive emergency braking system with collision avoidance in [32]. These approaches
are open-loop approaches because they do not take into account the presence of future feedback
information. A closed-loop formulation of robust MPC using the unscented transformation can
be obtained by embedding a state estimation scheme based on the unscented transformation
(e.g., the unscented Kalman filter) into the model predictive control optimization problem in order to
achieve robustness against the estimation error [29,34]. Similar work was carried out in this direction
by [33,35,36]. These papers mainly differ in the way in which the unscented Kalman filter equations
are considered in the NMPC optimization problem. Since the complete unscented Kalman filter
equations are embedded into the NMPC optimization problem, these approaches are in general
computationally demanding.

In this paper, we propose two novel computationally efficient closed-loop robust multi-stage
NMPC strategies that are based upon using the sigma points and unscented transformation principles.
The scenario tree of the proposed schemes is generated using sigma points. The sigma points tightly
approximate the uncertainty set in contrast to standard multi-stage NMPC where the uncertainty set is
over-approximated by a box [21] and result in a better performance.

In the first approach, we propagate the sigma points along the prediction horizon to compute
the state mean and the state covariance matrix using the unscented transformation. A box
over-approximation of the reachable set of states is computed along the prediction horizon using
the state mean and the scaled covariance matrix. This takes into account that the dimension of the
uncertain parameters is usually smaller than the dimension of the state space as mentioned before.
The objective and constraint function of the NMPC are evaluated for the mean and for the vertices of
the box over-approximation of the reachable set of states. The initial work done in this direction showed
promising results [37,38]. In the second approach, we compute the mean and the covariance matrix for
the vector of constraint functions evaluated at the state predictions, and a box over-approximation of
the reachable set of the constraint functions is obtained similar to the first approach. This approximates
the reachable set of the constraint functions tighter when compared to the first approach and results in
a better performance.

The proposed schemes take into account the effect of future control moves on the
over-approximated reachable sets of the model and provide a closed-loop formulation as recourse
(dependency of future control inputs on future information) is included. This results in a better
performance when compared to open-loop approaches [30,31]. The proposed approaches require
propagation of sigma points and only a part of the unscented Kalman filter equations have to be
embedded into the NMPC optimization problem when compared to some of the existing robust
NMPC schemes using the unscented transformation [29,30,33], hence the proposed approaches are
computationally less demanding. Full state measurements are assumed, but the schemes can be
combined with existing output feedback schemes [39–41] in a straightforward manner to obtain
robustness against estimation errors.

The closed-loop performance of the controller can further be improved using the measurements
obtained from the controlled system. We use the measurements to enhance the knowledge about
the system via parameter estimation, e.g., in the least-squares sense, and thus to reduce the range of
uncertainty. This is usually referred to as adaptive robust control [42–45]. An adaptive variant
of the proposed robust multi-stage NMPC scheme using sigma points is presented also in this
paper, extending the initial work in this direction in [38]. We compute an optimal ellipsoidal
over-approximation of the intersection of the initial confidence region and the confidence regions
obtained from the measurements and update the scenario tree of the adaptive multi-stage NMPC
whenever a new measurement information from the plant becomes available. This results in a
better performance if the observed measurements provide more information about the uncertain
parameters when compared to the initial confidence region. The performance of the different robust
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NMPC controllers that are proposed in this paper is compared for a simple semi-batch reactor
benchmark example and for a more complex industrial semi-batch polymerization reactor case study.
Extensive simulation studies on the simple case study are performed to analyze the influence of the
tuning parameters on the performance of the different robust multi-stage NMPC schemes.

The remainder of the paper is organized as follows. The problem statement and the unscented
transformation are explained in Section 2. Standard multi-stage NMPC [10,21], and the proposed
multi-stage NMPC using sigma points are described in Section 3. The adaptive variants of the NMPC
schemes are presented in Section 4. The case studies along with the results are discussed in Section 5.
Finally, the paper is concluded in Section 6.

2. Preliminaries

The model of the plant is assumed to be known, yet some of the model parameters are unknown.
The true values of the uncertain parameters are assumed to be contained in a set. The model equations
are given by Equations (1) and (2):

xk+1 = f (xk, uk, d), (1)

where x ∈ Rnx and u ∈ Rnu represent the state and control variables. The vector d ∈ D(d0, P0) ⊂
Rnd represents the uncertain model parameters that are contained in an ellipsoidal set D(d0, P0).
The ellipsoidal set could represent the confidence region of an estimation of the uncertain parameters
and is described by

D(d0, P0) := {d ∈ Rnd |(d− d0)
T P−1

0 (d− d0) ≤ 1}, (2)

where d0 ∈ Rnd represents the nominal values of the uncertain parameters and acts as the center of
the confidence region, and P0 ∈ Rnd×nd represents the parameter covariance matrix and describes
the shape of the confidence region. The set is assumed to form a finite support of the probability
distribution of the model parameters. All the states are considered to be measured directly from the
plant. xm

s ∈ Rnx gives the plant measurement obtained at sth sample, where s = t
ts

, t represents the
current time and ts represents the sampling time of the plant. The state measurements are assumed
to be corrupted by uncorrelated white Gaussian noise with a covariance matrix Σ = diag2(σ) with
σ ∈ Rnx .

The unscented transformation is used to compute the statistics of variables which undergo a
nonlinear transformation [26,46,47]. The principle behind the unscented transformation is illustrated
in Figure 1, where nd = 2 and the uncertain parameters undergo a nonlinear transformation by an
arbitrary function n : R2×2 → R2. The pink shaded region in Figure 1a represents the confidence
region of the uncertain parameters and in Figure 1b it represents the image set of the nonlinear function
n (i.e., n(d), ∀d ∈ D(d0, P0)). 2nd + 1 points known as the sigma points (marked with red squares
in Figure 1a) are chosen such that they capture the true mean and the covariance of the uncertain
parameter set D(·) and are given as Equations (3) and (4):

S(d0, P0) = d0 ∪
( nd⋃

i=1

d0 − P
1
2 ,T
0,[i,?]

)
∪
( nd⋃

i=1

d0 + P
1
2 ,T
0,[i,?]

)
, (3)

where P
1
2 ,T
0,[i,?] gives the transpose of the ith row vector of the matrix square root of P0 ∈ Rnd×nd obtained

using Cholesky decomposition. The sigma points are propagated through the nonlinear function n(·)
to compute the mean and covariance matrix of the transformed points that result from the nonlinear
transformation.

x i = n(di), ∀i ∈ I sp, di ∈ S(d0, P0), (4a)
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x m =
2nd+1

∑
i=1

v[i]x i,
2nd+1

∑
i=1

v[i] = 1, (4b)

X c = κ2
2nd+1

∑
i=1

v[i] (x i − x m)(x i − x m)
T , (4c)

where I sp := {1, · · · , 2nd + 1}, di represents the ith element of the set S(d0, P0) and v ∈ R2nd+1 are the
sigma point weights, so v[i] represents the weight associated with the sigma point di. The sigma points
are propagated using the nonlinear function n(·) using Equation (4a) as shown using red dotted lines in
Figure 1. The mean (x m) and the covariance matrix (X c) are computed using Equations (4b) and (4c).
κ ∈ R is the scaling factor of the covariance matrix. The ellipsoids obtained using the mean and the
covariance matrix for different values of the scaling factor are shown in blue in Figure 1. The function
that computes the mean and covariance matrix of a nonlinear transformation using unscented
transformation can be compactly represented as (x m, X c) = U(κ, x [1:2nd+1]), where x [1:2nd+1] represents
values corresponding to 2nd + 1 evaluations of the nonlinear function n(·) (see Equation (4a)). e.g.,
in Figure 1, the values x 1, x 2, x 3, x 4, and x 5 are represented by x [1:2nd+1].

d[1] x [1]

d
[2
]

x [
2
]

d1
d2

d3

d4

d5
x 1

x 2

x 3

x 4 x 5

κ
=
1

κ ≥
1

x m

(a) (b)

f (d4)

f (d5)

f (d1)
f (d2)
f (d3)

1Figure 1. Principles of the unscented transformation. (a) Confidence region of the uncertain parameters
(b) The image set of the nonlinear function n .

3. Robust Multi-Stage NMPC

3.1. Standard Multi-Stage NMPC

Multi-stage NMPC [21] is a robust NMPC strategy that models the effect of the uncertainties
by a tree of discrete scenarios as shown in Figure 2. Each branch of the scenario tree represents the
trajectory of the system states for a given control input and a particular realization of the uncertainty
that can vary at each point in the prediction horizon. Multi-stage NNPC computes control inputs
while taking into account that measurement information will be available in the future and that the
future control moves can be adapted accordingly, i.e., the control inputs beyond the next time step
become scenario-dependent recourse variables. This allows us to solve a feedback problem as an
open-loop optimization problem. The closed-loop formulation results in a significant improvement in
the performance of the robust controller in comparison to open-loop schemes [7,48].

3.1.1. Multi-Stage NMPC (MS NMPC)

The standard multi-stage NMPC proposed in [10,21] represents uncertainty region by a box.
The scenario tree of multi-stage NMPC is usually built for all possible combinations of the minimal,
maximal, and nominal values of the uncertain parameters. The formulation of standard multi-stage
NMPC solved at time t (sth sampling time) for the case where the parameter uncertainty is given by an
ellipsoidal set S(d0, P0) reads as Equation (5):

min
xj

k ,uj
k ,dj

s+Nr−1

∑
k=s

Nk−s+1
b

∑
j=1

ω
j
k+1l(xj

k+1, ∆uj
k) +

s+Np−1

∑
k=s+Nr

NNr
b

∑
j=1

ω
j
k+1l(xj

k+1, ∆uj
k), ∀(j, k + 1) ∈ I st, (5a)
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subject to

xj
k+1 = f (xp(j)

k , uj
k, dr(j)), ∀ (j, k + 1) ∈ I st, dr(j) ∈ D , (5b)

g(xj
k+1, uj

k) ≤ 0 , ∀ (j, k + 1) ∈ I st, (5c)

uj
k = ul

k if xp(j)
k = xp(l)

k , ∀ (j, k), (l, k) ∈ I st, (5d)

u ≤ uj
k ≤ u, ∀ (j, k) ∈ I st, (5e)

x1
s = xm

s (5f)

d = d0 − diag
1
2 (P0), d = d0 + diag

1
2 (P0), (5g)

D = Ca(d, d0, d). (5h)
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1Figure 2. Scenario tree of the multi-stage NMPC.

