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Abstract: Anaerobic digestion is a promising alternative to valorize agrifood wastes, which is gaining
interest under an environmental sustainability overview. The present research aimed to compare
anaerobic digestion with olive pomace oil extraction, by using life cycle assessment, as alternatives for
the valorization of the olive mill solid waste generated in the centrifugation process with a two-outlet
decanter from oil mills. In the case of olive pomace oil extraction, two cases were defined depending
on the type of fuel used for drying the wet pomace before the extraction: natural gas or a fraction
of the generated extracted pomace. The anaerobic digestion alternative consisted of the production
of biogas from the olive mill solid waste, heat and electricity cogeneration by the combustion of
the generated biogas, and composting of the anaerobic digestate. The life cycle assessment showed
that anaerobic digestion was the best alternative, with a global environmental impact reduction of
88.1 and 85.9% respect to crude olive pomace oil extraction using natural gas and extracted pomace,
respectively, as fuel.

Keywords: biogas; environmental impact; life cycle assessment; olive pomace; sustainability

1. Introduction

The olive oil industry represents one of the fastest-growing industrial sectors worldwide, being
of great importance in the economy of countries, such as Spain, Greece, and Italy, and becoming an
important industry in countries, such as Chile, South Africa, or Argentina. The volume of processed
olives in the main olive oil producer countries, such as Spain, leads to the generation of circa 4-5 million
metric tons of annual waste. The olive mill solid waste is the main waste produced in olive mills that
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uses the two-outlet decanter, the most used system for olive oil extraction. Olive mill solid waste is a
semi-solid with a high degree of humidity and high organic load [1].

In general, the olive mill solid waste obtained from the two-outlet decanters is transported to the
pomace extraction plants to extract the crude pomace oil from them, mainly by extraction with organic
solvents (technical hexane) [2]. Before extraction, a drying phase is necessary to reduce the moisture
and volatile matter of the olive mill solid waste (between 65 and 75%) to less than 8%. This drying
phase involves the highest energy consumption of the whole process of pomace oil extraction, and it is
normally fed by natural gas or by the resulting extracted pomace from pomace oil extraction. Of note is
that this extracted pomace, once dried, is regarded as an excellent solid biofuel that is currently used in
industrial boilers and electric power generation industries [3], thus decreasing the demand for natural
gas. In Spain, this energy production at an industrial scale has been possible, thanks to government
incentives for the production of electricity from biomass. Notwithstanding, such incentives have been
drastically reduced for running plants and have been canceled for new plants. As a result, the economic
feasibility of the plants that use extracted pomace as the thermal source for the generation of electrical
energy has decreased. Other challenges that pomace oil producers are facing are the fluctuation of
olive mill solid waste generation and, mainly, the low commercial value of crude pomace oil [3].

In this context, anaerobic digestion (AD) has been shown to offer a possible solution for the
management of the olive mill solid waste [4,5]. AD of olive mill solid waste produces mainly two
streams, i.e., methane, as a source of bioenergy, and a stabilized digestate for use in agriculture as
fertilizer, avoiding the need to resort to a drying process.

This study aimed to compare the environmental impacts of the two alternatives considered for
olive pomace valorization, i.e., (a) AD of the olive mill solid waste, combustion of the generated biogas
for heat and electricity production, and dewatering of the digestate for subsequent composting, and (b)
extraction of crude pomace oil after drying with natural gas or extracted pomace.

2. Materials and Methods

In this study, a comparative attributional life cycle assessment (LCA) was carried out according to
the ISO 14040/44 standards [6,7]. The goal and scope, the inventory data, and the impact assessment
method used in this study are described in the following sections.

2.1. Goal and Scope of the Study

The main goal was to estimate and compare the life cycle environmental impacts of two alternatives
for olive mill solid waste valorization: AD and crude olive pomace oil extraction (OPOE).

The scope of the study was from ‘gate to gate’. Figure 1 shows all the foreground and background
processes included in the system boundaries for each alternative—AD and OPOE. For the sake of clarity,
foreground processes were framed with a dashed line box per each valorization alternative, including
(1) for AD: biogas generation in an AD reactor, combustion of the biogas in a cogeneration engine for
the production of heat and electricity, dewatering of the digestate in a decanter, and composting of
the solid phase from the decanter, and (2) for OPOE: drying of the olive mill solid waste, extraction
of the oil from the dried waste, and refining of the crude olive pomace oil. Hence, in the function
of the energy pricing policies, producers might prefer burning natural gas and selling the extracted
pomace from an economic point of view; two cases for OPOE were considered depending on the source
of energy employed for olive mill solid waste drying: natural gas (OPOE-A) and extracted pomace
(OPOE-B). The construction and decommissioning of the treatment plants were excluded under the
hypothesis that the lifespan of these infrastructures is long enough to assume that the impacts of these
stages per functional unit can be considered negligible.

