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Abstract: One of the main concerns of industry is energy efficiency, in which the paradigm of Industry
4.0 opens new possibilities by facing optimization approaches using data-driven methodologies.
In this regard, increasing the efficiency of industrial refrigeration systems is an important challenge,
since this type of process consume a huge amount of electricity that can be reduced with an optimal
compressor configuration. In this paper, a novel data-driven methodology is presented, which
employs self-organizing maps (SOM) and multi-layer perceptron (MLP) to deal with the (PLR) issue
of refrigeration systems. The proposed methodology takes into account the variables that influence
the system performance to develop a discrete model of the operating conditions. The aforementioned
model is used to find the best PLR of the compressors for each operating condition of the system.
Furthermore, to overcome the limitations of the historical performance, various scenarios are artificially
created to find near-optimal PLR setpoints in each operation condition. Finally, the proposed method
employs a forecasting strategy to manage the compressor switching situations. Thus, undesirable
starts and stops of the machine are avoided, preserving its remaining useful life and being more
efficient. An experimental validation in a real industrial system is performed in order to validate
the suitability and the performance of the methodology. The proposed methodology improves
refrigeration system efficiency up to 8%, depending on the operating conditions. The results obtained
validates the feasibility of applying data-driven techniques for the optimal control of refrigeration
system compressors to increase its efficiency.

Keywords: data-driven; self-organizing maps; multi-layer perceptron; partial load ratio; refrigeration
systems; compressors; energy efficiency; industrial process modelling

1. Introduction

The Industry 4.0 framework brings the perfect environment in terms of process data availability
for artificial intelligence (AI) applications for modelling and monitoring manufacturing systems [1].
Therefore, various efforts to explore the applicability of such models have been developed during
recent years [2], with the objective of these approaches being to improve the efficiency of the industrial
process by implementing several solutions, such as process monitoring, process fault diagnosis or
process energy optimization [3].

Among the mentioned researched topics, energy optimization is considered the basis for economic
competitiveness and growth [4,5]. With regard to an increasing energy expenditure awareness,
industrial processes, such as industrial refrigeration systems based on vapor compression, represent a
big contributor to this matter. In these systems, the compressors, which consume most of the process
energy, operate in parallel to supply the energy requirements. In such situations, various machines
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are working under its optimal capacity conditions and multiple configurations can be encountered to
supply, in an optimal way, the desired demand. Hence, the selection of the optimal part load ratio
(PLR) of each compressor, which is the amount of cooling capacity provided by a single machine under
its nominal configuration, is a critical point to reduce consumption and increase the performance of
the process [6].

Several authors tackle the refrigeration PRL problem using different data-driven approaches: from
basic techniques, such as the creation of if–then rules based on the monitored data, to optimization
strategies that use complex modelling and optimization algorithms. Although the first methods
mentioned have been almost fully replaced by the optimization approaches, there is still some examples
of compressor management rules that are created using the historical system data. An example of
that is presented by [7], where the authors decide which chillers should be running in a predefined
scenario in order to minimize the energy consumption.

On the other hand, the optimization approaches are the most common techniques found in the
literature. As an illustration of the current methodologies, some examples are cited: Zheng et al. in [8]
proposed the use of invasive weed optimization algorithms to search for the best combination of
chillers for a given historical data; Saeedi et al. in [9] presented a robust optimization method for PLR
based on non-linear programming. The authors remarked that modeling the cooling load demand
improves the response towards uncertainties, but the forecast model is no further used; Chien et al.
in [10] proposed the use of grey-box models for developing a decision-support system for assisted
PLR. A combination of the cooling load forecasting together with multivariate adaptive regression
is used for PLR prediction in different process scenarios; other authors, such as in [11], perform the
optimization considering wide time ranges and assuming steady conditions among the timesteps.

