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Abstract: The SMx (x = 12, 8, or D) universal solvent models are implicit solvent models which using
electronic structure calculations can compute solvation free energies at 298.15 K. While solvation
free energy is an important thermophysical property, within the thermodynamic modeling of phase
equilibrium, limiting (or infinite dilution) activity coefficients are preferred since they may be used to
parameterize excess Gibbs free energy models to model phase equilibrium. Conveniently, the two
quantities are related. Therefore the present study was performed to assess the ability to use the
SMx universal solvent models to predict limiting activity coefficients. Two methods of calculating
the limiting activity coefficient where compared: (1) the solvation free energy and self-solvation
free energy were both predicted and (2) the self-solvation free energy was computed using readily
available vapor pressure data. Overall the first method is preferred as it results in a cancellation of
errors, specifically for the case in which water is a solute. The SM12 model was compared to both the
Universal Quasichemical Functional-group Activity Coefficients (UNIFAC) and modified separation
of cohesive energy density (MOSCED) models. MOSCED was the highest performer, yet had the
smallest available compound inventory. UNIFAC and SM12 exhibited comparable performance.
Therefore further exploration and research should be conducted into the viability of using the SMx
models for phase equilibrium calculations.

Keywords: solvation free energy; infinite dilution activity coefficient; limiting activity coefficient;
electronic structure calculation

1. Introduction

Limiting (or infinite dilution) activity coefficients are of particular interest both in their
fundamental and practical applications. As will be shown, the log limiting activity coefficient for
solute i infinitely dilute in solvent j is proportional to the transfer free energy of i from a solution
of pure i to pure j (in which it is infinitely dilute). Therefore fundamentally, the limiting activity
coefficient sheds insight into how favorable the interactions of i with j are relative to i with itself.
This fundamental molecular-level understanding provides the framework that directly impacts design
schemes for chemical processes [1].

The practical applications are vast for they are used in the design of separation equipment,
solvent selection, the design of pharmaceuticals, stripping operations, leaching operations, and the
extraction of dilute materials [2,3]. Previous studies have also shown that limiting activity coefficients
can be used to predict the formation of an azeotrope [4–8]. The equilibrium composition of a dilute
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mixture can also be determined, thus having industrial applications in azeotropic distillation and
high-purity extraction [9]. This can serve as a means for process intensification in the environmental
sphere, since environmental engineering addresses the implications of a chemical very dilute in a
phase, often requiring dilute separation processes [10]. For example, limiting activity coefficients can
be used to determine partition coefficients for a dilute species between two phases, which is critical in
predicting the bio-accumulation of long-lived chemicals in the environment and food chain [2].

Of particular interest, it has been demonstrated that the limiting activity coefficient of each
component in a binary mixture can be used to parameterize a binary interaction excess Gibbs free
energy model to make phase equilibrium calculations over an entire range of concentrations [8,11–13].
These parameterizations are particularly advantageous for maximizing the efficiency of separation
processes, which comprise a large majority of chemical plant operations and costs. The underlying
principle is that limiting activity coefficients are a direct measure of the interactions in solution,
and correspond to maximum deviations from ideality. It is therefore reasonable to assume we can
extrapolate to more concentrated solutions where the solution would be more ideal (i.e., closer to the
pure component limit). Consider for example the use of Wilson’s equation [13]. For a binary system
we can compute the composition dependent activity coefficient of component 1 and 2, at mole fraction
composition x1 and x2 = 1 − x1 as:

ln γ1 = − ln (x1 + Λ12x2) + x2

(
Λ12

x1 + Λ12x2
− Λ21

Λ21x1 + x2

)
(1)

ln γ2 = − ln (x2 + Λ21x1)− x1

(
Λ12

x1 + Λ12x2
− Λ21

Λ21x1 + x2

)
where Λ12 and Λ21 are adjustable parameters which may be related to the binary (intermolecular)
interaction parameters (BIPs) of the system (a12 and a21):

Λ12 =
v2

v1
exp

[
− a12

RT

]
(2)

Λ21 =
v1

v2
exp

[
− a21

RT

]
where R is the molar gas constant, T is the absolute temperature, and v1 and v2 are the molar volume
of pure component 1 and 2, respectively. At infinite dilution, Equation (1) reduces to:

ln γ∞
1 = − ln (Λ12) + 1 − Λ21 (3)

ln γ∞
2 = − ln (Λ21) + 1 − Λ12

It follows that with knowledge of the limiting activity coefficient of each component in the
binary mixture, Equation (3) reduces to a system of two equations with two unknowns that
can be used to parameterize Wilson’s equation. This would allow one to calculate composition
dependent activity coefficients which could be used, for example, to model vapor/liquid equilibrium.
Moreover, this approach may readily be generalized to multi-component systems. Wilson’s equation
has two binary parameters for each pair in a multi-components system, where limiting activity
coefficients may be used to parameterize each binary pair [13].

Limiting activity coefficients can be experimentally determined through a variety of methods
including: gas chromatography, gas stripping, ebulliometry, and the dew point method [9,14].
However when there is little or no experimental data present, predictive models and tools can be
implemented. Some popular methods include group contributions methods, solubility parameter
based methods, molecular simulations, and electronic structure calculations. The Universal
Quasichemical Functional-group Activity Coefficients (UNIFAC) method is a group contribution-based
binary interaction excess Gibbs free energy model designed by breaking molecules into functional
groups and calculating the configuration energy of the molecule as the sum of group interaction
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energies [15,16]. Similarly, mod-UNIFAC (Dortmund) is a revision of the original UNIFAC model that
accounts for the temperature dependence of activity coefficients by including temperature-dependent
interaction parameters within the model [17,18]. Solubility parameter based methods such as
the modified separation of cohesive energy density (MOSCED) [8,19,20] and Hansen solubility
parameter (HSP) methods [21], while they limit the user to modeling systems for which solute
parameters are available, they give molecular-level insight into the the behavior of a binary system.
Molecular simulations and electronic structure calculations can be computationally rigorous, yet are
advantageous for they only require the input of a molecular structure [22–26].

The pursuit of accurate, efficient predictive models is vital as it could reduce the experimental
and design cost associated with chemical processes. This is of particular interest in separation
processes, as they may account for 40–70 percent of the capital and operating cost of a chemical
plant [27]. Predictive computational tools have become an essential asset in conducting feasibility
and comparative studies, as they are significantly quicker and more cost-efficient than experimental
determinations [28]. They are necessary when property data is unavailable, specifically in the case of
dealing with new products and compounds. However within computational advancement, there is a
risk in losing the intuitive molecular understanding of the processes that lead to observed outcomes.
Thus, including thermodynamic parameters such as limiting activity coefficients in the computational
process provides molecular insight that could greatly assist in resultant recommendations for industrial
design [10].