The functional unit was defined as the valorization of 1 metric ton of olive pomace.
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Figure 1. System boundaries.

2.2. Description of the Systems

As shown in Figure 1, the system under study consisted of two alternative pathways for olive
mill solid waste valorization. Each of the processes included in the foreground is described below.
The reasons for choosing each background process are justified in Section 2.3, concerning inventory
data. As a common practice, it was assumed that the olive husks were removed from the olive mill
solid waste in the olive mill. The main characteristics of the olive mill solid waste are summarized in
Table 1 [1].

Table 1. Olive mill solid waste characterization.

Total solids (g/L) 266 + 4

Volatile solids (g/L) 250 +4
pH 497 £0.01

Alkalinity (mg CaCOs3/L) 6559 + 5

2.2.1. Anaerobic Digestion (AD)

The first stage of this alternative was the production of biogas via AD of the olive mill solid
waste stream in the anaerobic reactor. The AD conditions for olive mill solid waste were based on
experimental results obtained in previous research works [1,8]. Water was consumed for dilution
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in AD as to reduce the total solids concentration until 9%wt before feeding the reactor [9]. The heat
was necessary for keeping the temperature of the digester around 30 °C for mesophilic conditions,
and electricity was used for pumping and stirring.

The digestate was dewatered using a decanter. The solid phase was valorized by composting,
while the liquid phase was recirculated to the AD reactor to reduce the water consumption for diluting
the olive mill solid waste. During composting, moisture was reduced from 65% from the solid phase to
35% in the compost, and NH3, N>O, and CH4 were emitted to air. The compost was sold for its use as
organic fertilizer. Direct application of digestate to the soil was not considered since it is a practice that
is increasingly limited in the legislation, forcing the implementation of stabilization processes, such as
composting, before the reuse of the anaerobic digestate [10].

The generated biogas was combusted in a cogeneration engine in which heat and electricity were
simultaneously generated. Both heat and electricity were enough to cover the energy requirement of
the rest of the stages of the system—AD (heat and electricity) and decanter (electricity). The surplus
energy was sold and fed to the grid.

2.2.2. Olive Pomace Oil Extraction (OPOE)

Firstly, the olive mill solid waste was dried to reduce its humidity in a rotary dryer.
As aforementioned, two options were considered depending on the fuel selected to supply the
energy required for drying: natural gas (OPOE-A) or extracted pomace resulting from the crude
pomace oil extraction stage (OPOE-B). Flue gas was emitted due to fuel combustion. When extracted
pomace was used as fuel, ashes were generated and used in landfarming.

The dried olive mill solid waste, or olive pomace, was then subjected to the oil extraction phase.
The extraction with an organic solvent, namely, technical hexane, was chosen for this study as it is
widely used at industrial scale in the extraction plants. The extracted phase was distilled to remove the
solvent from the pomace oil. The recovered solvent was then recirculated to the extraction process.
The main intakes for this process were considered in the study: technical hexane, electricity, and diesel
for heat production [11]. The emission from diesel combustion and hexane losses were also included
within the boundary limits.

Due to its high acidity, the crude pomace oil must be refined. The most employed method for olive
pomace oil refining is the chemical refining, in which the crude pomace oil reacts with an alkali solution
to neutralize the free fatty acids [12]. Caustic soda was added, forming soap stock by reacting with
the fatty acids. A centrifuge was used for separating the oil/soap mixture and, subsequently, the oil
from the soap was clarified by filtration. The generated wastewater stream was sent to appropriate
treatment. Heat, electricity, water, and sodium hydroxide were considered in the study as needed
supplies. Soap stock is not considered as a by-product according to the results reported in [13].

2.3. Inventory Data

The life cycle inventory (LCI) data for both alternatives for olive mill solid waste valorization are
detailed in Table 2. All background data were sourced from Ecoinvent v3.3 [14]. The figures shown in
Table 2 were calculated based on the data and assumptions summarized below.
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Table 2. Inventory data referred to 1 metric ton of olive mill solid waste. na; not applied.