Despite the efforts made in this field, several limitations can be identified in order to apply the
aforementioned methodologies into a real industrial scenario. For example, the rules extracted from
the operation data analysis are always constrained to expert knowledge [12]. Even though the expert
masters the subject, it is difficult to get a near-optimal PLR configuration due to the number of signals
involved in an industrial environment and its dynamics, which are constantly changing. Therefore,
in order to consider a vast number of process variables and a constantly changing process with different
dynamics, modelling the process behavior to select an optimal PLR is recommended for the application
of such methods to real industrial processes.

Regarding the optimization approaches, such algorithms can achieve a major efficiency
improvement at the expense of computation time. Nevertheless, the time needed to calculate
the optimal PLR remains an issue in order to maintain the stability of the controlled asset [13].
In refrigeration systems, it is very important to maintain the product in a specific temperature range
to preserve its quality and, hence, fast changes in setpoints are necessary in order to preserve the
desired temperature [14]. In this regard, many approaches are searching for the optimal PLR by
considering steady operational conditions within a specific time interval, assuming that no further
changes or minimal changes appear during the time lapse. Nevertheless, it has been found that varying
system conditions can drastically change the suitability of the PLR [15], so changes in the operational
conditions should be considered by the methodology in order to fulfill the process requirements.

Many authors use a cooling load forecasting model to improve the response of the optimization
methods, but no more information is extracted about the compressors’ switching problem [10]. Frequent
switching scenarios in powerful compressors or refrigeration equipment can lead to process instability
and huge energy losses [16]. Such modelling information can be used, apart for improving the control
effectiveness, to avoid unnecessary switching actions. It is crucial to minimize the number of starts
and stops of compressors in order to maximize its remaining useful life (RUL) and minimize the
energy consumption.

Finally, another shortcoming found in most data-driven approaches is the inability to obtain
robust and optimal setpoint suggestions in scenarios that has not been represented in historical data.
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The historical data available constrain the best configuration recommendation if it has not happened
previously. In addition, the recommendations lose reliability under new operational conditions.

To address such limitations, a near real-time data-driven methodology for the PLR problem is
proposed. The method provides robust setpoint recommendations, considering the variables that affect
the operation and the uncertainties associated with the data, employing a discretization technique and
a novelty model as in our previous work [17]. Therefore, the exposed limitations of the data-driven
techniques are addressed using a near real-time setpoint proposal, which reduces the modelling
uncertainties, as well as a proliferation strategy [18], in order to create new optimal PLR configurations
under each operational condition. Finally, the switching problem is approached by forecasting the
demand behavior trends using the multi-layer perceptron (MLP) and evaluating if its optimal to start
or stop each compressor.

This paper is organized as follows: First, the description of the refrigeration system and the PLR
challenge is given in Section 2. Section 3 describes the basis of the proposed methodology for AI based
PLR management. Finally, Section 4 presents the experimental results about the application of the
methodology to the refrigeration system and the corresponding discussion is given in Section 5.

2. System Description and Problems Addressed

The test system is an overfeed vapor compression refrigeration cycle. The goal of these systems
is to remove heat from a space. In order to accomplish such a task, a refrigerant circulates through
the system depicted in Figure 1. This system consists of two circuits: the first one is composed of
four condensers, two compressors, an expansion device, a low-pressure separator receiver and a
high-pressure receiver; and the second one is composed of a low-pressure separator receiver, a common
element in both circuits, three pumps to force the liquid recirculation and various evaporators.
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Figure 1. Refrigeration system scheme.

In the first circuit, the refrigerant (R717) in a vapor state is suctioned by the compressors from
the low-pressure separator receiver to increase the refrigerant pressure (dpcd). In order to perform
that job and to provide enough cooling capacity to satisfy the demand, two screw compressors are
located in parallel. These compressors are the part of the system that consume the majority of the
energy (

.
Wcp) [19], and their performance is also highly reduced when their slide valves are below the

nominal conditions (PLRcp) [20]. Such a scenario can be appreciated in Figure 2, where the coefficient
of performance (COP), which determinates the efficiency of the compressor, is lower in the lower
percentages of cooling capacity.
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In the condensers, the refrigerant is cooled to change the phase from vapor to liquid and reject
the heat. Finally, the low-pressure receiver, which is the common part of both circuits, contains R717
in a mixture in a vapor–liquid state. The pressure inside the receiver (splpr) is maintained by the
compressors and its setpoint is stablished considering the desired evaporation temperature.