This study seeks to assess the capability of the SMx (x = 12, 8, or D) universal solvent models
for predicting limiting activity coefficients [29–31]. The SMx universal solvent models are implicit
or continuum solvent models that can compute solvation free energies at 298.15 K using electronic
structure calculations. The models have long been under active development with their accuracy
continuously improving and are implemented in a number of software packages [29,32–34]. The only
input needed from the user is a structure of the molecule; therefore the SMx models are set apart from
other methods in the sheer simplicity for the user. Of specific interest to us is their potential future use
to parameterize binary interaction excess Gibbs free energy models for phase equilibrium predictions.
In addition, a major goal of this work is to determine how best to predict limiting activity coefficients
using solvation free energies computed using the SMx universal solvent models. Specifically, as will
be shown, the prediction of the limiting activity coefficient is dependent on both the solvation free
energy and self-solvation free energy. While the self-solvation free energy may be computed directly,
it may additionally be computed from readily available vapor pressure data.

Previous work to use the SMx universal solvent models to predict limiting activity coefficients
is limited. Recently, Lisboa and Pliego [26] used SMD to compute 46 limiting activity coefficients.
In the present study, we compute over 3000 limiting activity coefficients with comparison to reference
data, for each SM12, SM8, and SMD. In addition, we compare two methods of calculating the limiting
activity coefficient: (1) the solvation free energy and self-solvation free energy were both predicted
and (2) the self-solvation free energy was computed using readily available vapor pressure data.
To better understand the two methods, we compare the individual contributions of the solvation and
self-solvation free energy to available reference data. In general, there is not a significant difference
between the limiting activity coefficients computed using the two methods. However, for the cases in
which water is a solute, the results are significantly better when both the solvation and self-solvation
free energy are predicted using SMx. This results from a cancellation of errors in the two terms.
We therefore recommend that in general SMx be used to predict both the solvation and self-solvation
free energy when computing limiting activity coefficients. Comparison is additionally made to
predictions using UNIFAC and MOSCED. SM12 and UNIFAC are found to exhibit comparable
performance, motivating future exploration and research into the viability of using the SMx models for
phase equilibrium calculations.
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2. Method

Performing electronic structure calculations in the SMx (x = 12, 8, or D) universal solvent model,
one calculates the solvation free energy of a solute (component i) at infinite dilution in a solvent
(component j), ∆Gsolv

i,j , where i = {1 or 2} and j = {1 or 2} [29–31,35,36]. The solvation free energy in
this context is defined as taking a solute from a non-interacting ideal gas state to solution at the same
molecular density (or concentration). We have shown previously that the solvation free energy is
readily related to the limiting activity coefficient (γ∞

i,j) as [24,37–42]:

ln γ∞
i,j (T, P) =

1
RT

[
∆Gsolv

i,j (T, P)− ∆Gself
i,i (T, P)

]
+ ln

vi (T, P)
vj (T, P)

(4)

where ∆Gself
i,i is the solute “self”-solvation free energy, R is the molar gas constant, and vi and vj

correspond to the pure liquid molar volume of component i and j, respectively. The difference
∆Gsolv

i,j − ∆Gself
i,i is equivalent to the transfer free energy of i from a solution of pure i to pure j (in which

it is infinitely dilute). When i = j we obtain the correct limiting behavior that γ∞
i,j = 1. The self-solvation

free energy, ∆Gself
i,i , may readily be calculated by performing a solvation free energy calculation for

component i in itself. Alternatively, we can relate ∆Gself
i,i to the pure liquid fugacity of component i, f 0

i ,
as [38]:

ln f 0
i (T, P) =

1
RT

∆Gself
i,i (T, P) + ln

RT
vi (T, P)

(5)

We can expand f 0
i as [13]:

f 0
i (T, P) = φsat

i (T) Psat
i (T) exp

{∫ P

Psat

vi (T, P)
RT

dP
}

(6)

where φsat
i and Psat

i are the fugacity coefficient and vapor pressure of pure component i at saturation at
T, and the term in brackets is the Poynting correction, and accounts for the change in fugacity in going
from Psat to P at constant T. If we assume that the vapor phase is an ideal gas and that the Poynting
correction is negligible, we have [13,38,43,44]:

f 0
i (T, P) = Psat

i (T) (7)

If we are at low pressures well removed from the critical point, and we have a non-self associating
fluid (i.e., no carboxylic acid), use of this expression is generally reasonable. Often times, the pure
component property Psat

i is known. This presents an opportunity to use reference data to compute
∆Gself

i,i as:
1

RT
∆Gself

i,i (T, P) = ln
Psat

i (T) vi (T, P)
RT

(8)

and then using electronic structure calculations in the SMx universal solvent models to compute ∆Gsolv
i,j ,

which is a property of the mixture.

3. Computational Details

All solvation free energy calculations were performed in the SMx (x = 12, 8, or D) universal solvent
models using QChem 5.1.2 (supplementary materials) [45,46]. We selected systems by searching
through the Minnesota Solvation Database version 2012 [47] for binary systems for which QChem had
(SMx) solvent parameters for both components. The Minnesota Solvation Database was selected as
our reference for comparison as it was used in the parameterization of SM12 [29], and earlier versions
were used in the parameterization of SM8 and SMD [30,31]. The data in the Minnesota Solvation
Database is restricted to 298.15 K, and it follows that calculations using the SMx solvent models are
restricted to 298.15 K. In addition, the Minnesota Solvation Database contains only solvation and
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transfer free energy data. We computed reference limiting activity coefficients from the solvation
free energies using Equation (4), where the self-solvation free energy was computed via Equation (8)
using reference vapor pressure and molar volume data [48]. Note that iodine and carboxylic acid
containing molecules were excluded from our search. We excluded the seven iodine hydrocarbons
because SM8 and SMD were not parameterized to treat iodine containing solutes [30,31]. The six
molecules containing a carboxylic acid functional group were excluded as they are known to dimerize
in the vapor phase [49], and we wish to compare the use of Equations (5) and (7) when computing
limiting activity coefficients. Excluding these 13 molecules, QChem contains SMx parameters for 148
additional molecules (solvents).

This resulted in a data set of solvation free energies (and hence limiting activities) for 1140 systems,
consisting of 107 unique solutes and 73 unique solvents. The Minnesota Solvation Database contained
self-solvation free energies at 298.15 K for only 62 of the 148 possible molecules. We therefore instead
computed a set of reference self-solvation free energies for all 148 molecules using Equation (8) with
reference vapor pressure and molar volume data [48]. For the 62 molecules for which values were
available in the Minnesota Solvation Database, the computed values were found to be consistent.
The inclusion of both solvation free energies and self-solvation free energies will allow us to look at
the individual contributions to the limiting activity coefficient.