Unit Per Metric Anaerobic  Olive Pomace Olive Pomace

Category Ton of Olive Digestion  Oil Extraction = Oil Extraction
Mill Solid Waste (AD) (OPOE-A) 3 (OPOE-B) 4
Electricity kWh -215.06 ! 242 242
Heat MJ -850.97 2 0.06 0.06
Diesel kg na 1.07 1.07
Natural gas m3 na 61.9 na
Compost kg 221.03 na na
Refined olive pomace oil kg na 22.17 22.17
Extracted olive pomace kg na 224.39 82.46
Water kg 157.75 3652 3652
Technical hexane kg na 0.03 0.03
NaOH solution kg na 0.11 0.11
Emissions to air
CO, (fossil) kg na 143.07 3.37
CH, kg 1.15 0.91 091
N,O kg 0.05 0.05 0.05
NHj; kg 0.25 na na
Technical hexane na 0.02 0.02
Olive mill solid waste transportation tkm na 100.00 100.00
Wastewater to treatment m3 na 3.10 3.10
Ashes to landfarming kg na na 3.78

1 Net electricity production after subtracting the total electricity consumed from the electricity produced. 2 Net heat
production after subtracting the total heat consumed from the heat produced. 3 Natural gas employed as fuel for
drying. 4 A fraction of the extracted olive pomace is employed as fuel for drying.

2.3.1. Anaerobic Digestion (AD)

Anaerobic digester. The ultimate methane production (Gmax) obtained from olive mill solid waste
in previous work by using biomethane potential tests was 216 cm® CHy/g volatile solids (VS) [1].
The biomethane production was obtained then by applying a scale-up factor of 0.85 to this experimental
Gmax value (216 cm? CHy/g VS) [9].

Decanter. The electricity consumed by the decanter for dewatering was 3.5 kW/h per metric ton of
digestate [15].

Composting. Emission to air during composting was calculated according to average reported
values [16].

Cogeneration engine and energy integration. The energy generation efficiency in a cogeneration
biogas engine was considered 33% for electricity and 55% for thermal energy (30% in hot water and
25% in exhausted gas) [17]. The 200 k] of thermal energy per kg of waste fed to the AD was consumed
to keep the operating temperature of the reactor [18]. The electricity consumption in the AD section
reached 15% of the electricity generated by the co-generation biogas [19].

2.3.2. Olive Pomace Oil Extraction (OPOE)

Drying and extraction. Data from the literature [11] were adapted to consider both fuel options
for drying. Olive mill solid waste needed to be dried until 10%wt humidity. The energy requirement
for drying was 2176 MJ/t wet olive mill solid waste [20]. Lower heating value (LHV) of natural gas
and extracted oil pomace was 42.4 MJ/kg and 15.33 MJ/kg, respectively [20]. Emissions to air from
fuel combustion were calculated using emission factors from the Intergovernmental Panel on Climate
Change [21]. Background data from Ecoinvent was used for the use of the ashes in landfarming.

Refining. Inventory data from the Ecoinvent database for the chemical refining of crude vegetable
oil were adapted by using an average acidity of 10% for the crude olive pomace oil [12]. Background
inventory data for a specific treatment for wastewater from vegetable oil refinery were also included.
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2.3.3. Transport

Transport background from the Ecoinvent database was assumed for all materials except for the
olive mill solid waste. The AD facility was considered to be located in the same area as the olive
mill. In this sense, the transport of the olive mill solid waste to the AD reactor could be despised.
The distance from the olive mill to the extraction and refining plant was assumed to be 100 km.

2.3.4. System Expansion Approach

To compare both alternatives for the valorization of olive mill solid waste from the 2-outlet decanter,
for which the obtained products were different, system expansion was applied. Each alternative
was credited for avoiding the production of products that could be substituted by the different
valuable outcomes. The credits were equal to the impacts of the production, by current production
processes, of the substituted products. The data for these avoided production systems were sourced
from Ecoinvent. Table 3 summarizes the credits associated with substituted products for each
valorization alternative.

Table 3. Credits associated with avoided products for each valorization alternative.