In the second circuit, the refrigerant is suctioned by the pumps and led to the evaporator. The pumps
are used to guarantee the refrigerant overfeed mass flow through the evaporators distributed alongside
the chambers of the facility. Afterwards, in the evaporators located at the different chambers, the
refrigerant is partially evaporated and then returned to the low-pressure separator receiver [21].

Although the whole refrigeration system contains a vast number of variables, the signals used in
the paper are listed in Table 1, and located as depicted in Figure 1.

Table 1. Employed signals description.

Nomenclature Number of Signals Description

dpcd 1 Discharge pressure, pressure at the condensers.

splpr 1 Suction pressure, pressure at the low-pressure receiver.
.

Qcp 2 Compressor cooling capacity, is the ability of the compressor to remove heat.
.

Wcp 2 Compressor electrical work, measurement of the electrical power consumed.

PLRcp 2 Partial load operation of the compressor.

Challenges Managing Multi-Compressors Systems

In order to enhance the comprehension of a refrigeration optimization system and highlight the
challenges addressed in this paper, the theoretical performance curve of the two screw compressors
working in parallel, C1 and C2, should be explained. In this regard, Figure 3 shows the relation of
the resulting coefficient of performance (COP) versus the

.
Qcp of C1 and C2 for a set of historical data.

The figure shows both the historical data in blue, and the best performance obtained in the historical
database calculated with the maximum COP obtained in red.

Regarding the number of compressors in use, three different stages (listed at the top of the figure)
can be identified that imply specific requirements in terms of the proposed energy optimization method:
Stage A deals with low

.
Qcp demands, where only one compressor is required to supply the demand.

Usually, the compressor with the highest efficiency is used to fulfil the demand, in this case C1. For this
stage, the setpoint recommendation gives the best historical PLR for the C1 compressor with regard to
the

.
Qcp required.
As the cooling demand increases, the process will lead to Stage B, where, for a certain range of

.
Qcp, a second compressor might be required to fulfil the demand. It is in this range of the

.
Qcp values

where the decision of switching on/off a second compressor is of critical importance. The unnecessary
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switch of a compressor is harmful for the machinery and inefficient for the process: if it is not required,
it drastically increments energy consumption, and if it is required and not switched, the demand will
not be fulfilled. For this range of

.
Qcp values, highlighted in red in the figure, the decision of switching

on a second compressor should be taken considering the current demand, future demand and the
dynamics of the process.
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Figure 3. The theoretical three stages curve of the partial load ratio (PLR) problem of two screw
compressors C1 and C2 working in parallel to supply the cooling demand of a refrigeration system.

Stage C covers the regular operation, where both C1 and C2 are switched on. It should be noticed
that the reachable performance of any data-driven system is limited to the best performance seen in
the database, marked as a red curve in Figure 3. However, working with two compressors brings forth
the possibility to obtain novel combinations of PLR, never seen in the historical database, which might
lead to new near-optimal efficiency curves for a particular process operation. Such an approach is
depicted as a green curve during the Stage C curve.

Finally, a common problem present in the three stages should be addressed, which is the assurance
of the stability of the refrigeration system in terms of suction pressure. The PLR recommendation
should not only provide the most efficient compressor PLR to cover the cooling necessities, but also
have to maintain the suction pressure around its setpoint. If the suction pressure setpoint is not
preserved, the refrigerant temperature changes and it is not possible to freeze the load with the desired
amount of time; it might even be non-viable to reach the desired load temperature.

Therefore, the four main challenges of managing compressors in parallel in a refrigeration system
are (i) how to calculate the PLR of each compressor considering process behavior; (ii) how to decide
the number of compressors needed for a particular

.
Qcp considering the current and future trends of the

.
Qcp; (iii) how to obtain a new near-optimal PLR considering previous historical data; and (iv) how to
assure the stability of the process while optimizing its efficiency.