As already mentioned, the Minnesota Solvation Database was used in the parameterization of
the SMx universal solvent models. Its use was motivated by the desire to assess the prediction of the
individual contributions, ∆Gsolv

i,j and ∆Gself
i,i , and the combined effect on ln γ∞

i,j. As a secondary test,
we curated reference data from Parts 1 to 6 of DECHEMA’s “Activity Coefficients at Infinite Dilution”
volumes [50–55]. We again restricted ourselves to binary systems for which both components were
in our set of 148 molecules (solvents) for which QChem contains SMx parameters. This resulted in
limiting activity coefficients for an additional 2163 systems, consisting of 117 unique solutes and 77
unique solvents. Note that as compared to the Minnesota Solvation Database wherein there was only a
single entry for each unique system (i.e., solute-solvent pair), duplicates were present in DECHEMA.
We retained all of the data, including duplicates, in the final set.

When curating reference data, we only included binary systems for which QChem had (SMx)
solvent parameters for both components. The reason for this is two-fold. (1) First, if one were to
compute both ∆Gsolv

i,j and ∆Gself
i,i to predict ln γ∞

i,j via Equation (4), a solvation free energy would be
required when both i and j take on the role of solvent, requiring that SMx solvent parameters be
available for both components. (2) On the other hand, if ∆Gself

i,i was instead computed using reference
vapor pressure data, then in theory solvent parameters for i would not be necessary. However, even if
this is the case, we are interested in the potential future application of using SMx computed solvation
free energies to parameterize a binary interaction excess Gibbs free energy model for phase equilibrium
calculations. For this case, for a binary pair both γ∞

i,j and γ∞
j,i are required; no matter how the

self-solvation free energy is computed, a solvation free energy calculation is required in both solvents,
making necessary the availability of SMx solvent parameters for both components.

As we will discuss, we find that challenges occur in predicting limiting activity coefficients
for aqueous systems. We therefore sourced an additional data set composed of organics in water
and water in organics at 298.15 K from “Yaws’ Handbook of Properties for Aqueous Systems” [56].
Data was available for 121 systems where water is the solvent and 90 systems where water is the solute,
with no duplicates.

The calculations proceeded by first obtaining a daylight SMILES [57,58] for each of the
148 molecules from PubChem [59]. We then generated 3-D structures from the SMILES using Open
Babel 2.3.2 [60,61]. Open Babel was then used to perform a systematic conformational search to
identify the lowest energy conformer, followed by geometry optimization. The conformational
search and geometry optimization were conducted using the General Amber Force Field [62,63]
with Gasteiger partial charges [64]. The final structures were then further refined by performing a



Processes 2020, 8, 623 6 of 24

geometry optimization in vacuum using QChem 5.1.2 at the M06-2X/cc-pVDZ level of theory/basis
set [35,65,66]. This final structure was then used for all of the solvation free energy calculations.

To calculate the solvation (including self-solvation) free energies, single point energy calculations
were performed in vacuum and in the SM12, SM8, and SMD universal solvent models for each
solvent of interest at the M06-2X/6-31G(d) level of theory/basis set using QChem 5.1.2. Using QChem
5.1.2, the calculation of the solvation free energy is handled completely internally by the software.
We emphasize that we used the same conformation for the solute in the ideal gas (vacuum) and
solution phases, consistent with the SM12, SM8, and SMD parameterizations [29–31]. It is possible
to consider different configurations for the two phases, and it is possible to incorporate multiple
configurations into the calculation of the solvation free energy which may be important for some
systems [67]. However, this was not pursued here for simplicity.

All of the SMx computed self-solvation free energies (∆Gself
i,i ), solvation free energies (∆Gsolv

i,j ),
and limiting activity coefficients (γ∞

i,j), along with the reference values and results of the reference
calculations (UNIFAC and MOSCED) to which comparison is made, are tabulated in the supporting
information accompanying the electronic version of this manuscript. As mentioned, we are interested
in the potential future application of using SMx computed solvation free energies to parameterize a
binary interaction excess Gibbs free energy model for phase equilibrium calculations. Therefore, in the
supporting information the results are additionally categorized following the system classification
used in DECHEMA’s “Vapor-Liquid Equilibrium Data Collection” volumes [68].

4. Results and Discussion

The central goal of this work is to assess the ability of electronic structure calculations with the
SMx (x = 12, 8, or D) universal solvent models to predict limiting activity coefficients. As seen in
Equation (4), this is composed of contributions due to the solvation free energy (∆Gsolv

i,j ) and self

solvation free energy (∆Gself
i,i ). We will therefore first assess each individual contribution. We will

quantify the agreement between the reference data and the SMx predictions using the root mean square
error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

(
Ypred − Yref

)2 (9)

the average absolute percent deviation (AAPD):

AAPD =
100
N

N

∑
i=1

∣∣∣∣∣Ypred − Yref

Yref

∣∣∣∣∣ (10)

and the mean unsigned error (MUE):

MUE =
1
N

N

∑
i=1

∣∣∣Ypred − Yref
∣∣∣ (11)

where the superscript “pred” and “ref” correspond to the predicted and reference values, respectively,
Y corresponds to the property of interest, and N corresponds to the number of systems for which
comparison is being made.

4.1. Self-Solvation Free Energy

We begin with ∆Gself
i,i . A parity plot of the predicted versus reference values of ∆Gself

i,i / (RT) and
a summary of the computed statistics is provided in Figure 1 and Table 1, respectively. The statistics
in Table 1 are computed for Y = ∆Gself

i,i / (RT), with the summation carried out over all N = 148
molecules for which reference data is available. Note that we are interested in the dimensionless ∆Gself

i,i
as it is the quantity of interest in Equation (4).
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Figure 1. Parity plot of the predicted versus reference values of the negative dimensionless
self-solvation free energy, −∆Gself

i,i / (RT), using the SM12, SM8, and SMD universal solvent model,
as indicated. The blue lines corresponds to the y = x line, and the dashed blue lines correspond to ±1.5
and are drawn as a reference; the value of 1.5 was used based on the RMSE for the SM12 predictions.

Table 1. A summary of the squared correlation coefficient (R2), root mean square error (RMSE),
average absolute percent deviation (AAPD), and mean unsigned error (MUE) for the values of
∆Gself

i,i / (RT) predicted using the SM12, SM8, and SMD universal solvent model as compared to
the reference data.

∆Gself
i,i / (RT)

SM12 SM8 SMD

R2 0.713 0.707 0.566
RMSE 1.526 1.600 1.820
AAPD 10.888 11.230 14.655
MUE 1.077 1.131 1.372

Overall, we find that SM12 and SM8 outperform SMD, with SM12 performing slightly better
than SM8. The top performance of SM12 is in agreement with the recent SM12 parameterization [29].
Visually, it is clear in Figure 1 that SM12 and SM8 offer a noticeably smaller spread in the data as
compared to SMD, corresponding to a smaller overall error.