The state trajectory along the branches of the scenario tree for different realizations of the
uncertainty is given by Equation (5b). The state prediction xj

k+1 at stage k + 1 and position j in

the scenario tree is obtained using the parent state xp(j)
k , the control input uj

k, and the uncertainty
realization dr(j) ∈ D. The notation is explained briefly using Figure 2 for the optimization problem
solved at time t = 0. The root node is represented by x1

0 and is initialized at current plant measurement
xm

0 . The root node branches into the child node x1
1, x2

1 and x3
1 depending on the applied control inputs

and realization of the uncertainty. For e.g., x1
1 is obtained if the uncertainty d1 is realized and control

move u1
0 is applied at the root node x1

0. The root node x1
0 acts as the parent node for the child nodes x1

1,
x2

1, and x3
1. The nodes x1

0, x1
1, x1

2, x1
3, and x1

4 together form a scenario of the scenario tree. I st denotes
the set of indices (j, k) that occur in a given scenario tree. The set D represents different realizations of
the uncertain parameters considered by the standard multi-stage NMPC. The additional constraints
that must be satisfied at each node in the scenario tree are given by Equation (5c). The controller
cannot anticipate the future realization of the uncertainty i.e., the control decision originating from
the same parent node must be the same (for e.g., in Figure 2 u1

0 = u2
0 = u3

0; u1
1 = u2

1 = u3
1; · · · ).

This is enforced using the non-anticipativity constraints Equation (5d). The inputs are bounded using
Equation (5e), where u and u gives the lower and upper bounds on the control inputs. The robust
NMPC is reinitialized at the plant measurement obtained at the sth sampling time using Equation (5f).
The minimum and maximum values of the uncertain parameters can be obtained using their nominal
values and the parameter covariance matrix from Equation (5g), where diag

1
2 : Rnd×nd → Rnd gives a

vector that contains the square roots of the diagonal elements of the matrix. The uncertain parameter
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values considered by the standard multi-stage NMPC are obtained using Equation (5h), where the
operator Ca(·) generates a set of all possible combinations of the minimum, nominal and maximal
values of the uncertainty. The scenario tree grows exponentially along the prediction horizon (Np)

which can be prevented by stopping the branching after a certain point in time along the prediction
horizon known as the robust horizon (Nr) under the assumption that the uncertainty realization
remains constant after the robust horizon. The objective function of the NMPC optimization problem
is given in Equation (5a), where ∆uk = uk − uk−1 gives the deviation between two consecutive control
moves. The first part of the objective function represents the contribution of all the nodes until the
robust horizon and the second part of the objective function gives the contribution of all the nodes
after the robust horizon on the objective function. Nb is the number of branches at each node in the
scenario tree, where Nb = 3nd for standard multi-stage NMPC. l(·) represents the cost at each node in
the scenario tree and ω

j
k+1 is the weight associated with each node in the scenario tree and is given by

Equation (6):

Nb
k−s+1

∑
j=1

ω
j
k+1 = 1, ∀k ∈ I br,

Nb
Nr

∑
j=1

ω
j
k+1 = 1, ∀k ∈ I ar, (6)

where I br := {s, · · · , s + Nr − 1} and I ar := {s + Nr, · · · , s + Np − 1}.

Remark 1. The stability properties of the robust MPC have been previously analyzed in the literature using
standard tracking objective functions. The first analysis was presented in [7] for linear systems where a min-max
cost function is considered. Several papers have been published for linear stochastic systems and exponential
stability in the mean square sense has been established [49,50]. The setting considered in this paper is more
complex, as it considers nonlinear systems and a deterministic representation of the uncertainty. Initial work
on the stability analysis of standard multi-stage NMPC was carried out in [51]. The consideration of different
weights for the cost function at different nodes in the scenario tree (as opposed to a worst-case or probabilistic
formulation) is a challenge for the stability analysis. The stability property is satisfied in [51] via continuity
assumptions on the model equations. As with other robust approaches, only convergence to a neighborhood
of the equilibrium point can be achieved because the different branches of the uncertainty are considered at
each sampling time, even if the disturbance vanishes [52]. Convergence can be recovered by using a dual-mode
approach as used in other MPC schemes [53]. A rigorous analysis of the stability properties of the multi-stage
approach in the context of economic model predictive control [54,55] is still an open issue.

3.1.2. Multi-Stage NMPC Based on the Vertex Over-Approximation (MS-VA NMPC)

In standard multi-stage NMPC all combinations of the minimum, nominal and maximum values
of the uncertain parameters are chosen to approximate the uncertainty set, this results in 3nd branches
to be considered at each node in the scenario tree. Similar performance with reduced computational
effort can be achieved if we choose only the nominal parameter value along with the vertices of the box
over-approximation of the uncertainty set. This results in only 2nd + 1 branches to be considered at each
node in the scenario tree. We call this multi-stage NMPC based on the vertex approximation (MS-VA).
The formulation of the MS-VA NMPC optimization problem (The formulation of the entire MS-VA,
MS-SB, and MS-CB NMPC optimization problems are provided in S-1 as Supplementary Material.
The formulation of entire adaptive robust multi-stage NMPC optimization problem is provided in S-2
of the Supplementary Material) that is solved at time t (sth sampling time) is similar to the optimization
problem Equation (5), where Equation (5h) is replaced with Equation (7):

D = d0 ∪Cvp(d, d), (7)

Cvp(·) generates the set of all possible combinations of the lower and upper bound of the uncertainty
set along with its nominal value. The objective function of the multi-stage NMPC based on the vertex
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over-approximation approach is similar to the standard multi-stage NMPC Equation (5a) approach
except that Nb = 2nd + 1.

Remark 2. The uncertain parameter values chosen to build the scenario tree of the MS NMPC and MS-VA
NMPC can guarantee robust constraint satisfaction in the presence of continuous-valued uncertainty only if the
parametric monotonicity property of the problem constraints is satisfied (i.e., the sensitivity of the constraints
with respect to the uncertain model parameters has the same sign for all parameter values within the uncertainty
set) [56]. If the parametric monotonic property is not satisfied, robust constraint satisfaction is guaranteed
only for the scenarios that are explicitly considered in the scenario tree of the multi-stage NMPC. In such cases,
the multi-stage approach can be combined with reachability analysis as shown in [57] to obtain robust constraint
satisfaction but this increases the computational complexity of the resulting robust control problem.

3.2. Multi-Stage NMPC Using Sigma Points

In standard multi-stage NMPC (see Section 3.1), the uncertainty set is over-approximated even if
more precise information about the uncertain parameters is available and this results in a performance
loss. This will be avoided using sigma points. The sigma points (2nd + 1 sample points from the
boundary of the ellipsoidal uncertainty set) and their propagation can be used to approximate the box
of the predicted uncertain states more tightly. In this paper, we propose two methods to make use of
the propagation of the sigma points, in first method the box over-approximation of the reachable set
of states is computed and in the second method a box over-approximation of the reachable set of the
constraint function is employed.

3.2.1. Multi-Stage NMPC Based on the Box Over-Approximation of the Reachable Set of States
(MS-SB NMPC)

The key difference between MS-VA NMPC (Section 3.1.2) and MS-SB NMPC is illustrated in
Figure 3 for a system with two states, two uncertain parameters, and a given control input at time
k = 1. Figure 3a represents the parametric space. The pink shaded region represents the ellipsoidal
confidence region of the uncertain parameters given by Equation (2). Black dots (vertices of the box
over-approximation of the uncertainty set) and red squares (sigma points obtained using Equation (3))
represent the parameter samples that are chosen to build the scenario tree of MS-VA NMPC and MS-SB
NMPC, respectively. The nominal value of the uncertain parameter (d1 = d0) is considered in the
scenario tree of both MS-VA NMPC and MS-SB NMPC.

Figure 3b,c represent the reachable set in the state space (X1
1) by a pink shaded region. Black circles

in Figure 3b represent the state predictions obtained on the branches of the scenario tree of MS-VA
NMPC (e.g., x1

1 is obtained for the uncertainty realization d1 when the control input u1
0 is applied).

Red squares in Figure 3c represent the state predictions obtained on the branches of the scenario tree
of MS-SB NMPC. The inner (blue) ellipsoid represents the state covariance ellipsoid described by
the state mean and the state covariance matrix (i.e., κ = 1) computed using the state predictions of
MS-SB NMPC. The state covariance matrix is then enlarged such that the box over-approximation
(represented by the dotted blue line) of the extended ellipsoid (represented by the outer (blue) ellipsoid)
over-approximates the reachable set of states. Blue squares represent the state mean and the vertices of
the box over-approximation of the reachable set for which the objective and constraint functions of
MS-SB NMPC are evaluated.
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1Figure 3. Comparison between multi-stage NMPC based on the vertex approximation and multi-stage
NMPC based on the box over-approximation of the reachable states set. (a) Confidence region of the
uncertain parameters (b) Predictions and the reachable set for MS-VA NMPC. (c) Predictions, reachable
set and over-approximation of the reachable set for MS-SB NMPC.

Tuning of the Scaling Factor κ

The scaling factor κ for the enlargement of the ellipsoidal set that results from the propagation of
the sigma points can be computed such that the box over-approximation of the scaled state ellipsoids
tightly over-approximates the entire reachable set of model (1) by solving nx optimization problems
given below (Equation (8)), where j ∈ I x := {1, · · · , nx},

κ̂s,[j] = max
κ,xwc

0 ,uwc
0 ,dwc∈D,di∈S(d0,P0)

∣∣∣xwc
1,[j] − xm,[j]

∣∣∣√
Xp

c,1,[j,j]

, (8a)

subject to

xi
1 = f (xwc

0 , uwc
0 , di), ∀ i ∈ I sp, di ∈ S(d0, P0), (8b)(

xm,1, Xp
c,1

)
= U(1, x[1:2nd+1]

1 ), (8c)

xwc
1 = f (xwc

0 , uwc
0 , dwc), (8d)

g(xwc
0 , uwc

0 ) ≤ 0, (8e)

Xp
c,1,[j,j] > 0, (8f)

where v is the weight associated with the sigma points and is chosen such that ∑2nd+1
i=1 v[i] = 1.

di represents the ith uncertain parameter combination in the set of uncertain parameters obtained using
S(·). The objective function Equation (8a) gives the maximum value by which the state ellipsoid should
be scaled, for the box over-approximation of the scaled state ellipsoid to enclose the reachable set with
respect to state j. The state mean (xm,1) and the unscaled state covariance matrix (Xp

c,1) are obtained

using Equation (8c), where x[1:2nd+1]
1 represents all the model predictions obtained using the sigma

points given by Equation (8b). The vector xwc
1 denotes the prediction obtained in the whole operating

region of the plant that results in the maximum value of the objective function. Vectors xwc
0 and uwc

0
are bounded by operating region of the plant using Equation (8e). The constraint Equation (8f) makes
sure that the optimization problem becomes infeasible if the sensitivity of the states for the uncertain
parameters is 0 (i.e., the uncertain parameter does not influence the state predictions). The scaling
factor corresponding to the different states is given by Equation (9):

κ̂?x,[j] =

{
0, if Equation (8) is infeasible

κ̂x,[j], otherwise
, ∀j ∈ I x (9)

where κ̂?x ∈ Rnx . The scaling factor is set to 0 if the uncertainty considered to build the scenario
tree of the MS-SB NMPC does not influence the states. The scaling factor κ?x is given by ||κ̂?x||∞.
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This makes sure that the box over-approximation of the scaled state ellipsoids encloses the reachable
set of model (1) provided the optimization problem Equation (8) is solved to its global optimum. It was
shown to be feasible in [58], where an optimization problem similar to Equation (8) was solved to its
global optimum.