3. Energy Optimization Method

A data-driven energy optimization methodology is proposed to address the aforementioned
challenges and propose an optimal PLR for the compressors. The methodology uses the data acquired
from the refrigeration system in order to develop machine-learning algorithms for process modelling.
Subsequently, such models are combined together to generate the optimal slide valve setpoints, which
is the PLR, for each compressor in the refrigeration system with regard to process operation.

The overall description of the method is presented in Figure 4. The method is organized in two
main blocks (1 and 2) and five different steps (A–E): Block 1 covers Steps A and B, and its objective is
to ensure robustness by training the data with a novelty model, and model the refrigeration system
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taking into account the operation conditions using a self-organizing map (SOM). On the other hand,
Block 2 includes Steps C to E, and it is focused on how to use such information together with future
trends in order to generate robust and optimal PLR setpoints for each compressor.Processes 2020, 8, x FOR PEER REVIEW 6 of 16 
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Starting from the process data, a multivariate kernel density estimation (MVKDE) novelty
model is fitted to the training dataset in Step A. This is an important step in order to filter outlier
samples in subsequent stages. Such outliers in the process modelling may lead to recommending
non-representative operations, and hence induce uncertainty.

Then, in Step B, the refrigeration process operation is modelled with an SOM in order to codify
the operation of the process in a concrete number of operating points (the best-matching units (BMU)).
Then, for each BMU, the historical curves of the COP values and its associated PLR curves for each
compressor are calculated. As a result, each BMU contains a performance curve, similar to Figure 3,
with the information regarding the best historical COP found in the database for any

.
Qcp and its

associated PLR for each compressor.
However, the performance improvement of the system is limited to follow the best historical

compressor configuration. To overcome this limitation, a COP proliferation approach is proposed in
Step C to obtain a new optimal combination of compressors for each BMU of the SOM never seen in
the historical database.

At this point, we are able to define optimal PLR setpoints for both compressors; however, the
behavior of the refrigeration process requires the control of the suction pressure to maintain the
refrigerant temperature in a safe range. In this paper, a process stability method to shift the current

.
Qcp

evaluating the PLR curves is proposed in Step D. Such shifting of the
.

Qcp value allows the control of
the desired refrigerant temperature in a certain range.

At this stage of the methodology, a near-optimal and stable setpoint is already generated.
Nevertheless, the regular operation of a refrigeration system with more than one operating compressor
may lead to situations in which the same demand could be supplied with one or more compressors.
Therefore, Step E deals with the problem of how to avoid unnecessary switch on/off actions. This step
introduces a demand forecasting method to identify future trends of the cooling capacity required in
order to assure an optimal decision of switching the current number of compressors.

Finally, the output of the proposed operation optimization methodology is the selection of the
near-optimal PLR setpoints of each compressor of the refrigeration process. In this regard, the following
sections cover the detailed explanation of Steps A–E defined above.

3.1. Step A: Novelty Detection Model

The method needs to verify that the current evaluated data does not differ, to a great extent, from
the data used to train the algorithms. Hence, in Step A, the data is evaluated with a novelty model to
detect new operational conditions and avoid non-representative setpoint suggestions, which can lead
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the system to an unknown operational mode. To implement this outlier detection step, the statistical
non-parametric anomaly detection MVKDE algorithm is used. The main benefit of the chosen algorithm
is that it can be optimized for each variable of the space in comparison with other classical techniques,
such as OC-SVM [22], whose hyper parameters are unique regarding the number of variables analyzed.
Furthermore, as can be seen in the exhaustive study made by Domingues et al. [23], the selected
algorithm presents high robustness against noise, high dimensionality and stability. The details of the
novelty model are explained in more detail in our previous work [17].

3.2. Step B: Process Operation Modelling

Afterwards, in Step B, the operation of the process is modelled with an SOM. The variables that
represent the current behavior of the process are input in an SOM grid. In this regard, each position of
the grid (BMU) models a certain range of the process variables. Therefore, the trained SOM knows for
each operating condition of the refrigeration system the best curve obtained in the historical database.
Thus, as a result of Step B, the process model contains the best PLRs for each compressor of the system
under the specific operational conditions delimited by each BMU of the SOM grid.