During the parameterization of SM12, it was pointed out that the largest deviation was observed
for the self-solvation free energy of water, which was overly negative by 1 to 2 kcal/mol (or 1.7 to
3.4 RT in dimensionless units) using all methods, and the solvation free energy of the water dimer
in water was overly negative by 3 to 4 kcal/mol (or 5.1 to 6.8 RT in dimensionless units) using all
methods [29]. We likewise observe large errors for the self-solvation free energy of water, although our
predictions are slightly more negative. The reference value of ∆Gself

i,i / (RT) for water is −10.689,
while we predict −14.473, −15.485, and −15.024 with SM12, SM8, and SMD, respectively. This would
correspond to predicting a vapor pressure that is too small, and that we are over estimating the affinity
of water for the liquid phase or equivalently the strength of the water–water interactions.
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4.2. Solvation Free Energy

Next we consider ∆Gsolv
i,j , making comparison for the 1140 systems, consisting of 107 unique

solutes and 73 unique solvents, from the Minnesota Solvation Database. A parity plot of the predicted
versus reference values of ∆Gsolv

i,j / (RT) and a summary of the computed statistics is provided in

Figure 2 and Table 2. The statistics in Table 2 are computed for Y = ∆Gsolv
i,j / (RT), with the summation

carried out over all N = 1140 systems for which reference data is available.

0 10 20
−∆G

i,j
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0
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∆
G
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jso
lv

/ (
R
T

) 
pr

ed
ic

te
d

SMD
SM8
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Figure 2. Parity plot of the predicted versus reference values of the negative dimensionless solvation
free energy, −∆Gsolv

i,j / (RT), using the SM12, SM8, and SMD universal solvent model, as indicated.
The blue lines corresponds to the y = x line, and the dashed blue lines correspond to ±1.1 and
are drawn as a reference; the value of 1.1 was used based on the RMSE for the SM12 predictions.
The reference values are from the Minnesota Solvation Database.

Table 2. A summary of the squared correlation coefficient (R2), root mean square error (RMSE),
average absolute percent deviation (AAPD), and mean unsigned error (MUE) for the values of
∆Gsolv

i,j / (RT) predicted using the SM12, SM8, and SMD universal solvent model as compared to
the reference data from the Minnesota Solvation Database.

∆Gsolv
i,j / (RT)

SM12 SM8 SMD

R2 0.838 0.826 0.820
RMSE 1.120 1.125 1.181
AAPD 20.985 24.593 26.093
MUE 0.828 0.843 0.882

We again find that SM12 is the top performing model, although the difference in performance
between the models is much smaller for ∆Gsolv

i,j as compared to ∆Gself
i,i . Moreover, we find that except for

the AAPD, the overall errors are all improved for ∆Gsolv
i,j relative to ∆Gself

i,i . Comparing Figures 1 and 2,

there appears to be a smaller spread in the ∆Gsolv
i,j data, which would correspond to the smaller

RMSE and MUE. This at first had us surprised. In theory, ∆Gself
i,i corresponds to a single component,

homogeneous system. On the other hand, ∆Gsolv
i,j corresponds to a single solute infinitely dilute in a
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solvent. In this case we need to account for solute-solvent and solvent-solvent interactions which are
not the same. We would therefore assume that the latter case is more difficult to predict and would
result in a lower accuracy. However, this was not the case. We do not offer an explanation for this
difference, but would like to point out two differences in the reference data sets. (1) Our data set
for ∆Gsolv

i,j consists of 1140 systems, while we have just 148 values of ∆Gself
i,i . Of the 148 values of

∆Gself
i,i , only 62 were included in the Minnesota Solvation Database. (2) Comparing Figures 1 and 2,

we see there is a difference in the range of values in each data set. While a majority of the values of
∆Gself

i,i / (RT) are over the range −15 to −5, there is an appreciable number of values of ∆Gsolv
i,j / (RT)

greater than −5. We also point out that this last point contributes to the larger AAPD for ∆Gsolv
i,j .

The computed errors and top performance of SM12 are consistent with those published in the recent
SM12 parameterization [29].

Considering again the original SM12 parameterization, it was found that the errors for the
solvation free energy (both aqueous and non-aqueous) for the solute class containing molecular
hydrogen, ammonia, water, and the water dimer were relatively large compared to the other solute
classes [29]. As already mentioned, the original SM12 parameterization pointed out a particular
challenge with the self-solvation free energy of water which was predicted to be overly negative.
To explore this further, we broke down ∆Gsolv

i,j to cases where water was the solvent (j = water),

water was the solute (i = water), and when neither the solvent or solute was water. Note that ∆Gself
i,i

was not include in the set of ∆Gsolv
i,j . This resulted in 104 systems wherein water was the solvent,

14 systems wherein water was the solute, and 1022 systems wherein water was neither the solvent
or solute. A parity plot of the predicted versus reference values of ∆Gsolv

i,j / (RT) with SM12 wherein
these three cases are differentiated is provided in Figure 3.

0 10 20
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G
i,
jso
lv

/ (
R
T

) 
pr

ed
ic

te
d

No Water
Water as solvent
Water as solute

SM12

Figure 3. Parity plot of the predicted versus reference values of −∆Gsolv
i,j / (RT) using the SM12

universal solvent model for the case where water was the solvent, water was the solute, and where
water was neither the solvent or solute, as indicated. The blue lines corresponds to the y = x line,
and the dashed blue lines correspond to ±1.1 and are drawn as a reference; the value of 1.1 was
used based on the RMSE for the SM12 predictions. The reference values are from the Minnesota
Solvation Database.
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We find that in general when water is the solute, ∆Gsolv
i,j is predicted to be overly negative. We find

that ∆Gsolv
i,j / (RT) is overly negative on average by 3.4, 3.5, and 2.4 (dimensionless units) when using

SM12, SM8, and SMD, respectively. Compare this to the case of ∆Gself
i,i / (RT) for water predicted to be

overly negative by 3.8, 4.8, and 4.3 (dimensionless units) for SM12, SM8, and SMD, respectively.

4.3. Limiting Activity Coefficients

When predicting limiting activity coefficients (γ∞
i,j) with the SMx (x = 12, 8, or D) universal solvent

models, two different strategies were evaluated. (1) We predicted both ∆Gself
i,i and ∆Gsolv

i,j , then using
reference values of the molar volume [48], γ∞

i,j was computed via Equation (4). (2) In the second
approach, since the pure component vapor pressure (Psat

i ) is commonly available [48], we used this
reference data to compute ∆Gself

i,i via Equation (8). We then combined this reference value of ∆Gself
i,i

with our SMx predicted value of ∆Gsolv
i,j to predict γ∞

i,j. When computing statistics, for AAPD we use

Y = γ∞
i,j. For all other cases (R2, RMSE, and MUE) we use Y = ln γ∞

i,j.

4.3.1. Minnesota Solvation Database

Limiting activity coefficients (γ∞
i,j) were computed for the same 1140 systems from the Minnesota

Solvation Database for which ∆Gsolv
i,j was computed. Reference values of γ∞

i,j were computed via

Equation (4) using the reference values of ∆Gsolv
i,j from the Minnesota Solvation Database, the reference

values of ∆Gself
i,i already described, and reference values of the molar volume [48]. A parity plot of

the predicted versus reference values of ln γ∞
i,j is provided in Figure 4. In the top pane results are

shown when we predict both ∆Gself
i,i and ∆Gsolv

i,j , and the bottom pane shows the case when ∆Gself
i,i was

computed using reference data.
In general, there does not appear to be a significant difference between the predictions wherein

∆Gself
i,i was predicted or computed using reference data. The spread in results does appear to decrease

when ∆Gself
i,i is computed using reference data, which may reflect the spread in the predicted values of

∆Gself
i,i (see Figure 1). A comparison of the statistics is provided in Table 3.