Anaerobic digestion

Outcomes Credits for avoided products Equivalence ratio
Electricity Medium voltage-Spanish mix 1:1 (kwh)
Heat Industrial heat from natural gas 1:1 M])
Compost Peat ! 1:1 (kg) !
Olive pomace oil extraction
Outcomes Credits for avoided products Equivalence ratio
Refined olive pomace oil Refined vegetable oil 1:1 (kg)
Extracted olive pomace Natural gas 1:1 (MJ) 2

1 According to [16]. 2LHV (lower heating value): natural gas = 42.4 MJ/kg; extracted olive pomace = 15.33 M]J/kg [20].

2.4. Impact Assessment

SimaPro v.8.3. software from Pré Consultants B.V. (Amersfoort, The Netherlands) was used to
model the life cycle. The latest available version of CML 2001 (Centrum voor Milieuwetenschappen,
January 2016 version) impact assessment method was used to calculate the environmental impacts [22].
The eleven impact categories included in the CML 2 method were assessed: abiotic depletion potential
of elements (ADe), abiotic depletion potential of fossil fuel resources (ADf), global warming potential
(GWP), ozone depletion potential (ODP), human toxicity potential (HTP), freshwater aquatic ecotoxicity
potential (FWEP), marine aquatic ecotoxicity potential (MWEP), terrestrial ecotoxicity potential (TEP),
photochemical oxidants creation potential (POP), acidification potential (AP), and eutrophication
potential (EP).

Despite ISO standards do not require normalization and weighting, they are frequently applied
in practice to identify important impact categories or to solve tradeoffs between results [23]. In this
study, normalization was included to obtain a single score per alternative by using the reference values
included in the CML 2001 method, as well as a default weighting factor of one.

3. Results

The environmental impacts of the alternatives considered for olive mill solid waste valorization
are shown in Figure 2. A thorough discussion determining the main contributors to each impact
category has been addressed in the following section for a better understanding of the environmental
differences between both alternatives. To illustrate the origin of the environmental impacts, Figure 3,
Figure 4, and Figure 5 for AD, OPOE-A, and OPOE-B, respectively, show the percentage contribution
of the different concepts included in the inventory to each impact category, distinguishing between
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positive and negative (credits) impacts. Additionally, Figure 6 shows the percentage of contributions
to the impacts for the refining of the crude pomace oil (OPOE-A and OPOE-B). In general terms,
it is worth noting that most of the credits for AD came from avoiding the external production of
electricity. This was in contrast to OPOE, in which the main contributors to the credits depended on
the impact category.
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Figure 2. Life cycle environmental impacts of olive mill solid waste valorization via anaerobic digestion
and olive pomace oil extraction. AD: anaerobic digestion; OPOE-A: crude olive pomace oil extraction
with natural gas as fuel for olive pomace drying; OPOE-B: crude olive pomace oil extraction with
extracted pomace as fuel for olive pomace drying. The values shown on top of each bar represent the
total impact after the system credits have been applied. Some impacts have been scaled to fit. To obtain
the original values, multiply by the factor shown on the x-axis for the relevant impacts.
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Figure 3. Percentage contribution to the impacts for anaerobic digestion scheme (AD): (a) positive
contribution; (b) credits.
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Figure 4. Percentage contribution to the impacts for crude olive pomace oil extraction, burning natural

gas (OPOE-A): (a) positive contribution; (b) credits.
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Figure 5. Percentage contribution to the impacts for crude olive pomace oil extraction, burning a
fraction of the extracted olive pomace (OPOE-B): (a) positive contribution; (b) credits.
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Figure 6. Percentage contribution to the impacts of the crude pomace oil refining (OPOE-A and
OPOE-B).

Since AD of olive mill solid waste was still a process at the developing stage and due to the
relevance of the credits obtained for this alternative by avoiding electricity production, a sensitivity
analysis was performed, varying the amount of biogas generated per kg of treated olive mill solid
waste. Relative results obtained for AD, related to OPOE-A and OPOE-B environmental impacts and
expressed as percentage increment (+ values) or decrement (— values) are represented in Figure 7,
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including cases with a reduction on biogas production of 20, 35, and 50% respect to the experimental
value used as a reference.

AP | GWP

ODP

= AD

e AD (-20%)
AD (-35%)
AD (-50%)

e OPOE-A

POP \ ODP

= AD

e AD (-20%)
AD (-35%)
AD (-50%)

= OPOE-B

(b)

Figure 7. Influence of the reduction of the biogas production from olive mill solid waste in the anaerobic

digestion (AD) on the environmental LCA (life cycle assessment) comparison with OPOE employing
natural gas (a) and a fraction of the extracted olive pomace (b) as fuel for drying.