The formulation of the MS-SB NMPC problem that is solved at time t (sth iteration), where Jso

represents the value of the objective function of MS-SB NMPC until the robust horizon reads as
Equation (10):

min
xj

k ,uj
k ,dj ,xj

m,k ,X j
c,k

Jso(X
q
k+1, ∆uj

k) +
s+Np−1

∑
k=s+Nr

NNr
b

∑
j=1

ω
j
k+1l(xj

k+1, ∆uj
k), ∀(j, k + 1) ∈ I st, (10a)

subject to:

Equations (5b)–(5f),

D = S(d0, P0), (10b)(
xq

m,k+1, Xq
c,k+1

)
= U(κx,k, x[(q−1)Nb+1:qNb ]

k+1 ), ∀k ∈ I br, q ∈ I b(k), (10c)

xq
m,k+1 = xq

m,k+1 − diag
1
2 (Xq

c,k+1), ∀k ∈ I br, q ∈ I b(k), (10d)

xq
m,k+1 = xq

m,k+1 + diag
1
2 (Xq

c,k+1), ∀k ∈ I br, q ∈ I b(k), (10e)

X q
k+1 = xq

m,k+1 ∪Cvp(xq
m,k+1, xq

m,k+1), ∀k ∈ I br, q ∈ I b(k), (10f)

g(x, u(q−1)Nb+1
k ) ≤ 0 , ∀k ∈ I br, q ∈ I b(k), x ∈ X q

k+1. (10g)

where I b(k) := {1, · · · , Nb
k−s}. The scenario tree of MS-SB NMPC considers Nb = 2nd + 1 branches at

each node. The sigma points of the ellipsoidal uncertainty set are obtained from Equation (10b). xq
m,k+1

and Xq
c,k+1 represent the state mean and the state covariance matrix obtained while applying control

input u(q−1)Nb+1
k at the parent state xp((q−1)Nb+1)

k . Referring to Figure 2, X2
c,2 is computed using the

state predictions x4
2, x5

2 and x6
2 that were obtained from the parent state x2

1 when the control input u4
1

(u4
1 = u5

1 = u6
1 due to non-anticipativity constraints) is applied. The state covariance matrix is scaled

using a scaling factor κx,k which is a tuning parameter. The scaling factor κx,k must be chosen in a
way that the box over-approximation of the state ellipsoid described by the state mean and the state
covariance matrix encloses the reachable states sets of model (1) along the robust horizon. The scaling
factor κx,s for the first stage can be obtained by solving the optimization problem Equation (8) and
is given as κ?x . At the next stage, the true plant state can be present anywhere in the predicted box
over-approximation of the reachable states set but the scenario tree of MS-SB NMPC branches from
the predictions obtained using the sigma points. This introduces additional uncertainty in the initial
condition of the states and can be overcome by increasing the scaling factor κx,k by a constant factor β

(i.e., κx,k = βκx,k−1 s.t.β ≥ 1). The lower and upper bounds on the state predictions can be obtained
using Equations (10d) and (10e). The vertices of the box over-approximation of state ellipsoid along
with its center are obtained in Equation (10f). The constraint function g(·) is satisfied for the vertices
of the box over-approximation of the predicted state ellipsoids using Equation (10g). The objective
function of the MS-SB NMPC scheme is given in Equation (10a), and reads as Equation (11):

Jso(X
q
k+1, ∆uj

k) =
s+Nr−1

∑
k=s

Nk−s+1
b

∑
q=1

2nx+1

∑
i=1

ω
i+q−1
k+1 L(xi, ∆u(q−1)Nb+1

k ), (11)

where xi represents the ith element of the set X i
k+1. ω

i+q−1
k is the weight associated with vertices

of the box over-approximation of the state ellipsoids along with its mean and is chosen such that
Equation (12):
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Nk−s+1
b

∑
q=1

2nx+1

∑
i=1

ω
i+q−1
k = 1, ∀k ∈ I br. (12)

Remark 3. The tuning of scaling factor κx,k plays a major role in the performance of MS-SB NMPC. If a very
large value for κx,k is chosen, the reachable states of model (1) are loosely over-approximated and this results in
performance loss. On the contrary, if a very small value is chosen, the reachable states are under approximated
and this may result in a constraint violation. The scaling factor κx,s can be obtained by solving optimization
problem 8 so that the reachable states set is tightly over-approximated by a box. The robust constraint satisfaction
of MS-SB NMPC is guaranteed only if the MS-SB NMPC optimization problem Equation (10) is recursively
feasible and the following condition is satisfied:

max
x∈X q

k+1

g(x, u(q−1)Nb+1
k ) ≥ max

x∈Xq
k+1

g(x, u(q−1)Nb+1
k ), (13)

where Xq
k+1 represents the reachable states set of model (1). The condition Equation (13) is satisfied if the

predicted box over-approximation of the state ellipsoid encloses the set of reachable states and the sensitivity of the
constraints with respect to the states does not change its sign. Otherwise, κx,0 should be tuned based on posterior
analysis using simulation studies such that the condition Equation (13) is satisfied. In this work, the recursive
feasibility of multi-stage NMPC using sigma points is verified using simulation studies. The scaling factor κx,k
is proportional to the value of the parameter β. The parameter β is chosen based on posterior analysis using
simulation studies in a way that the predicted state ellipsoids enclose the reachable states sets along the robust
horizon. Theoretical guarantees on the stability and recursive feasibility of the multi-stage NMPC using sigma
points are not considered in this work but can be achieved by choosing a full robust horizon (i.e., Nr = Np) and
tuning β systematically [17,59]. This will be part of our future work.

Remark 4. The performance of multi-stage NMPC using sigma points can be improved using an ellipsoidal
over-approximation of the reachable states set and satisfying the constraints for all states contained in the
ellipsoidal set [60]. One of the major drawbacks of this approach is that if nx > 2nd + 1, the number of sigma
points chosen to build the scenario tree may not be sufficient to capture the covariance matrix of the nonlinear
transformation and may lead to degenerate ellipsoids. In this case, it is not feasible to compute an ellipsoidal
over-approximation of the reachable states set using 2nd + 1 sigma points but a box over-approximation can still
be computed using the scaled covariance matrix as explained in Section 3.2. An ellipsoidal over-approximation
of the reachable set of states can be computed by choosing nx + 1 sigma points from the uncertainty set instead of
2nd + 1 sigma points.

3.2.2. Multi-Stage NMPC Based on the Box Over-Approximation of the Reachable Set of the Constraint
Function (MS-CB NMPC)

MS-CB NMPC computes a box over-approximation of the reachable set of the constraint function
g(·) using the predictions obtained from the scenario tree of the multi-stage NMPC. The difference
between MS-VA NMPC (Section 3.1.2), MS-SB NMPC (Section 3.2.1) and MS-CB NMPC (Section 3.2.2)
is shown in Figure 4 for a system with two states, two uncertain parameters, a given control input and
two constraints at time k = 1 in the prediction horizon. Figure 4a is same as the Figure 3a. Figure 4b–d
represent the reachable sets in the constraint space. The pink shaded region represents the image of
the constraint functions for the reachable states of the model (1). The control inputs u1

1, u2
1, u3

1, u4
1 and

u5
1 are equal due to the non-anticipativity constraint.

Black dots in Figure 4b represent the value of the constraint function for the state predictions
obtained on the branches of the scenario tree of MS-VA NMPC. It is assumed that g(x, u) ≤ 0.
The optimal control input computed using MS-VA NMPC satisfies the constraints only for the
parameter combinations considered in its scenario tree. The box over-approximation of the parametric
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confidence region introduces additional uncertainty in the parameter values which may result in a large
back-off from the bounds (shown for g[2](x, u) in Figure 4b) and may result in a loss of performance.
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d4 d5
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g
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] (x
,u

)

(c)

g[1](x, u)

g
[2
] (x
,u

)

(d)

g[2](x, u)[1]

g
[2
] (x
,u

)

gmκ
=
1κ =

κ
?

1Figure 4. Comparison between multi-stage NMPC based on the vertex approximation, multi-stage
NMPC based on the box over-approximation of the set of reachable states, multi-stage NMPC based on
the box over-approximation of the reachable set of the constraint function. (a) Confidence region
of the uncertain parameters. (b) Constraint space when the system is controlled using MS-VA
NMPC. represents the constraint function values obtained for the nodes in the scenario tree.
(c) Constraint space when the system is controlled using MS-SB NMPC. represents the constraint
function value obtained using the vertices of the box over-approximation of the set of reachable states
along with its state mean Equation (10f). (d) Constraint space when the system is controlled using
MS-CB NMPC.

The blue squares in Figure 4c represent the values of the constraint functions evaluated using the
state mean and vertices of the box over-approximation of the set if reachable states obtained using the
MS-SB NMPC approach. The optimal control input satisfies the constraints only for the state values
that are obtained using the vertices of the box over-approximation of the state ellipsoids and its mean.
This may lead to constraint violation and can be avoided as mentioned in Remark 3. In addition,
the box over-approximation of the set of reachable states may add an additional region and may lead
to an additional loss of performance (can be seen for g[2](x, u) in Figure 4b).

The red squares in Figure 4d represent the values of the constraint function evaluated using
the state predictions obtained on the branches of the scenario tree of MS-CB NMPC. The inner
(brown) ellipsoid represents the ellipsoid computed using the unscented transformation with scaling
factor κ = 1. The constraint covariance matrix is then scaled using the scaling factor κ so that the
box over-approximation (brown dotted lines) of the extended ellipsoidal set (outer brown ellipsoid)
over-approximates the reachable set of the constraint function. MS-CB NMPC computes optimal
control inputs such that all the elements within the reachable set of the constraint function satisfy
g(x, u) ≤ 0 as shown in Figure 4d even in the presence of a nonlinear model and nonlinear constraints,
in contrast to the MS-VA and MS-SB NMPC approaches.