Table 3. A summary of the squared correlation coefficient (R2), root mean square error (RMSE),
and mean unsigned error (MUE) for ln γ∞

i,j, and the average absolute percent deviation (AAPD) for γ∞
i,j

predicted using the SM12, SM8, and SMD universal solvent model as compared to the reference data
from the Minnesota Solvation Database. For the predictions, we compare the case where (1) ∆Gself

i,i is
predicted using the SM12, SM8, and SMD universal solvent model, and where (2) ∆Gself

i,i is computed
using reference data, as indicated.

∆Gself
i,i Predicted ∆Gself

i,i Reference

SM12 SM8 SMD SM12 SM8 SMD

R2 0.796 0.740 0.627 0.806 0.796 0.788
RMSE 1.155 1.288 1.801 1.120 1.125 1.181
AAPD 89.856 107.821 357.706 92.482 134.797 131.626
MUE 0.840 0.883 1.376 0.828 0.842 0.882

Again, while the difference in the two sets of predictions does not appear to be large, in all cases
we find that R2 increases and the computed overall errors decrease when using reference values of
∆Gself

i,i . One might expect this result. Consider Equation (4) and the errors summarized in Tables 1–3,
where we will take RMSE as a measure of the error in the predictions. When using reference values
of ∆Gself

i,i , the only predicted quantity in Equation (4) is ∆Gsolv
i,j . As a result, we find for this case that

the RMSE for the predicted values of ln γ∞
i,j is identical to that for ∆Gsolv

i,j / (RT). Next, consider the

case of when ∆Gself
i,i is predicted. Using propagation of error, we would expect the error (taken to be
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RMSE) in ln γ∞
i,j to be equal to

√
RMSE2

solv + RMSE2
self, where RMSEsolv and RMSEself are the RMSE

for the predicted values of ∆Gsolv
i,j / (RT) and ∆Gself

i,i / (RT), respectively. This would result in an RMSE
of 1.893, 1.970, and 2.170 for SM12, SM8, and SMD, respectively. However, we find that the actual error
is less than the predicted error. The expression used assumes that the error is random [69]. The smaller
observed uncertainty suggests the presence of systematic error.

With this in mind, let us again look at the specific case of water. We found earlier that when
water is the solute, on average ∆Gsolv

i,j / (RT) is predicted to be overly negative by 3.4, 3.5, and 2.4

(dimensionless units) when using SM12, SM8, and SMD, respectively. Further, ∆Gself
i,i / (RT) for water

is predicted to be overly negative by 3.8, 4.8, and 4.3 (dimensionless units) for SM12, SM8, and SMD,
respectively. From Equation (4), this leads to a convenient cancellation of errors in the calculation of
ln γ∞

i,j. For the case of SM12, using the predicted value of ∆Gself
i,i , this would suggest that on average

the value of ln γ∞
i,j is overly positive by just 0.4. On the other hand, using the reference value of ∆Gself

i,i ,
the corresponding value would be overly negative by 3.4. This is illustrated for SM12 in Figure 5 where
the predictions were again broken down to cases where water was the solvent (j = water), water was
the solute (i = water), and when neither the solvent or solute was water.

Again, in general we find that the predicted values of ln γ∞
i,j do not change substantially when

∆Gself
i,i was predicted or computed using reference vapor pressure data. However, when water is

the solute, there is a clear difference. This would suggest that when water is the solute of interest,
both ∆Gsolv

i,j and ∆Gself
i,i should be computed consistently in the calculation of ln γ∞

i,j.
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Figure 4. Parity plot of the predicted versus reference values of ln γ∞
i,j from the Minnesota Solvation

Database version 2012 [47]. Predictions are made using the SM12, SM8, and SMD universal solvent
model, as indicated. The blue lines corresponds to the y = x line, and the dashed blue lines correspond
to ±1.1 and are drawn as a reference; the value of 1.1 was used based on the RMSE for the SM12
predictions. In the top pane we present results when ∆Gself

i,i was predicted using the SM12, SM8,
or SMD universal solvent model. In the bottom pane we present results when ∆Gself

i,i was computed
using reference vapor pressure data.

In Figure 5 we additionally point out that we observe an apparent break in our trend for
reference values of ln γ∞

i,j > 9. For all cases when the reference values of ln γ∞
i,j are greater than
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9, we under-predict the value of ln γ∞
i,j. These would correspond to highly non-ideal (unfavorable)

systems. For all 26 cases, water is the solvent. A possible source of error could be due to the difficulty
of experimentally measuring such non-ideal values [70].
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Figure 5. Parity plot of the predicted versus reference values of ln γ∞
i,j using the SM12 universal solvent

model for the case where water was the solvent, water was the solute, and where water was neither the
solvent or solute, as indicated. The blue lines corresponds to the y = x line, and the dashed blue lines
correspond to ±1.1 and are drawn as a reference; the value of 1.1 was used based on the RMSE for the
SM12 predictions. The reference values are from the Minnesota Solvation Database. In the top pane we
present results when ∆Gself

i,i was predicted using the SM12 universal solvent model. In the bottom pane
we present results when ∆Gself

i,i was computed using reference vapor pressure data.

4.3.2. DECHEMA

Next, as a secondary test, values of γ∞
i,j at 298.15 K were computed for 2163 systems, consisting of

117 unique solutes and 77 unique solvents, from Parts 1 to 6 of DECHEMA’s “Activity Coefficients
at Infinite Dilution” volumes [50–55]. A parity plot of the predicted versus reference values of ln γ∞

i,j

is provided in Figure 6. In the top pane of Figure 6 results are shown when we predict both ∆Gself
i,i

and ∆Gsolv
i,j , and the bottom pane shows the case when ∆Gself

i,i was computed using reference data.
A summary of the statistics is provided in Table 4.

We again breakdown the predictions to cases where water was the solvent (j = water), water was
the solute (i = water), and when neither the solvent or solute was water, and plot the results for SM12
in Figure 7. The breakdown resulted in 437 systems where water is the solvent, 52 systems where
water is the solute, and 1668 systems where water was neither the solvent or solute.