Finally, Table 4 illustrates the normalized environmental results and the simple scores, these latter
ones by applying a weighting factor of 1.
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Table 4. Normalized environmental impacts and single scores per kg of olive mill solid waste,

where ADe, abiotic depletion potential of elements; ADf, abiotic depletion potential of fossil fuel

resources; GWP, global warming potential; ODP, ozone depletion potential; HTP, human toxicity

potential; FWEP, freshwater aquatic ecotoxicity potential; MWEP, marine aquatic ecotoxicity potential;

TEP, terrestrial ecotoxicity potential; POP, photochemical oxidants creation potential; AP, acidification

potential; and EP, eutrophication potential (EP).

Impact Ar.laero-bic O}ive Pomfice O!ive Pom:ace
Category Digestion Oil Extraction Oil Extraction
(AD) (OMOE-A) (OMOE-B)
ADe -1.40 x 10718 -3.89 x 10713 -3.89 x 10713
ADf -7.86 x 10711 —453x 10711 —453x 1071
GWP —2.76 x 10711 1.13x 1071 -1.65x 1071
ODP —2.71x 10718 —4.19 x 10714 —4.19 x 1074
HTP -2.92 x 10712 -1.33x 10712 —9.27 x 10713
FWEP —2.79 x 10711 —-9.66 x 10711 -9.43x 1071
MWEP —8.55 x 10710 -1.31x 10710 —1.26 x 10710
TEP —222x 10712 -2.36 x 10710 —2.31x 10710
POP —2.71 x 10712 —-6.30 x 10712 —6.30 x 10712
AP —9.36 x 10712 -1.50 x 10711 -150 x 1071
EP -1.17 x 1071 -2.07 x 10711 -121x 10711
Single score ! -1.02x 1077 —5.41 x 10710 -5.48 x 10710

1 Weighting factor = 1.

4. Discussion

4.1. Global Warming

As expected, due to the CO, of fossil origin emitted with the flue gas during the drying stage,
the valorization of olive mill solid waste via AD could involve a great reduction in GWP (345%) with
respect to the pomace oil extraction when natural gas is used as fuel (OPOE-A). This reduction was still
significant (67%) when a fraction of the extracted pomace was burned (OPOE-B). Without considering
the credits, AD and OPOE-B had similar GWP (23.5-25.5 kg CO, eq /t). The difference in GWP was
mainly due to the greater credits obtained in AD (165 kg CO; eq /t) with respect to OPOE-B (106 kg
CO;, eq /t). The main contributors to these credits were the electricity and the olive pomace oil for oil
extraction, respectively. The emissions during composting were the main contributors for AD, whereas
the transport of olive mill solid waste to the extraction plant was the main contributor for OPOE-B.
As expected, most of the GWP came from the combustion of natural gas for OPOE-A. Even though
credits in OPOE-A were higher than those obtained in OPOE-B (135 kg CO; eq./t), this could not
compensate for the emissions from natural gas combustion. As aforementioned, the GWP of OPOE-A
was the only positive impact (57 kg CO; eq /t) of all the categories under study.

Assuming a production volume of olive oil in Spain of 1,250,000 metric tons in one
regular-season [24] and a ratio of olive mill solid waste to an olive oil of 819:176 kg/kg [25], the application
of AD to olive mill solid waste could save the emission of 808 kt CO, eq. In this sense, AD could be
considered environmentally friendlier, in terms of GWP, than OPOE with biomass combustion (saving
just 483 kt CO, eq.) and OPOE when natural gas is burned (almost 330 kt CO, eq. emission).

This meant that if the olive oil production process could release up to 2.5 kg CO,eq./dm? olive
oil [26], the valorization of the olive mill solid waste by AD could compensate around 28% of the
greenhouse gas emissions from olive oil production, which was far higher than the 17% compensated
in the same scenario by applying the crude olive pomace oil extraction (OPOE-B).

4.2. Abiotic Depletion of Elements

Regarding the abiotic depletion of elements (ADe), the contribution of the processes to the impact
was negligible compared with the credits for all studied cases. The fuel used for drying did not affect
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the impact of the pomace olive oil extraction since almost 100% of the credits were coming from
avoiding the production of vegetable oil. Concretely, most of these credits were coming from avoiding
the manufacturing of pesticides used in vegetable crops for oil production. These credits made OPOE
the best option according to this impact category, being the impact value obtained for AD 64% higher
than for OPOE.