Tuning of the Scaling Factor κ

The scaling factor κ can be computed in a way that the box over-approximation of the
constraint function ellipsoid represented by scaled constraint covariance matrix and mean tightly
over-approximates the reachable set of the constraint function g(·) by solving nc optimization problem
similar to Equation (8), where nc represents the number of constraints. The vector κ̂x in Equation (8a) is
replaced with κ̂c and the model predictions obtained in Equations (8b) and (8d) are propagated through
the constraint function along with the control input uwc

0 to compute the box over-approximation of the
reachable set of the constraint function. The final scaling factor κ?c is then given by ||κ̂?c ||∞. The full
formulation of the optimization problem solved to obtain the scaling factor κ?c is provided in the
Supplementary Material in Section S3. The optimization problems must be solved to their global
optimum [61,62] which of course is computationally costly but are computed once before solving the
NMPC optimization problem.
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The formulation of MS-CB NMPC optimization problem solved at time t (sth iteration) reads as
Equation (14):

min
xj

k ,uj
k ,dj ,gq

m,k ,Gq
c,k

s+Nr−1

∑
k=s

Nk−s+1
b

∑
j=1

ω
j
k+1l(xj

k+1, ∆uj
k) +

s+Np−1

∑
k=s+Nr

NNr
b

∑
j=1

ω
j
k+1l(xj

k+1, ∆uj
k), ∀(j, k + 1) ∈ I st, (14a)

subject to:

Equations (5b)–(5f), (10b),

gj
n,k+1 = g(xj

k+1, uj
k), ∀ (j, k + 1) ∈ I st, (14b)(

gq
m,k+1, Gq

c,k+1

)
= U(κc,k, g[(q−1)Nb+1:qNb ]

n,k+1 ), ∀k ∈ I br, q ∈ I b(k), (14c)

gq
m,k+1 + diag

1
2 (Gq

c,k+1) ≤ 0, ∀k ∈ I br, q ∈ I b(k), (14d)

The scenario tree of MS-CB NMPC considers Nb = 2nd + 1 branches at each node. The value of
the constraint function evaluated at each node is given by Equation (14b). The mean (gm) and the
covariance of the constraint function (Gc) are obtained using Equation (14c). The constraint covariance
matrix is scaled using a scaling factor κc,k. The κc,s (scaling factors for the first stage) is chosen as κ?c
and is obtained by solving nc offline optimization problems as explained before. The scaling factor
after the first stage κc,k is chosen as βκc,k−1, where β ≥ 1. The constraint Equation (14d) ensures that
all the elements inside the box over-approximation of the constraint function reachable set satisfy
the constraints. The objective function Equation (14a) of MS-CB NMPC is similar to the standard
multi-stage NMPC Equation (5a). MS-CB NMPC guarantees robust constraint satisfaction if the scaling
factor κ?c is obtained by solving an offline global optimization problem and the optimization problem
Equation (14) is recursively feasible. The recursive feasibility of the MS-CB NMPC optimization
problem must be verified using simulation studies.

A short comparison between the complexity of the different robust multi-stage NMPC
optimization problems is given in Table 1. The optimization variables required for the computation of
the model predictions, the control inputs, and the unscented transformation (mean and covariance
matrix) and the constraints, and the unscented transformation and constraints for enforcing control
bounds, non-anticipativity constraints, additional constraints on all nodes in the scenario tree and
the reachable sets (obtained using the mean and the covariance matrix) are reported in Table 1.
The scenario tree of MS NMPC and MS-VA NMPC considers 3nd and 2nd + 1 branches at each
node whereas MS-SB and MS-CB NMPC schemes consider 2nd + 1 branches at each node in their
scenario tree. The number of nodes considered in the scenario tree of all formulations is given by
(NNr

b − 1)/(Nb − 1) + NNr
b (Np − Nr + 1). The computational complexity of MS NMPC and MS-VA

NMPC grows exponentially with respect to the number of uncertain parameters whereas it grows
linearly for MS-SB and MS-CB NMPC approaches. MS-VA NMPC considers more scenarios in
its scenario tree than MS-SB and MS-CB NMPC approaches for nd > 2 and may require more
computational effort than MS-SB and MS-CB NMPC to solve them. The MS-SB and MS-CB NMPC
optimization problems require additional optimization variables for the computation of the mean and
of the covariance matrix of the nonlinear transformation and are reported as OV of the unscented
transformation in Table 1. The computational complexity of the MS-CB NMPC increases with the
number of constraints (nc) due to the computation of the constraint covariance matrix, whereas
the computational complexity of MS-SB NMPC increases with the number of states (nx) due to
computation of the state covariance matrix. MS-SB NMPC may result in a performance loss when
compared to MS-CB NMPC due to the box over-approximation of the set of reachable states. The scaling
factor of MS-SB NMPC must be chosen properly for robust constraint satisfaction (see Remark 3).
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Table 1. A complexity comparison of different robust multi-stage NMPC optimization problem. Nbr and
Nar represent the number of nodes considered in the scenario tree for k < Nr and for Nr ≤ k ≤ Np and

are given by NNr
b −1

Nb−1 and NNr
b (Np − Nr + 1). Nn = Nbr + Nar. OV—Optimization variables.

Number of MS MS-VA MS-SB MS-CB

samples (Nb) in set D 3nd 2nd + 1 2nd + 1 2nd + 1

O
V

model equations Nnnx+ Nnnx+ Nnnx+ Nnnx+
control inputs (Nn − 1)nu (Nn − 1)nu (Nn − 1)nu (Nn − 1)nu
unscented transformation − − (n2

x + nx)Nbr (n2
c + nc)Nbr

co
ns

tr
ai

nt
s

model equations Nnnx+ Nnnx+ Nnnx Nnnx+
control bounds 2(Nn − 1)nu+ 2(Nn − 1)nu+ 2(Nn − 1)nu+ 2(Nn − 1)nu+

non-anticipativity constraints (Nb−1)Nr+1−nu
Nb−2

nu(Nb−1)Nr+1−nu
Nb−2

nu(Nb−1)Nr+1−nu
Nb−2

nu(Nb−1)Nr+1−nu
Nb−2

additional constraint g(·) (Nn − 1)nc (Nn − 1)nc (Nn − 1)nc (Nn − 1)nc
unscented transformation − − (n2

x + nx)Nbr (n2
c + nc)Nbr

enforcing g(·) for reachable set − − (2nx + 1)Nbrnc Nbrnc

4. Adaptive Robust Multi-Stage NMPC

The principle of adaptive control suggests using all the information available from the system
during operation to improve the performance of the controller. The measurement information can
be used to improve the knowledge about the plant thereby reducing the range of the uncertainty
associated with the uncertain parameters (i.e., in our case the size of the ellipsoidal set D(d0, P0)).
An estimate of the uncertain parameters can be obtained by solving a least-squares estimation problem
using all the measurements collected until time t (i.e., s measurements from the plant). The formulation
of the estimation problem reads as Equation (15):

ds = arg min
d

s

∑
k=0

(xm
k+1 − xk+1)

TQ(xm
k+1 − xk+1) (15a)

subject to

xk+1 = f (xk, uk, d), ∀k ∈ {0, · · · , s− 1}, (15b)

where ds represents the nominal value of the uncertain parameters and Q denotes the inverse of the
variance-covariance matrix of the measurement noise. x0 represents the initial condition of the system
and uk denotes the sequence of control inputs that have been applied to the plant.

If we assume that the model is structurally identifiable, and white Gaussian noise is superposed on
the measurements, a joint-confidence region of parameter estimates depending upon the information
content of the data can be obtained according to the Cramer-Rao inequality [24]. The parametric
variance-covariance matrix can be over-approximated using the inverse of the Fisher information
matrix. The Fisher information matrix is given by Equation (16):

Fs =
s

∑
k=0

sT
k Qsk, (16)

where Fs denotes the Fisher information matrix obtained using measurements observed from
time 0 to t, and sk = ∂xk

∂d represents the sensitivities of the states with respect to the uncertain
parameters in the presence of full state measurements. A joint-confidence ellipsoid centered at the
value of the least-squares parameter estimate that bounds the values of the least-squares parameter
estimates (under different realizations of the measurement noise) with a prescribed confidence level

α(z) = 2√
π

∫ z√
2

0 e−y2
dy ( z = 1 corresponds to the 1σ confidence level of a Gaussian distribution) is

given by Equation (17):
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(d− ds)
T Fs(d− ds) ≤ nd Fdist(nd, s nx − nd, α(z)), (17)

where Fdist represents the upper α(z) quantile of the Fisher distribution with nd and s nx − nd degrees
of freedom in the numerator and denominator (see Equation (18)). Ps represents the upper bound on
the parameter covariance matrix with the confidence level α(z)

Ps =
1

nd Fdist(nd, s nx − nd, α(z))
F−1

s . (18)

We assume that the true realization of the uncertain parameter always lies within the confidence
region of the uncertain parameter obtained with the chosen confidence level α(z) (i.e., we assume that
D(ds, Ps) has a confidence level of 100% instead of α(z) which is approximately satisfied if z = 3 sigma).

Remark 5. The computational complexity of the optimization problem (15) increases as t → ∞. This can be
overcome by solving the parameter estimation problem (15) in a moving horizon fashion [63], where instead of
using all the available measurements from the plant only the recent measurements within a window of chosen
size are considered.

4.1. Adaptive Standard Multi-Stage NMPC

The adaptive standard multi-stage NMPC (A-MS) and adaptive multi-stage NMPC based on
the vertex over-approximation (A-MS-VA) update their scenario trees based on the observed plant
measurements. A tight box over-approximation of the intersection between the initial ellipsoidal
confidence region D(d0, P0), and the ellipsoidal confidence region can be obtained using the observed
measurements, by solving the following optimization problem (Equation (19)).

ds, ds = arg min
do ,do∀o∈I d

−
nd

∑
o=1

do,[o] +
nd

∑
o=1

do,[o] (19a)

subject to

(do − d0)
T P−1

0 (do − d0) ≤ 1, ∀o ∈ I d, (19b)

(do − ds)
T P−1

s (do − ds) ≤ 1, ∀o ∈ I d, (19c)

(do − d0)
T P−1

0 (do − d0) ≤ 1, ∀o ∈ I d, (19d)

(do − ds)
T P−1

s (do − ds) ≤ 1, ∀o ∈ I d. (19e)

where I d := {1, · · · , nd}. nd parameter combinations (do and do) are chosen to compute the lower and
upper bounds on the ellipsoidal intersection region [64].

The formulation of the A-MS NMPC optimization problem solved at time t (sth iteration) is
similar to the MS NMPC optimization problem Equation (5), where Equation (5g) and Equation (5h)
are replaced by Equation (20):

d[o] = ds,[o], d[o] = ds,[o], ∀o ∈ I d, (20a)

D = Ca(d, ds, d). (20b)

The formulation of the A-MS-VA NMPC optimization problem solved at time t (sth iteration)
is similar to the A-MS NMPC problem, where instead of Equation (20) the following equations
(Equation (21)) are used

d[o] = ds,[o], d[o] = ds,[o], ∀o ∈ I d, (21a)

D = ds ∪Cvp(d, d). (21b)
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d and d represent the lower and upper bounds on the uncertain parameters which bound the
intersection of the ellipsoidal confidence regions D(d0, P0) and D(ds, Ps). Whenever a measurement
from the plant becomes available, the new parameter estimates are obtained by solving the least-squares
estimation problem Equation (15), and the corresponding parameter covariance matrix is computed
using Equation (18). The optimization problem Equation (19) is then solved to compute the new bounds
on the uncertain parameters. The scenario trees of the A-MS/A-MS-VA NMPC optimization problem
are updated according to Equation (20) or Equation (21) and the adapted optimization problem is
solved to compute the optimal control input which is applied to the plant.