In general, our observations are the same as when we compared to the Minnesota Solvation
Database. First, there again does not appear to be a significant difference between the predictions
wherein ∆Gself

i,i was predicted or computed using reference data. However, for the specific case of water
as a solute, there is a noticeable difference. When ∆Gself

i,i was computed using reference vapor pressure
data, ln γ∞

i,j when water was a solute was under-predicted on average by 3.02, 3.68, and 2.84 with SM12,
SM8, and SMD, respectively. For all of theses cases, the value of ln γ∞

i,j was always under-predicted
except for water in tetrachloroethene with SMD. Additionally, we again notice an abrupt deviation
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in our trend for reference values of ln γ∞
i,j greater than 9. As before, all of these highly non-ideal

(unfavorable) systems, water was the solvent. Interestingly, the value of R2 does increase. However,
we are dealing with a larger data set that does contain duplicates.
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Figure 6. Parity plot of the predicted versus reference values of ln γ∞
i,j from the DECHEMA. Predictions

are made using the SM12, SM8, and SMD universal solvent model, as indicated. The blue lines
corresponds to the y = x line, and the dashed blue lines correspond to ±1.1 and are drawn as a
reference. In the top pane we present results when ∆Gself

i,i was predicted using the SM12, SM8, or SMD
universal solvent model. In the bottom pane we present results when ∆Gself

i,i was computed using
reference vapor pressure data.
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Figure 7. Parity plot of the predicted versus reference values of ln γ∞
i,j using the SM12 universal solvent

model for the case where water was the solvent, water was the solute, and where water was neither the
solvent or solute, as indicated. The blue lines corresponds to the y = x line, and the dashed blue lines
correspond to ±1.1 and are drawn as a reference. The reference values are from DECHEMA. In the top
pane we present results when ∆Gself

i,i was predicted using the SM12 universal solvent model. In the
bottom pane we present results when ∆Gself

i,i was computed using reference vapor pressure data.
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Table 4. A summary of the squared correlation coefficient (R2), root mean square error (RMSE),
and mean unsigned error (MUE) for ln γ∞

i,j, and the average absolute percent deviation (AAPD) for γ∞
i,j

predicted using the SM12, SM8, and SMD universal solvent model as compared to the reference data
from DECHEMA. For the predictions, we compare the case where (1) ∆Gself

i,i is predicted using the
SM12, SM8, and SMD universal solvent model, and where (2) ∆Gself

i,i is computed using reference data,
as indicated.

∆Gself
i,i Predicted ∆Gself

i,i Reference

SM12 SM8 SMD SM12 SM8 SMD

R2 0.911 0.913 0.874 0.865 0.889 0.886
RMSE 1.163 1.065 1.382 1.354 1.196 1.271
AAPD 86.823 120.158 308.173 177.079 166.345 289.780
MUE 0.847 0.768 1.012 1.061 0.875 0.910

4.3.3. Yaws’ Aqueous Systems

Having identified challenges in predicting ln γ∞
i,j for aqueous systems, we sourced an additional

data set composed of organics in water and water in organics at 298.15 K from “Yaws’ Handbook of
Properties for Aqueous Systems” [56]. Data was available for 121 systems where water is the solvent
and 90 systems where water is the solute, with no duplicates. A parity plot of the results for SM12
is provided in Figure 8. In the top pane of Figure 8 results are shown when we predict both ∆Gself

i,i
and ∆Gsolv

i,j , and the bottom pane shows the case when ∆Gself
i,i was computed using reference data.

A summary of the statistics is provided in Table 5, broken down into the case where water is the
solvent and water is the solute.
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Figure 8. Parity plot of the predicted versus reference values of ln γ∞
i,j using the SM12 universal solvent

model for the case where water was the solvent and water was the solute, as indicated. The blue
lines corresponds to the y = x line, and the dashed blue lines correspond to ±1.1 and are drawn as a
reference. The reference values are from “Yaws’ Handbook of Properties for Aqueous Systems” [56].
In the top pane we present results when ∆Gself

i,i was predicted using the SM12 universal solvent model.
In the bottom pane we present results when ∆Gself

i,i was computed using reference vapor pressure data.
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Table 5. A summary of the squared correlation coefficient (R2), root mean square error (RMSE),
and mean unsigned error (MUE) for ln γ∞

i,j, and the average absolute percent deviation (AAPD) for γ∞
i,j

predicted using the SM12, SM8, and SMD universal solvent model as compared to the reference data
from “Yaws’ Handbook of Properties for Aqueous Systems” [56]. For the predictions, we compare the
case where (1) ∆Gself

i,i is predicted using the SM12, SM8, and SMD universal solvent model, and where
(2) ∆Gself

i,i is computed using reference data, as indicated. The results are additionally separated into
case where water was the solvent and where water was the solute, as indicated.

∆Gself
i,i Predicted ∆Gself

i,i Reference

SM12 SM8 SMD SM12 SM8 SMD

water as solute water as solute

R2 0.889 0.793 0.645 0.889 0.793 0.645
RMSE 1.339 1.836 2.482 3.721 3.600 3.175
AAPD 168.491 645.592 2598.544 94.691 93.947 97.359
MUE 1.116 1.625 2.168 3.485 3.397 2.733

water as solvent water as solvent

R2 0.913 0.928 0.907 0.916 0.946 0.951
RMSE 1.854 1.658 1.652 1.464 1.300 1.090
AAPD 117.058 160.651 327.313 409.655 197.774 176.344
MUE 1.353 1.191 1.317 1.115 1.017 0.792

The results here are consistent with the other data sets. Considering first ln γ∞
i,j for the case

of water as a solute when ∆Gself
i,i was computed using reference vapor pressure data. For all cases

with SM12 and SM8 ln γ∞
i,j is under predicted with an average error of 3.485 and 3.397, respectively.

With SMD, ln γ∞
i,j is under predicted for 85 of the 90 systems, with an average error of 2.834. On the

other hand, when ∆Gself
i,i was also predicted, with SM12, SM8, and SMD the number of systems for

which ln γ∞
i,j was under predicted was 22, 13, and 17, respectively. Most importantly, with SM12, SM8,

and SMD, the overall MUE noticeably decreased.
When water is the solvent, we find that with SM12, SM8, and SMD, the value of R2 increases,

and the value of the MUE and RMSE decreases for ln γ∞
i,j. The difference in behavior results from a

systematic error when water is the solute, where when ∆Gself
i,i for water is also predicted, we obtain a

convenient cancellation of errors. We note that we find the values of AAPD to be less informative as
the value can be dominated by just a few systems.

4.3.4. Free SMx γ∞
i,j Calculator

To facilitate the use of the SM12, SM8, and SMD solvation models to predict γ∞
i,j and ultimately

phase equilibrium, we are actively developing HTML (HyperText Markup Language) based software
that can run in a web browser. The software is currently housed on GitHub at: https://github.com/
SpencerSabatino/SolvationFreeEnergyWebsite. For the 148 molecules for which QChem 5.1.2 [45,46]
has SMx parameters (which excludes iodine and carboxylic acid containing molecules), the user can
select any of the 148 molecules to form a binary pair and compute ∆Gself

i,i , ∆Gsolv
i,j , and γ∞

i,j for each
component. The QChem 5.1.2 calculation results used by the software were generated in the present
study. The software will continue to be developed with additional features added.

