

Communication

New, Aqueous Radical (Co)Polymerization of Olefins at Low Temperature and Pressure

Devid Hero¹ and Gergely Kali^{1,2,*}

- ¹ Organic Macromolecular Chemistry, Saarland University, Campus C4.2, D-66123 Saarbrücken, Germany; d.hero@mx.uni-saarland.de
- ² Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- * Correspondence: gergelykali@gmail.com

Received: 8 May 2020; Accepted: 11 June 2020; Published: 16 June 2020

FT-IR and ¹H NMR spectra of the homopolymerization products.

Figure S1. IR spectrum of the formed polyethylene pseudorotaxane via cyclodextrin assisted aqueous radical polymerization of ethylene.

Figure S2. 400 MHz ¹H NMR spectrum of the polyethylene, produced via CD assisted aqueous free radical polymerization, in d6-DMSO.

Figure S3. 400 MHz ¹H NMR spectrum of the polyethylene, produced via CD assisted aqueous free radical polymerization with the addition of poly(ethylene glycol), in d6-DMSO.

Figure S4. IR spectrum of the formed polypropylene via cyclodextrin assisted aqueous radical propylene polymerization.

Figure S5. Molar mass distribution of the polypropylene, produced via CD assisted aqueous free radical polymerization, in chloroform.