4.2. Adaptive Multi-Stage NMPC Using Sigma Points

The adaptive multi-stage NMPC formulation based on the box over-approximation of the
reachable states set (A-MS-SB) and the adaptive multi-stage NMPC formulation based on the box
over-approximation of the reachable constraint function set (A-MS-CB) also use updated information
about the uncertain parameters to improve the performance of multi-stage NMPC using sigma points.
The true value of the uncertain parameters will be contained in the intersection region between
the ellipsoidal confidence region used in the previous A-MS-SB and A-MS-CB NMPC optimization
problem, and the confidence region of the uncertain parameters obtained in addition using the current
plant measurements (D(ds, Ps)). We can compute an ellipsoidal over-approximation of the intersection
region between two ellipsoids as shown in [65] and then update the scenario tree of A-MS-SB and
A-MS-CB NMPC using the sigma points that result from the over-approximating ellipsoid.

The formulations of A-MS-SB NMPC and A-MS-CB NMPC are similar to MS-SB NMPC and MS-CB
NMPC Equations (10) and (14) where Equation (10b) are replaced by the following Equation (22):

P?
s = (1− φ(1− φ)(ds − d?s−1)

T P−1
s F̂−1(P?

s−1)
−1(ds − d?s−1))F̂−1, (22a)

d?s = F̂−1(φ(P?
s−1)

−1d?s−1 + (1− φ)P−1
s ds), (22b)

D = S(d?s , P?
s ), (22c)

where F̂ = φ(P?
s−1)

−1 + (1 − φ)P−1
s . d?s and P?

s give the mean and the covariance matrix of an
over-approximating ellipsoid which over-approximates the intersection between D(d?s−1, d?s−1) and
D(ds, ds), and are obtained using Equations (22a) and (22b). At time t = 0, d?s−1 = d0 and P?

s−1 = P0.
φ is a degree of freedom of the A-MS-SB and A-MS-CB NMPC optimization problem and is bounded
between 0 and 1. The scenario tree is generated using the parameter combinations given as the sigma
points of the over-approximating ellipsoid D(d?, P?), see Equation (22c).

Remark 6. The key difference between the adaptive version of multi-stage NMPC (A-MS NMPC and
A-MS-VA NMPC) and multi-stage NMPC using sigma points (MS-SB NMPC and MS-CB NMPC) lies
in the approximation of the intersection region between two ellipsoids to generate the scenario tree. Standard
adaptive multi-stage NMPC approaches over-approximate the intersection region by a minimum perimeter box
which can be obtained by solving the optimization problem Equation (19). The adaptive version of multi-stage
NMPC using sigma points over-approximates the intersection region by an ellipsoid, which is computed as a
part of the NMPC optimization problem. In the NMPC optimization problem an over-approximating ellipsoid
from a set of candidate ellipsoids is computed that is optimal for adaptive multi-stage NMPC using the sigma
points approaches. This comes at the expense of an additional computational cost.

Remark 7. The tuning parameters κs, κc, and κo that are obtained by solving an optimization problem a-priori
as mentioned in Sections 3.2.1 and 3.2.2 are valid only for the robust multi-stage NMPC using sigma points.
In the A-MS-SB and A-MS-CB optimization problems, ellipsoidal over-approximations of the intersection region
are computed as part of the robust NMPC optimization problem. Here, the scaling factors κs, κc, and κo have to
be tuned based on trial-error using simulation studies.
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5. Case Studies

The performance of the different robust multi-stage NMPC controllers is compared using two
case studies. A simple benchmark semi-batch reactor example adapted from [66] is chosen to
perform a detailed analysis of the performance of robust multi-stage NMPC for different values
of the tuning parameters. A more complex industrial semi-batch polymerization reactor [67] is chosen
to demonstrate the performance of different control schemes. The controllers described in Section 3 are
referred to as non-adaptive controllers and the controllers described in Section 4 as adaptive controllers.

5.1. Case Study 1: Benchmark Semi-Batch Reactor

The semi-batch reactor benchmark example from [66] is adapted to investigate the advantages of
the proposed schemes. The chemical reaction under consideration is given by

A + B→ C.

The nonlinear model is obtained from the mass balance of the reactor, molar balances of the
reactants A and B, and energy balances of the reactor and the jacket. The model equations are
given below Equation (23):

V̇R = V̇in, (23a)

ċA = − V̇in

VR
cA − KcAcB, (23b)

ċB =
V̇in

VR
(cB, in − cB)− KcAcB, (23c)

ṪR =
V̇in

VR
(Tin − T)− αAw(TR − TJ)

ρVRcp
− KcAcBH

ρcp
, (23d)

ṪJ =
Q̇K + αAw(TR − TJ)

ρVJcp
, (23e)

with

cC =
cA,0VR,0 + cC,0VR,0 − cAVR

VR
, (23f)

Aw = πr2 +
0.002VR

r
, (23g)

where VR denotes the volume of the reactor, cA, cB, and cC represent the concentrations of the reactants
A and B and the product C. TR, and TJ represent the temperature of the contents inside the reactor
and the jacket. Aw denotes the inner surface area of the reactor covered with the reaction mixture.
The feed (Vin) and the cooling power of the jacket (Q̇k) are the control inputs.

5.1.1. Formulation of the Optimal Control Problem

The control task is to maximize the number of moles of product C that are produced along the
prediction horizon while satisfying the constraints until the specified end time of 1.0 h is reached.
The sampling time ts is chosen as 0.05 h. The temperature of the reactor TR must be kept between 322 K
and 326 K. The volume of the reactor contents must not exceed 7 L. It is assumed the specific reaction
rate constant K and the reaction enthalpy H are not known precisely. The parameters are contained
in an ellipsoidal confidence region described by their nominal value and the parameter covariance
matrix (see Equation (24)).

d0 =

(
H
K

)
=

(
−355 kJ

mol
1.205 l

mol h

)
, P0 =

(
11300 −7.7
−7.7 0.131

)
. (24)
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All other parameters in the model equations are considered to be known and are given along with a
short description in Table 2. All the states (x = (VR, cA, cB, TR, TJ)

T) are assumed to be measured with
measurement noise of standard deviation σ = (0.0001 L, 0.01 mol L−1, 0.01 mol L−1, 0.1 K, 0.1 K)T .
The control vector (u) is represented as (V̇in, Q̇k)

T . The bounds on the control inputs are given in
Table 3. The states are not constrained but reasonable bounds on the states are chosen to reduce the
computational effort. The bounds on the states along with their initial values are given in Table 4.

Table 2. Case study 1: Model parameters.

Parameter Description Value Unit

α heat-transfer coefficient between the reactor and jacket 1700 kJ K−1 h−1 m−2

r radius of the cross-section of the inner part 0.092 m
ρ density of the reactor contents 1000 g L−1

cp specific heat capacity of the reactor contents 4.2 J g−1 K−1

cB,in input concentration of reactant B 3 mol L−1

VJ volume of the contents inside the cooling jacket 2.22 L
Tin temperature of the flows entering the reactor 300 K
cC,0 initial concentration of the product C 0 mol L−1

Table 3. Case study 1: Bounds on the control inputs.

Control Lower Bound Upper Bound Unit

V̇in 0 32.4 L h−1

Q̇K −9000 0 kJ h−1

Table 4. Case study 1: Initial conditions of the states along with practical bounds.

State Initial Condition Lower Bound Upper Bound Unit

VR 3.5 0 8 L
cA 2 0 5 mol L−1

cB 0 0 5 mol L−1

TR 325 273 350 K
TJ 325 273 350 K

The nominal MPC optimization problem that is solved at time t (sth iteration) reads as Equation (25):

min
xk ,uk ,εk

s+Np−1

∑
k=s

−cCVR + 0.0154(∆V̇in,k)
2 + 5.5× 10−5(∆Q̇k)

2 + 106ε2
k,[1] + 1010ε2

k,[2], (25a)

subject to

xk+1 = f (xk, uk, dk), (25b)

322 ≤ TR,k + εk,[1] ≤ 326, (25c)

VR,k + εk,[2] ≤ 7, (25d)

− 1 ≤ εk,[1] ≤ 1, (25e)

− 0.01 ≤ εk,[2] ≤ 0.01, (25f)

u ≤ uk ≤ u, (25g)

xs = xm
s , (25h)

where ∆V̇in,k = V̇in,k− − V̇in,k−1, and ∆Q̇k = Q̇k − Q̇k−1. The stage cost is chosen to maximize the
number of moles of product C produced along the prediction horizon and to penalize the control moves
and the constraint violations. The weights for penalizing the control moves are chosen to prevent
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drastic changes of the inputs. The model Equation (23) is discretized using orthogonal collocation on
the finite elements [68,69] and is given in Equation (25b). The collocation points are obtained using the
Legendre method [70]. The number of finite elements and the degree of the polynomial are chosen
as 3 and 1. The additional constraints that must be satisfied are given by Equations (25c) and (25d).
These constraints are implemented as soft constraints to prevent the MPC optimization from becoming
infeasible due to the influence of measurement noise. The maximum constraint violation that can
happen is bounded by Equations (25e) and (25f). The control bounds are enforced using Equation (25g),
where uk and uk represent the lower and upper bounds that can be obtained from Table 3. The plant
is initialized at the current plant measurements using Equation (25h), where xm

s ∈ R5 represents the
measurement vector obtained at time t.

5.1.2. Results Obtained Using the Non-Adaptive and the Adaptive Controllers for One Set
of Parameters

The reference used for the comparison of the different multi-stage NMPC strategies considers
the nominal value of the uncertain parameter to be the true realization of the uncertain parameter.
The prediction horizon (Np) and the robust horizon (Nr) of the variants of multi-stage NMPC are
chosen as 5 and 2. All the nodes in the scenario trees of multi-stage NMPC are equally weighted
(i.e., wi

k = 1
Nn

, s.t. ∑Nn
i=1 wi

k = 1, where Nn is the number of nodes at time step k in the prediction
horizon). The scaling factors κs and κc of the multi-stage NMPC using sigma points were obtained
as mentioned in Section 3.2. The optimization problems are solved using the global optimization
toolbox from MATLAB [62]. The optimal values of the tuning parameters κ?s and κ?c resulted as 1.57
and 1.56. The scaling increase factor (β) is chosen as 1.02. The value of α is chosen according to the 3σ

range of the variables for the adaptive NMPC approaches. The plant measurements are obtained by
adding white Gaussian noise with standard deviation σ to the true plant states. The weights on the
sigma points (v) chosen to build the covariance matrix of the MS-SB and MS-CB NMPC are given as
(0.2, 0.2, 0.2, 0.2, 0.2)T .