4.3.5. Reference Calculations

Overall, we found that the SMx (x = 12, 8, or D) predicted values of ln γ∞
i,j did not change

substantially when ∆Gself
i,i was predicted compared to when it was computed using reference vapor

pressure data, except in the case when water is the solute. Therefore, moving forward the selected
method for calculating ln γ∞

i,j will be to compute ∆Gsolv
i,j and ∆Gself

i,i consistently; put differently,

both ∆Gsolv
i,j and ∆Gself

i,i will be predicted.

https://github.com/SpencerSabatino/SolvationFreeEnergyWebsite
https://github.com/SpencerSabatino/SolvationFreeEnergyWebsite
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To provide further insight into the potential utility of electronic structure calculations with
SMx universal solvent models to predict ln γ∞

i,j, the top performing SM12 was compared to
two well-known methods, the Universal Quasichemical Functional-group Activity Coefficients
(UNIFAC) method [15,16,71] and the Modified Separation of Cohesive Energy Density (MOSCED)
model [19,20,72]. UNIFAC was selected as a comparative method because it is perhaps the most
common predictive excess Gibbs free energy method [73]. Additionally, it is widely used and integrated
into most process simulators. Brouwer and Schuur [73] recently conducted a comparative study of eight
predictive methods to compute ln γ∞

i,j at 298.15 K. Of the methods evaluated, the solubility parameter
method MOSCED was the top performer. This strong performance of MOSCED is consistent with the
findings of the 2005 re-parameterization [20,74] and our recent work [8,75]. MOSCED was therefore
selected as an additional comparison alongside UNIFAC. Note that for water, we adopted the revised
MOSCED parameters from our recent work [75].

The Minnesota Solvation Database, DECHEMA, and Yaws’ reference databases were constrained
to match the compound availability provided by the two models, UNIFAC and MOSCED.
In comparison to the Minnesota Solvation Database, UNIFAC was able to make predictions for
1065 (of 1140) systems with 99 unique solutes and 68 unique solvents. MOSCED was able to make
predictions for 732 (of 1140) systems from the Minnesota Solvation Database with 58 unique solutes
and 54 unique solvents. In regards to DECHEMA, UNIFAC was able to model 1988 (of 2163) systems
with 112 unique solutes and 70 unique solvents. MOSCED was able to model 1818 (of 2163) systems
with 71 unique solutes and 59 unique solvents. We again note that the DECHEMA data set includes
repeated systems. All of the UNIFAC calculations were performed with CHEMCAD 7 [76]. A simple
GNU Octave/MATLAB [77,78] M-file to predict limiting activity coefficients using MOSCED, a screen
cast tutorial and additional references are available on the YouTube Channel of Andrew Paluch [79].

A parity plot of the results for SM12, UNIFAC and MOSCED is provided in Figure 9. In the top
pane of Figure 9 results for the Minnesota Solvation Database are displayed, and in the bottom pane
the corresponding DECHEMA results are displayed. A summary of the statistics is included in Table 6.
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Figure 9. Parity plot of the predicted versus reference values of ln γ∞
i,j at 298.15 K using the SM12

universal solvent model, Universal Quasichemical Functional-group Activity Coefficients (UNIFAC),
and modified separation of cohesive energy density (MOSCED) versus reference data from the
Minnesota Solvation Database version 2012 (top pane) [47] and DECHEMA (bottom pane) [50–55],
as indicated. The blue lines corresponds to the y = x line, and the dashed blue lines correspond to ±1.1
and are drawn as a reference. For the SM12 universal solvent model predictions, ∆Gself

i,i was predicted.
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Table 6. A summary of the squared correlation coefficient (R2), root mean square error (RMSE),
and mean unsigned error (MUE) for ln γ∞

i,j, and the average absolute percent deviation (AAPD) for
γ∞

i,j predicted using UNIFAC and MOSCED as compared to the reference data from the Minnesota
Solvation Database version 2012 [47] and DECHEMA [50–55].

Minnesota DECHEMA

UNIFAC MOSCED UNIFAC MOSCED

R2 0.820 0.884 0.915 0.976
RMSE 1.077 0.802 1.157 0.524
AAPD 52.595 41.251 41.044 131.758
MUE 0.634 0.422 0.559 0.241

For both the Minnesota Solvation Database and DECHEMA, MOSCED achieves the largest R2 and
smallest RMSE and MUE for ln γ∞

i,j. For DECHEMA, MOSCED does have a noticeably larger AAPD for
γ∞

i,j, but we again note that the value AAPD can be heavily influenced by a few systems. Comparing
to SM12 (see Tables 3 and 4), UNIFAC does slightly outperform SM12. However, considering R2

and RMSE, the UNIFAC and SM12 results are comparable, especially with regards to the DECHEMA
data set.

In following the same methodology conducted previously, we sought to analyze the models’
ability to predict limiting activity coefficients when water is the solute and when water is the solvent.
The reference data from “Yaws’ Handbook of Properties for Aqueous Systems” again served as the
basis for systems that were modeled using the SM12 universal continuum solvent model, UNIFAC and
MOSCED. A parity plot is provided in Figure 10 where the top pane contains data where water is
the solute and the bottom pane where water is the solvent. The corresponding statistics are recorded
in Table 7.
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Figure 10. Parity plot of the predicted versus reference values of ln γ∞
i,j at 298.15 K using the SM12

universal solvent model, UNIFAC, and MOSCED versus reference data from “Yaws’ Handbook of
Properties for Aqueous Systems” [56]. In the top pane results as shown for the case of water as the
solute (water in organics), and in the bottom pane results are shown for the case of water as the
solvent (organics in water). The blue lines corresponds to the y = x line, and the dashed blue lines
correspond to ±1.1 and are drawn as a reference. For the SM12 universal solvent model predictions,
∆Gself

i,i was predicted.
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Table 7. A summary of the squared correlation coefficient (R2), root mean square error (RMSE),
and mean unsigned error (MUE) for ln γ∞

i,j, and the average absolute percent deviation (AAPD) for γ∞
i,j

predicted using UNIFAC and MOSCED as compared to the reference data from “Yaws’ Handbook
of Properties for Aqueous Systems” [56]. The results are separated for the case of water as the solute
(water in organics) and water as the solvent (organics in water).