4.3. Abiotic Depletion of Fossil Resources and Ozone Layer Depletion

Concerning abiotic depletion of fossil resources (ADf), AD was the best option with a low
contribution to the process, limited to the water consumption, and the obtained credits due to the
avoiding of the production of electricity from fossil fuels. AD had a 74% lower ADf than OPOE.
Both cases for OPOE had the same value of ADf due to the energy equivalence applied between the
extracted pomace and the avoided natural gas. The amount of extracted pomace consumed in OPOE-B
was equivalent to the natural gas consumed in OPOE-A, reducing in the same quantity the credits
obtained in OPOE-B due to the sale of extracted pomace to be used as fuel. The results obtained for
ozone layer depletion (ODP) were similar to those achieved for ADf. In this case, the impact of AD
was 547% lower than for OPOE.

4.4. Human Toxicity

As aforementioned, AD was the best option for this category. Another remarkable result that
requires deeper analysis is that using extracted pomace as fuel was a worse alternative than using
natural gas in terms of HTP. Without counting the credits, OPOE-A had a higher impact than OPOE-B
due to the contribution of natural gas production. However, in this case, the reduction of the credits in
OPOE-B was not equivalent to the reduction in the impacts, as shown for ADf, due to the contribution
of the treatment in a landfill of the ash from the extracted pomace combustion.

4.5. Ecotoxicity

OPOE-A had the lowest burdens for freshwater ecotoxicity (FWEP) and terrestrial ecotoxicity
(TEP), followed by OPOE-B. The credits from avoiding the production of vegetable oil were responsible
for these results. Nevertheless, OPOE had the highest impact on marine water ecotoxicity (MWEDP)
regardless of the fuel used for drying due to the higher credits assigned to AD from electricity production.

4.6. Photochemical Oxidation (POP) and Acidification (AP)

OPOE was the best alternative for photochemical oxidation and acidification. The value of the
impact did not depend on the fuel chosen for drying for the same reason explained in Section 4.3 for
ADf and ODP.

For POP, without credits, the process for OPOE had always a higher impact than the AD due
to the contribution of the production of natural gas (OPOE-A) or the treatment of the ashes from
the extracted pomace combustion (OPOE-B). Nevertheless, these impacts were mainly compensated
by the credits obtained from avoiding the use of pesticides in vegetable crops for oil production.
Conversely, concerning AP, AD had higher burdens than OPOE-B when credits were not considered.
The contribution of the emissions to air from composting could be responsible for this fact.

4.7. Eutrophication

OPOE-A showed the lowest burdens for eutrophication potential (EP), 42% lower than OPOE-B,
which was the second-best option. The higher impacts of OPOE-B and AD were caused by the ash
treatment and the emissions to air during composting, respectively.
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4.8. Sensitivity Analysis

As could be seen in Figure 7, for a reduction of 50% in the production of biogas from olive mill
solid waste, remarkable changes were observed in ADf and GWP. On the one hand, for ADf, OPOE
turned to be a better option than AD regardless of the fuel used for drying. OPOE-B could be regarded
as a better option than AD in terms of GWP.

4.9. Normalization

According to the normalized results and applying a weighting factor of 1, AD was the best
alternative with a global environmental impact reduction of 85.9-88.1% with respect to both OPOE
options. Within a circular economy approach, the use of natural gas (OPOE-A) was the worst option,
but the use of a fraction of the extracted pomace as fuel for drying (OPOE-B) offered a reduction of
only 1.2% of the environmental impact, expressed as a single score, with respect to the case of using
natural gas (Table 4).

5. Conclusions

Evaluating each category separately, AD was shown as the best alternative for GWP and the other
four categories, including ADf, ODP, HTP, and MWTP. The use of extracted pomace as fuel (OPOE-B)
instead of natural gas (OPOE-A) could strongly reduce GWP but, conversely, increase the impact
in the other two categories, i.e., HTP and EP, leaving the rest without change or with a negligible
increment (FWTP, TEP). More specifically, the refining process of crude oil had a very low contribution
compared to the extraction process. After evaluating the three alternatives with normalized results
and applying a weighting factor of 1, AD showed a global environmental impact reduction of 88.1 and
85.9% with respect to crude olive pomace oil extraction using natural gas and extracted pomace as
fuel, respectively.
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