We use the number of moles of the product C after 0.3 h of the batch time as an indicator of the
performance because this is a measure of the efficiency of the process in the first phase. When the full
amount of B has been fed, the further evolution of the process is determined by the kinetics alone
and the final batch time depends on the specified conversion. The results obtained when the plant
is controlled using the different NMPC strategies are shown in Figure 5. The green plots show the
simulation results obtained when the plant is controlled using nonlinear model predictive control
under the assumption that the true plant model is known. The optimal operation is to feed as much
reactant B as possible while respecting the constraints Equations (25c) and (25d). The temperature of
reactant B entering into the reactor (Tin) is less than the reactor temperature TR, hence the reference
NMPC at the beginning tries to feed as much material as possible while satisfying the lower bound
on the reactor temperature. Once the reactor is filled, the reactor temperature increases due to the
exothermic reaction taking place inside the reactor and the reactor temperature hits the upper bound.
The reference NMPC solution maintains the reactor temperature within its limits until the batch end
by manipulating its cooling power (Q̇K) as the true plant and the nominal plant model are identical.

MS NMPC feeds a smaller amount of reactant B due to the presence of large uncertainty in the
parameters and the tight specification on the admissible reactor temperature. The scenarios generated
using the upper bound on the reaction enthalpy and the lower bound on the reaction rate hit the lower
constraint on the reactor temperature, whereas the scenarios generated using the lower bound on the
reaction enthalpy and the upper bound on the reaction rate hit the upper constraint on the reactor
temperature in the predictions and are shown in Figure 6, where the blue lines indicate the states and
the control inputs predicted by the scenario tree of the MS NMPC optimization problem solved at time
t = 0.15 h. The lower bound constraint on the reactor temperature prevents MS NMPC from using the
full cooling power of the plant to increase the feed. The number of moles of reactant B fed into the
reactor using MS-VA NMPC is similar to the number of moles of reactant B fed using the MS NMPC
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approach because the scenario trees of both formulations include the scenarios built using the upper
bound on the reaction enthalpy and the lower bound on the reaction rate as well as using the lower
bound on the reaction enthalpy and the upper bound on the reaction rate which prevent the controllers
from feeding more reactants into the reactor.

Figure 5. Input feed, jacket cooling power, reactor temperature, and moles of product C obtained using
different NMPC strategies in the presence of measurement noise. Left figure: The plant is controlled
using the non-adaptive approaches explained in Section 3, Right figure: The plant is controlled using
the adaptive approaches explained in Section 4. The true plant parameters are assumed to be the
nominal parameters. NMPC (no mismatch)—the plant model and the simulation model are identical.

Figure 6. Reactor temperature, input feed, and jacket cooling power predicted in the scenario tree of
the MS NMPC optimization problem solved at time t = 0.15 h. The magenta line ( ) indicates the
measured plant state and control inputs applied to the plant in the past, the blue lines ( ) indicate the
predicted plant states and control inputs and the dashed red lines ( ) indicate the constraints.

The number of moles of reactant B fed into the reactor is increased when using the multi-stage
NMPC variants based on sigma points. There is a 29% increase in the number of moles of product
C produced for the MS-SB and MS-CB NMPC variants over MS and MS-VA NMPC. The MS-SB and
MS-CB NMPC variants build the scenario tree using the sigma points and tightly approximate the
uncertainty set in contrast to MS and MS-VA NMPC where the scenario tree is built based on the
box over-approximation of the uncertainty set. The constraints Equations (25d) and (25c) are linear
with respect to the states and concern only one state (TR or VR), hence the performance of the MS-SB
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NMPC is similar to the MS-CB NMPC. The tuning parameter κs was obtained a-priori by solving the
optimization problem Equation (8) and this guarantees robust constraint satisfaction of MS-SB NMPC
since the constraints are linear in the states. All the non-adaptive robust NMPC schemes satisfy the
constraints on the reactor temperature and reactor volume until the batch end.

The time taken to solve one iteration of MS NMPC, MS-VA, MS-SB, and MS-CB NMPC are 1.91 s,
0.56 s, 0.63 s, and 0.44 s, in average. MS NMPC considers 9 branches at each node in the scenario
tree in contrast to all the other NMPC approaches where only 5 scenarios are considered. There is a
small increase in the computational time of MS-SB NMPC when compared to MS-VA NMPC due to
the computation of the state covariance matrix along the robust horizon. The computation time of
MS-CB NMPC is less than that of MS-SB NMPC because only two constraints nc = 2 are present and
the computation of the constraint covariance matrices reduces the computational effort compared to
the computation of the state covariance matrix with nx = 5.

The number of moles of reactants fed into the reactor in the initial phase can be improved using
the adaptive NMPC approaches. There is a 47% increase in the number of moles of product C produced
within the first 0.3 h when using the A-MS and A-MS-VA NMPC strategies over the MS and MS-VA
NMPC approach and a 17% increase in the number of moles of product C produced from using the
A-MS-SB and A-MS-CB NMPC formulations over the A-MS and A-MS-VA NMPC.

The confidence regions of the uncertain parameters at time t = 0.05 h (2nd NMPC iteration) is
shown in Figure 7. The confidence region considered by A-MS-SB NMPC is similar to that of A-MS-CB
NMPC, hence it is not plotted. A-MS and A-MS-VA NMPC schemes approximate the intersection
between the initial confidence region and the confidence region obtained using the plant measurements
by a box whereas the A-MS-SB and A-MS-CB NMPC schemes approximate the intersection region by
an ellipsoid. The parameter combinations that are used to build the scenario trees of the multi-stage
NMPC formulations are shown by green squares ( ). The box over-approximation includes additional
uncertainty by the upper and lower bounds on the uncertain parameters which result in a performance
loss. The tuning parameters κs,0, and κc,0 that are computed by the non-adaptive NMPC approaches
by solving an optimization problem are assumed to be valid for the adaptive approaches as well.
The scaling factors are validated using the plant measurements, where it is verified whether the box
over-approximation of the reachable states and the constraint function set predicted at stage k + 1
of A-MS-SB and A-MS-CB NMPC optimization problems solved at (s− 1)th iteration contains the
plant measurement (xm

s ) observed at time t and the constraint function value obtained using the plant
measurements and the applied control input, respectively.

Figure 7. Confidence regions of the uncertain parameters considered in the adaptive NMPC variants at
t = 0.05 h. represents the initial confidence region, represents the confidence region obtained using
the observed measurements, represents the confidence region that is considered by the adaptive
NMPC schemes and represents the parameter combinations that are used to build the scenario tree
of the adaptive NMPC schemes.

The times taken to solve one iteration of A-MS NMPC, A-MS-VA, A-MS-SB, and A-MS-CB NMPC
on average are 1.85 s, 0.57 s, 3.4 s, and 1 s. The computation time of A-MS and A-MS-VA NMPC is



Processes 2020, 8, 851 22 of 36

similar to that of MS and MS-VA NMPC because the box over-approximation of the intersection region
is computed by solving the optimization problem Equation (21) separately and then the scenario
tree of the multi-stage NMPC is updated. The increase in the computational time of A-MS-SB and
A-MS-CB NMPC when compared to MS-SB and MS-CB NMPC results from the computation of an
ellipsoidal over-approximation of the intersection region between two ellipsoids as a part of the NMPC
optimization problem.

5.1.3. Controller Performance Analysis for Different Values of the Tuning Parameters

The results obtained for different choices of the tuning parameters and 100 realizations of the
uncertain parameters are presented in this section. The realizations are marked by black dots ( ) in
Figure 8. All tuning parameters other than the tuning parameter for which the controller performance
is evaluated are the same as in the reference case. We evaluate the performance of the controllers
by the amount of product obtained at 0.3 h. The measurements of the plant states were assumed to
reduce the computational effort. The results are plotted using a violin plot [71]. The widths of the
violins correspond to the normalized histogram plot. The blue color ( ) represents multi-stage NNPC
(MS NMPC, A-MS NMPC) using the approach in [9], the magenta color ( ) represents multi-stage
NMPC based on the vertex approximation (MS-VA NMPC, A-MS-VA NMPC), the black color ( )
represents multi-stage NMPC based on the box over-approximation of the reachable states set (MS-SB
NMPC, A-MS-SB NMPC) and the golden color ( ) represents the proposed multi-stage NMPC
based on the box over-approximation of the reachable set of the constraint function (MS-CB NMPC,
A-MS-CB NMPC). The green diamond ( ) and the red line ( ) represent the mean and the median
value of the number of moles of product C that are produced at 0.3 h of batch time (after 6 NMPC
iterations) using the different robust NMPC strategies.

Figure 8. Parameter combinations considered to be the true realization of the uncertain parameters
chosen within the initial confidence region of the uncertain parameters to evaluate the performance
NMPC controllers for different values of the tuning parameters.

Effect of the Length of the Prediction Horizon

The amount of product C produced during the first 0.3 h using the non-adaptive and adaptive
NMPC schemes for different choices of the prediction horizon length (Np) is shown using a violin plot
in Figure 9. The performance of the non-adaptive and of the adaptive controllers increases significantly
from Np = 2 to Np = 3 and then slightly up to Np = 5. The NMPC formulations with shorter
prediction horizon (i.e., Np ≤ 3) were not able to predict the performance gain achieved at the end
of the batch correctly and result in a loss of performance. The adaptive NMPC schemes using the
sigma points fill the reactor at 0.25 h as shown in Figure 5, hence a prediction horizon of length 5 is
sufficient for them to approximate the maximization of the number of moles of product C produced
at 0.3 h. The average computation time needed for solving one NMPC iteration for different lengths
of the prediction horizon is indicated in Figure 10. The computational times of the adaptive and
non-adaptive schemes increase with the length of the prediction horizon length.
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Figure 9. Violin plots of the amount of product C produced in the first 0.3 h in moles using non-adaptive
and adaptive NMPC schemes with different lengths of prediction horizon (Np) in the absence of
measurement noise. represents MS NMPC, A-MS NMPC, represents MS-VA NMPC, A-MS-VA
NMPC, represents MS-SB NMPC, A-MS-SB NMPC, and represents MS-CB NMPC, A-MS-CB
NMPC. and represent the mean and median values of the number of moles of product C produced.

Figure 10. Semi-log plots of the average computation time taken per iteration [in [s]] by the different
NMPC schemes for different values of the prediction horizon and robust horizon.

Effect of the Length of the Robust Horizon

The amount of product C produced during the first 0.3 h using the non-adaptive and adaptive
NMPC schemes for different choices of the robust horizon length (Nr) is shown in Table 5. The number
of moles of product C produced decreases with an increase in the length of the robust horizon.
The multi-stage NMPC with Nr = 1 assumes that the uncertainty realization remains constant after
the first stage and provides an optimistic control strategy. The non-adaptive schemes with Nr = 1
solved at s = 0 feed more reactant B into the reactor under assumptions that the uncertainty realization
becomes known and remains constant after the first stage. The multi-stage NMPC solved at the next
time steps s > 1 cannot find an optimal control input that satisfies the constraints for all scenarios
along the robust horizon because of the control decision taken in the previous time step, the tight
bounds on the reactor temperature and large initial confidence region of the uncertain parameters.