Water As Solute Water As Solvent

UNIFAC MOSCED UNIFAC MOSCED

R2 0.713 0.923 0.816 0.962
RMSE 1.423 0.688 2.479 1.000
AAPD 51.395 55.749 77.925 138.245
MUE 0.824 0.532 1.647 0.761

Within the Yaws’ reference set where water is the solute, the SM12 universal continuum solvent
model made predictions for 90 systems, UNIFAC modeled 87 systems, and MOSCED 53 systems.
When water was the solvent, the SM12 universal continuum solvent model made predictions for
121 systems, UNIFAC 114 systems, and MOSCED 61 systems. MOSCED in both cases was the
highest performer, yet modeled the lowest number of systems due to its limited compound inventory.
We additionally note that the MOSCED parameters for water were optimized using limiting activity
coefficients from “Yaws’ Handbook of Properties for Aqueous Systems” [75]. Overall, all models seem
to have more difficulty predicting ln γ∞

i,j when water is the solute. UNIFAC is the lowest performer in
both cases. A plausible reason for the SM12 universal continuum solvent model’s improved accuracy
over UNIFAC could be due to the cancellation of errors that occurs in computing ∆Gself

i,i and ∆Gsolv
i,j

consistently. Again, when water is the solvent with reference values of ln γ∞
i,j > 9, we notice a tapering

or an under prediction in ln γ∞
i,j for both the SM12 and UNIFAC models. As stated previously, these are

highly non-ideal systems.
The SMx universal solvent models, MOSCED, and UNIFAC are all limited in the system they

can treat. MOSCED can only be used to model binary systems for which the molar volume and
five molecular descriptors are available for each component. At present, MOSCED parameters are
available for 130 organic solvents and water [20,75]. Efforts have been made to use electronic structure
calculations to predict missing MOSCED parameters, including the use of solvation free energy
calculations with the SMx universal solvent models [42,80–84]. While we would not expect the
predicted MOSCED parameters to be as good as those regressed using experimental data, the results
of the present study nonetheless would suggest they would yield acceptable results, especially for
early stage process conceptualization and design applications. Interestingly, Phifer et al. [42] suggested
that results obtained with MOSCED parameters predicted using solvation free energy calculations
with the SMx universal solvent model were superior to predictions made with SMx alone. This may
result from implicitly including reference data by using MOSCED parameters that were regressed
using reference data.

UNIFAC is a group contribution-based method, and in general is able to cover a wider
range of chemical compound space. Nonetheless, some parameters are still missing from the
parameter matrix. Recently, it has likewise been demonstrated how electronic structure calculations,
specifically COSMO-based (conductor-like screening model) calculations, can be used to predict
missing UNIFAC parameters [85–87]. While the SMx universal solvent models, MOSCED, and UNIFAC
are all limited in the system they can treat, there is opportunity for synergy among the methods.

5. Summary and Conclusions

The SMx (x = 12, 8, or D) universal solvent models are implicit solvent models that can
be used to compute the solvation free energy at 298.15 K using electronic structure calculations.
Fundamentally, the solvation free energy is an important thermophysical property, and corresponds
to the transfer free energy of taking a single solute from a non-interacting ideal gas state to solution
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(at infinite dilution) at the same molar density. In going from a non-interacting state to a state with
a single solute molecule in solution, the solvation free energy is representative of the solute-solvent
interactions in solution. If the solvation free energy of a solute is computed in two different solvents,
they can readily be used (via a thermodynamic cycle) to compute the transfer free energy between the
two solvents. This transfer free energy is directly related to the partition coefficient, which can be used
to relate the relative composition of the solute in the two (immiscible) solvents at equilibrium, or more
generally can be used to compare the relative affinity of the solute for the two solvents.

In conventional chemical engineering thermodynamic modeling of phase equilibrium, we are
interested in the activity coefficient of the components in the mixture, and the excess Gibbs free
energy of the mixture. Coincidentally, values of the solvation free energy are not directly measured
experimentally. Rather, it is common to measure limiting activity coefficients from which one may
obtain the solvation free energy. The limiting activity coefficient is related to the transfer free
energy of a single solute from a system of pure liquid solute to a solution phase at infinite dilution.
Moreover, limiting activity coefficients may be related directly to the parameters in common binary
interaction excess Gibbs free energy models used to model phase equilibrium.

In the present study, we therefore assessed the ability to use the SMx universal solvent models to
predict limiting activity coefficients. We considered 148 molecules for which SMx (solvent) parameters
were available in QChem 5.1.2. As seen in Equation (4), the calculation of limiting activity coefficients
is dependent upon both the self-solvation free energy (∆Gself

i,i ) and solvation free energy terms (∆Gsolv
i,j ).

Therefore we assessed the contribution of each individual term. The Minnesota Solvation Database was
used as our reference set, since it was used to parameterize the SM12 model, which was consistently
the top performer throughout the analysis.

In assessing the contribution of ∆Gself
i,i and ∆Gsolv

i,j terms, water was found to be a large source

of deviation. The ∆Gself
i,i of water was predicted to be overly negative, suggesting we over-estimate

the strength of the water-water interactions. We gained further insight into this contribution by
breaking down the ∆Gsolv

i,j analysis into cases where water was the solute (i = water), water was the
solvent (j = water), and where water was neither the solute or solvent. We found that when water
was the solute, ∆Gsolv

i,j / (RT) is predicted to be overly negative on average by 3.4 (dimensionless

units) in the SM12 model as compared to the self-solvation free energy term ∆Gself
i,i / (RT) which

was overly negative by 3.8 (dimensionless units). This deviation ends up being advantageous in
discerning how to calculate limiting activity coefficients, as there were two methods in which to do
so: (1) prediction of ∆Gself

i,i and ∆Gsolv
i,j and use of reference values for the molar volume, and (2)

compute ∆Gself
i,i using pure component vapor pressure data, which is readily available. We evaluated

these two methods using three reference data sets: the Minnesota Solvation Database, Parts 1 to 6 of
DECHEMA’s “Activity Coefficients at Infinite Dilution” volumes [50–55], and “Yaws’ Handbook of
Properties for Aqueous Systems” [56]. All three methods told the same story, where at first glance there
does not appear to be a significant difference in the predictions when ∆Gself

i,i is predicted or computed
from reference data. However, upon isolating systems where water is the solute, we see a that ln γ∞

i,j

is under-predicted when ∆Gself
i,i is computed from reference vapor pressure data. Yet when both

∆Gself
i,i and ∆Gsolv

i,j are predicted there is a convenient cancellation of errors in the ln γ∞
i,j. Therefore this

suggests that the best method to calculate limiting activity coefficients moving forward is to compute
∆Gself

i,i and ∆Gsolv
i,j consistently; that is, to predict both terms.

In conclusion, the findings were compared to two popular and successful predictive methods,
UNIFAC and MOSCED. Comparison to these models allows us to assess the viability of taking the SMx
models into further chemical engineering applications. A recent 2019 study conducted by Brouwer
and Schuur [73], previously showed MOSCED was the top performing model in an comparative study
to predict limiting activity coefficients at 298.15 K. Our comparison further confirms that MOSCED
is the top performing model in comparison to UNIFAC and the SM12 universal continuum solvent
model, yet it is limited by the number of compounds and systems it can model. UNIFAC and the
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SM12 universal continuum solvent model are comparable in performance among the three reference
sets. This suggests that the SMx models have potential to be used and tested in chemical engineering
applications such as the prediction of phase equilibrium. There is also opportunity for synergy between
SM12, UNIFAC, and MOSCED.

Supplementary Materials: Supplementary materials are available online at http://www.mdpi.com/2227-9717/
8/5/623/s1.
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