Processes 2020, 8, 851 24 of 36

Table 5. Case study 1: Minimum (min), mean and maximum (max) number of moles of product C
produced in the first 0.3 h using the non-adaptive and adaptive NMPC schemes with different lengths
of robust horizon (Nr) in the absence of measurement noise. A prediction horizon (Np) of length 5
is chosen.

Robust Non-Adaptive Adaptive
Horizon MS MS-VA MS-SB MS-CB A-MS A-MS-VA A-MS-SB A-MS-CB

m
in 2 0.83 0.82 1.07 1.06 1.37 1.38 1.52 1.52

3 0.74 0.76 0.98 0.97 1.13 1.21 1.34 1.34

m
ea

n 2 1.15 1.14 1.49 1.47 1.71 1.74 2.00 2.00
3 1.02 1.07 1.37 1.36 1.50 1.60 1.82 1.82

m
ax 2 1.52 1.52 1.99 1.97 2.26 2.27 2.50 2.5

3 1.35 1.41 1.83 1.81 2.00 2.15 2.36 2.35

For multi-stage NMPC with Nr = 2 the NMPC optimization problem for s > 0 has an optimal
control input that satisfies the constraints on the reactor temperature for all the scenarios considered in
its scenario tree. Multi-stage NMPC with Nr = 3 results in a small performance loss. A disadvantage
of choosing a larger robust horizon is the exponential increase in the computational time of the
multi-stage NMPC optimization problem. The computational times taken by the non-adaptive and
adaptive NMPC schemes for different choices of the robust horizon are also reported in Figure 10.
MS and A-MS NMPC with Nr = 2 consider 81 scenarios and MS-VA, A-MS-VA, MS-SB, A-MS-SB,
MS-CB and A-MS-CB NMPC with Nr = 2 consider 25 scenarios. MS and A-MS NMPC for Nr = 3
consider 729 scenarios and The MS-VA, A-MS-VA, MS-SB, A-MS-SB, MS-CB and A-MS-CB NMPC
with Nr = 3 consider 125 scenarios.

Effect of the Scaling Factor κk

The covariance matrix of the multi-stage NMPC using sigma points obtained using the unscented
transformation (MS-SB, A-MS-SB, MS-CB, and A-MS-CB NMPC) is scaled using the scaling factor κk
such that the box over-approximation of the ellipsoids represented by the covariance matrix and mean
encloses the set of reachable states and constraint function values. The scaling factor consists of two
parts κ0 and β. The scaling factor κ0 is tuned such that reachable sets at the first stage are enclosed in
the prediction horizon. The scaling increase factor β reflects the uncertainty in the initial condition of
the future states after the first stage.

Effect of Change in the Scaling Factor κ0

The scaling factor κ0 can be obtained using a trial-error method based on posterior analysis on
simulation studies or by solving an optimization problem so that it is valid for the entire operating
region of the plant. The number of moles of product C produced up to 0.3 h obtained using the
MS-SB, A-MS-SB, MS-CB, and A-MS-CB NMPC formulations for different values of κ0 are shown in
Figure 11, where κ0 = κ? corresponds to the value of the scaling factor that was obtained by solving
the optimization problem Equation (8) (i.e., κs,0 = 1.57, and κc,0 = 1.56).

As can be expected, the amount of product C produced in the initial phase of the batch run
decreases with an increase in the value of scaling factor κ0. The scaling factor κ0 = 1.25 is less than κ?,
this implies that the box over-approximation predicted at the first stage (k = s + 1) is not valid for the
entire operating region of the plant but it is valid for the relevant operating region since the scaling
factor κ0 = 1.25 is not invalidated by the observed measurements. It can be seen that larger values of
κ0 reduce the performance.
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Figure 11. Violin plot of the amount of product C produced in the first 0.3 h using MS-SB, A-MS-SB,
MS-CB, and A-MS-CB NMPC schemes with different values of the scaling factor considered at the first
stage (κ0) in the absence of measurement noise. represents MS-SB NMPC, A-MS-SB NMPC, and
represents MS-CB NMPC, A-MS-CB NMPC. and represent the mean and the median value.

Effect of change in scaling increase factor β

Figure 12 shows the number of moles of product C produced during the initial part of the batch
run using non-adaptive and adaptive NMPC using sigma points for different values of the scaling
increase factor β. The amount of product C decreases significantly with an increase in the value of β

for the non-adaptive versions, while for the adaptive cases, the influence is minor.

Figure 12. Violin plot of the amount of product C produced during the first 0.3 h using MS-SB, A-MS-SB,
MS-CB, and A-MS-CB NMPC schemes with different values of the scaling increase factor (β) in the
absence of measurement noise. represents MS-SB NMPC, A-MS-SB NMPC, and represents MS-CB
NMPC, A-MS-CB NMPC. and represent the mean and median values.

5.2. Case Study 2: Industrial Semi-Batch Polymerization Reactor

The industrial semi-batch polymerization reactor example is taken from [48]. It was provided by
BASF SE as a case study for NMPC algorithms in the EU-project [67]. The process flow diagram of the
industrial semi-batch reactor under consideration is shown in Figure 13. Monomer A is fed into the
reactor, where it combines and produces the polymer P. The reaction is highly exothermic. The reactor
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is equipped with an external heat exchanger (EHE) and a cooling jacket to control the temperature of
the reactor contents.

The model of the plant was obtained from mass and energy balances. It comprises 8 ordinary
differential equations and is given below Equation (26):

ṁW = ṁFωW,F, (26a)

ṁA = ṁFωA,F − kR1mA,R −
kR2mAWTmA

mges
, (26b)

ṁP = kR1mA,R +
kR2mAWTmA

mges
, (26c)

ṪR =
ṁFcp,F(TF − TR)

cp,Rmges
+

HRkR1mA,R

cp,Rmges
− kK A(TR − TS)

cp,Rmges
− ṁAWT(TR − TEK)

mges
, (26d)

ṪS =
kK A(TR − TS)

cp,SmS
− kWS A(TS − TM)

cp,SmS
, (26e)

ṪM =
ṁM,KW(TIN

M − TM)

mM,KW
+

kWS A(TS − TM)

cp,WmM,KW
, (26f)

ṪEK =
ṁAWT(TR − TEK)

mAWT
− αexp(TEK − TAWT)

cp,RmAWT
+

kR2mAmAWTHR

cp,RmAWTmges
, (26g)

ṪAWT =
ṁAWT,KW(TIN

AWT − TAWT)

mAWT,KW
− αexp(TAWT − TEK)

cp,WmAWT,KW
, (26h)

where

U =
mP

mA + mP
, (26i)

mges = mW + mA + mP, (26j)

kR1 = k0e
−Ea

R(TR+273.15) (kU1(1−U) + kU2U), (26k)

kR2 = k0e
−Ea

R(TEK+273.15) (kU1(1−U) + kU2U), (26l)

kK =
mWkWS

mges
+

mAkAS

mges
+

mPkPS

mges
, (26m)

mA,R = mA −
mAmAWT

mges
. (26n)

The total mass of water, monomer, and polymer present in the reactor and in the external heat
exchanger are denoted by mW, mA and mP. The temperatures of the contents inside the reactor, vessel,
and jacket are denoted by TR, TS, and TM. The temperature of the material leaving the external heat
exchanger and the coolant inside the external heat exchanger are denoted by TEK and TAWT. U gives
the ratio of the total mass of the product to the sum of the total mass of the monomer and the product.
mges represents the total mass of the contents of the reactor and the external heat exchanger. kR1 and
kR2 represent the reaction rates of the conversion of the monomer to the polymer inside the reactor and
external heat exchanger, respectively. kK results from an approximation of the heat-transfer coefficient
between the reaction mixture and the reactor vessel. The amount of monomer present inside the
reactor is given by mA,R. The input feed (ṁF), the temperature of the coolant entering the jacket (TIN

M )

and the temperature of the coolant entering the external heat exchanger (TIN
AWT) are the control inputs.

The bounds on the control inputs are given in Table 6.
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1Figure 13. Process flow diagram of the industrial polymerization semi-batch reactor.

Table 6. Case study 2: Bounds on the control inputs.

Control Lower Bound Upper Bound Unit

ṁF 0 30,000 kg h−1

TIN
M 60 100 ◦C

TIN
AWT 60 100 ◦C

5.2.1. Formulation of the Optimal Control Problem

The control task is to minimize the batch time while satisfying crucial quality and safety
constraints. The temperature of the reactor TR has to be maintained between 88 ◦C and 92 ◦C to
obtain the desired product quality. The temperature of the reactor content must not exceed 109 ◦C in
the event of a cooling failure. The maximum temperature of the reactor content that can result in the
event of complete cooling failure (TCF) is given by the so-called adiabatic temperature Equation (27):

TCF =
HRmA

cp,Rmges
+ TR. (27)

The total mass of the contents present in the reactor and the external heat exchanger must not
exceed 40,879.5 kg. It is assumed the specific reaction rate constant (k0) and the reaction enthalpy (HR)

are not known precisely. The parameters are assumed here to be contained in an ellipsoidal confidence
region described by their nominal values and the parameter covariance matrix Equation (28):

d0 =

(
HR

k0

)
=

(
950 kJ

kg
7

)
, P0 =

(
36100 −159.6

−159.6× 102 1.96

)
. (28)

All other parameters present in the model equations are considered to be known and are
given in Table 7. All the states (x = (mw, mA, mP, TR, TS, TM, TEK, TAWT)

T) are considered
to be measured directly from the plant with measurement noise of standard deviation
σ = (50 kg, 50 kg, 50 kg, 0.1 ◦C, 0.1 ◦C, 0.1 ◦C, 0.1 ◦C, 0.1 ◦C)T . The initial condition of the states is
given as x0 = (1000 kg, 853 kg, 26.5 kg, 90 ◦C, 90 ◦C, 90 ◦C, 35 ◦C, 35 ◦C)T . The sampling time of the
controller ts is chosen as 0.2 h. The batch is completed if the mass of product P produced reaches
20, 700 kg. The control vector (u) is represented as (ṁF, TIN

M , TIN
AWT)

T . The MPC optimization problem
which is solved at time t (sth iteration) reads as Equation (29):

min
xk ,uk ,εk

s+Np−1

∑
k=s

−mP,k +
3.33
103 (∆ṁF,k)

2 + 2.5(∆TIN
M,k)

2 + 2.5(∆TIN
AWT,k)

2 + 105(ε2
k,1 + ε2

k,[2]) + 1010ε2
k,[3],



Processes 2020, 8, 851 28 of 36

subject to

xk+1 = f (xk, uk, dk), (29a)

88 ≤ TR,k + εk,[1] ≤ 92, (29b)

HRmA

cp,Rmges
+ TR + εk,2 ≤ 109, (29c)

mW,k + mA,k + mP,k + εk,3 ≤ 40879.5, (29d)

− 1 ≤ εk,[1] ≤ 1, (29e)

− 1 ≤ εk,[2] ≤ 1, (29f)

− 150 ≤ εk,[3] ≤ 150, (29g)

u ≤ uk ≤ u, (29h)

xs = xm
s , (29i)

where ∆ṁF,k = ṁF,k − ṁF,k−1, ∆TIN
M,k = TIN

M,k − TIN
M,k−1, TIN

AWT,k − TIN
AWT,k−1, and εk ∈ Rnc . The objective

function aims to maximize the number of moles of product P produced along the prediction horizon,
and penalizes the control moves and the constraint violations. We assume that maximizing the mass
of product P produced along the prediction horizon implicitly minimizes the batch time. The model
Equation (26) is discretized using orthogonal collocation on finite elements [68,69] and this leads to
Equation (29a). The number of finite elements and the degree of the polynomials are chosen as 4
and 2. The collocation points are obtained using the Radau method [73]. The constraints are given
in Equations (29b)–(29d). The constraints are implemented as soft constraints to prevent the MPC
optimization from becoming infeasible due to the influence of measurement noise. The maximum
constraint violation that can happen is bounded by Equations (29e)–(29g). The control bounds are
enforced using Equation (29h), where uk and uk represent the lower and upper bounds on the control
and can be obtained from Table 6. The controller is reinitialized at the current plant measurements
using Equation (29i), where xm

s ∈ R8 represents the measurement vector obtained at time t.

5.2.2. Results

All multi-stage NMPC strategies consider a prediction of horizon (Np) of length 5 and a robust
horizon (Nr) of length 2. All the nodes in the scenario tree of the multi-stage NMPC are equally
weighted (i.e., wi

k = 1
Nn

, s.t. ∑Nn
i=1 wi

k = 1, where Nn is the number of nodes at time step k in the
prediction horizon). The scaling factors κ?s and κ?c are chosen as 1.75. The scaling increase factor
(β) is chosen as 1.05. The scaling factors and the scaling increase factors were chosen based on a
posterior analysis using simulation studies such that the observed measurements do not invalidate
the scaling factors and the NMPC optimization problem is recursively feasible. The value of α was
chosen corresponding to a 6σ confidence level for the adaptive NMPC approaches. The weight on the
sigma points (v) chosen to build the covariance matrix of the MS-SB and MS-CB NMPC formulations
is given as (0.2, 0.2, 0.2, 0.2, 0.2)T . The nominal values of the uncertain parameters are considered to
be the true realizations of the uncertain parameters. The batch is stopped when the measured mass
of product P reaches 20,750 kg which guarantees that at least 20, 700 kg of product P (mP) is present
at the batch end. The simulation results obtained when the reactor is controlled using NMPC with
the true plant model, the non-adaptive and the adaptive NMPC approaches are shown in Figure 14.
The dashed vertical lines indicate the end times of the batches.
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Table 7. Case study 2: Model parameters.

Parameter Description Value Unit

R Universal gas constant 8.314 kJ kmol−1 K−1

cp,W Specific heat capacity of the water (coolant) 4.2 kJ kg−1 K−1

cp,S Specific heat capacity of the steel 0.47 kJ kg−1 K−1

cp,F Specific heat capacity of the feed 3 kJ kg−1 K−1

cp,R Specific heat capacity of the contents inside reactor 5 kJ kg−1 K−1

kWS Heat-transfer coefficient between water and steel 17,280 kJ h−1 m−2 K−1

TF Feed temperature 25 ◦C
A Heat-transfer surface of the jacket 65 m2

mM,KW Mass of coolant in the jacket 5000 kg
mS Mass of the reactor (steel) 39,000 kg
mAWT Mass of the product in external heat exchanger 200 kg
mAWT,KW Mass of the coolant in external heat exchanger 1000 kg
ṁM,KW Mass of the coolant flow into the jacket 300,000 kg h−1

ṁAWT,KW Mass of the coolant flow into the external heat exchanger 100, 000 kg h−1

ṁAWT Mass of the product flow into the external heat exchanger 20, 000 kg h−1

Ea Activation energy 8500 kJ kmol−1

kU1 Reaction parameter 1 32 −
kU2 Reaction parameter 2 4 −
ωW,F Mass fraction of coolant water in the feed 0.333 −
ωA,F Mass fraction of monomer A in the feed 0.667 −
kAS Heat-transfer coefficient between monomer and steel 3600 kJ h−1 m−2 K−1

kPS Heat-transfer coefficient between product and steel 360 kJ h−1 m−2 K−1

αexp Experimental coefficient 3,600,000 h−1

It can be seen that the NMPC with the correct model fully exploits the range of operation and
meets the constraints, apart from the effect of measurement errors. The end of the batch is reached
at 1.4 h. MS and MS-VA NMPC take into account the presence of uncertainty in the reaction rate
constant and in the reaction enthalpy while satisfying the constraint on the reactor temperature for
all scenarios in their scenario trees and are shown in Figure 15. The upper and lower bounds on
the reactor temperature are active in the predictions of the MS and MS-VA NMPC until the end of
the batch. The large range of the uncertain parameters along with the tight bounds on the reactor
temperature results in a significant increase in the batch time to 3.2 h. The box over-approximation of
the ellipsoidal confidence region adds uncertainty to the parameter estimates which contributes to the
increased batch time.

The batch time in the presence of the uncertainties can be reduced using MS-SB and MS-CB
NMPC. The sigma points more tightly approximate the uncertainty set. MS-SB and MS-CB NMPC
take 2.6 h and 2.4 h to complete the batch. The sensitivity of the states mW,k, mA,k mP,k with respect to
the uncertain parameters is not zero. This enlarges the box over-approximation of the reachable sets
computed using the MS-SB NMPC. This results in an additional performance loss when compared
to MS-CB NMPC, since the sensitivity of mW,k + mA,k + mP,k in Equation (29d) with respect to the
uncertain parameters is zero.

The batch time can be further reduced significantly using the adaptive NMPC approaches which
use the plant measurements to improve the knowledge about the uncertain parameters. A-MS NMPC
and A-MS-VA NMPC finish the batch at 1.8 h, close to the optimal batch time if the exact model is used.
A-MS-CB and A-MS-SB NMPC require only 1.6 h to finish the batch. There is a 38% and 33% reduction
in the batch time when using A-MS-SB and A-MS-CB NMPC over MS-SB and MS-CB NMPC.
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Figure 14. Input feed, temperatures of the coolant entering the jacket and entering the external
heat exchanger, temperature of the reaction mixture, maximum attainable reactor temperature in the
event of a cooling failure, and mass of the contents inside the reactor with their constraints when
the reactor is controlled using the different NMPC controllers in the presence of measurement noise.
The dotted vertical lines indicate the end times of the batches. Left figure: The plant is controlled
using the non-adaptive approaches explained in Section 3, Right figure: The plant is controlled using
the adaptive approaches explained in Section 4. NMPC (no mismatch)—the plant model and the
simulation model are identical.
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Figure 15. Reactor temperature predicted in the scenario tree of the MS-VA NMPC optimization
problems solved at t = 0 h, t = 1.2 h and t = 2.8 h. The magenta line ( ) indicates the measured
reactor temperature and control inputs applied to the plant until time t, the blue lines ( ) indicate the
predicted plant states and control inputs and the dashed red lines ( ) indicate the constraints.

Finally, the performance of the controllers was evaluated for 100 random realizations of the
uncertain parameter values within the initial confidence region of the uncertain parameters (marked by
black dots in Figure 16a). The results are shown in Figure 16b. The end times of the batches controlled
using MS and A-MS NMPC are similar to those of MS-VA and A-MS-VA NMPC because the scenarios
generated using the extreme values of the uncertain parameters prevent the controller from feeding
more reactants into the reactor and are considered in the scenario tree of both variants. The batch time
is considerably reduced using the proposed multi-stage NMPC variants using sigma points when
compared to the standard multi-stage NMPC because the uncertainty set is more tightly approximated
using the sigma points. MS-CB NMPC results in a better performance when compared to MS-SB
NMPC because the performance is restricted by the constraints and their approximation is tighter in
MS-CB NMPC. The performance is further improved using the adaptive approaches. A-MS-CB NMPC
results in the minimum batch times when compared to other the robust NMPC schemes presented in
this paper. The times taken to solve one iteration of the MS, MS-VA, MS-SB, and MS-CB NMPC are
8.89 s, 2.74 s, 12.90 s, and 2.88 s. The times taken to solve one iteration of A-MS, A-MS-VA, A-MS-SB,
and A-MS-CB NMPC are 12.47 s, 3.84 s, 28.17 s, and 4.27 s.

Figure 16. (a): True plant parameter values chosen within the initial confidence region of the uncertain
parameters to evaluate the performance of non-adaptive and adaptive NMPC schemes (b): The violin
plot of the batch end time obtained when the plant is controlled using non-adaptive and adaptive NMPC
schemes in the presence of measurement noise. represents MS NMPC, A-MS NMPC, represents
MS-VA NMPC, A-MS-VA NMPC, represents MS-SB NMPC, A-MS-SB NMPC, and represents
MS-CB NMPC, A-MS-CB NMPC. and represent the mean and median values of the number of
moles of product C produced.

6. Conclusions

In this paper, we proposed two novel multi-stage NMPC formulations, where the scenario
trees are generated using the sigma points, and box over-approximations of the sets of reachable
states or constraint function values are computed along the prediction horizon using the unscented
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transformation. The proposed scheme tightly over-approximates the uncertainty set and results in a
better performance for ellipsoidal uncertainty sets when compared to the traditional multi-stage NMPC
where the scenario tree is generated using a box over-approximation. In addition, adaptive approaches
are presented where the plant measurements are used to reduce the uncertainty. This significantly
reduces the conservatism introduced by the non-adaptive robust NMPC approaches. A simulation
study was carried out to analyze the influence of the tuning parameters in the performance of the
proposed multi-stage NMPC approaches. An industrial benchmark example is used to show the
benefits of the proposed approaches for an example of a realistic size. It confirms the advantages of the
new methods. Our future work will focus on dual approaches where a trade-off problem between
using excitation signals (probing actions) and performance-oriented control actions is solved. We will
also consider improving the performance of robust multi-stage NMPC using sigma points further by
over-approximating the reachable sets of the constraint functions and states using an ellipsoidal set
instead of a box.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/7/851/s1.
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The following abbreviations are used in this manuscript:

A-MS Adaptive multi-stage NMPC
A-MS-VA Adaptive multi-stage NMPC based on the vertex over-approximation
A-MS-SB Adaptive multi-stage NMPC based on the box over-approximation of the reachable set of states

A-MS-CB
Adaptive multi-stage NMPC based on the box over-approximation of the reachable set of the
constraint function

EHE External Heat Exchanger
FC Flow control
MPC Model predictive control
NMPC Nonlinear model predictive control
MS Multi-stage NMPC
MS-VA Multi-stage NMPC based on the vertex over-approximation
MS-SB Multi-stage NMPC based on the box over-approximation of the reachable set of states

MS-CB
Multi-stage NMPC based on the box over-approximation of the reachable set of the
constraint function

TC Temperature control
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