The operational grid creation is described in Figure 5, which is one of the core steps of the presented
methodology overview, shown in Step B of Figure 4. First of all, in B1 the data is preprocessed to
exclude the wrongly recorded samples. Then, in B2, the novelty model defined in Step A is evaluated
in order to reject the non-representative process operation samples. Subsequently, in B3, an SOM is
used to discretize, in a defined interval of best-matching units (BMU), the multivariate space formed
by the considered input variables. After the training procedure, each BMU of the SOM represents a
certain range of the input variables defined as an operational point. The objective of the method is to
use this model of the process to search, for each BMU, the best PLRs found in the historical database
for any
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Qcp used. With the system operation discretized and the outliers filtered, the best historical

setpoints of each neuron of the grid are selected, in B4, to obtain the best PLR recommendations that
the system has ever achieved. All the phases described below are part of our previous work [17], where
they are comprehensively described.
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3.3. Step C: New Near-Optimal PLR Curve Calculation

Until this step, the setpoints generated by the methodology were based and limited to the historical
operation of the system. To overcome this constraint, in Step C, the data proliferation strategy is
applied to the SOM model in order to obtain, by means of historical data combinations of the PLR
from the compressors, new and optimal operational strategies not considered in the available data.

The data proliferation technique is presented by [18], which consists of the combination of different
historical samples to create new artificial performance points. This methodology can be applied as the
different compressors or chillers are discretized in areas under the same operational conditions, where
they can be considered as linearly independent. Hence, the method proposes to perform a proliferation
of the different machine cooling capacities, and its associated electrical consumption, for the samples
in each BMU where the operating conditions are similar. The steps to obtain the near-optimal PLR of
each compressor are detailed in Figure 6, illustrated below.
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First of all, with a high number of historical samples, the computational cost of the combinations
increases rapidly, being non-viable in most scenarios. To overcome such a limitation, the samples
under the optimal operation curve of each compressor or chiller, found in the operational modelling
step, are dismissed and only the best sample of each cooling capacity range is used. To perform such a
task, the cooling capacity of each machine is divided within n ranges and the samples with the best
COP are maintained to perform the proliferation. Thanks to these scenarios created with the data
proliferation, new near-optimal performance boundaries, never seen before in the historical dataset,
can be found, overcoming the historical control rules that limited the operation situations. Finally,
the refrigeration system’s cooling capacity is divided again in various ranges to detect the best COP
samples, whether it be from the historical or the proliferated ones. With such samples selected, the
PLRs of each compressor are identified.

Therefore, the resulting SOM model results in a multi-dimensional grid, which for a defined set
of process conditions is able to recommend a near-optimal PLR. The corresponding BMU contains a
near-optimal curve that relates the cooling capacity required by the system in such an operation with
the new near-optimal PLR of the compressors.

3.4. Step D: Process Stabillity Assurance

Till this point, the operation modelling provides the best setpoint recommendation for the current
operational conditions. However, to follow the desired suction pressure setpoint and to avoid abrupt
changes in the compressors, which can lead to an undesired unstable situation, two strategies are
proposed in step D of Figure 4.

First, the behavior of the refrigeration process requires the control of the suction pressure to
maintain the refrigerant temperature in a safe range. Therefore, a curve shift procedure of the

.
Qcp

demand at each iteration is carried out according to the suction pressure deviation. Shifting such
.

Qcp
values allows to change the operating point of the compressors and assure the stability of the process.

The authors propose to shift the
.

Qcp demand according to a polynomial function that relates
the allowed pressure error with the desired correction. This correction is adjusted with regard to the
dynamics of the process.

Secondly, in order to smooth the setpoint recommendation among the different operational point
transitions, and to avoid unstable situations, a weighted sum of the nearest operational points is made
employing the Euclidean distance of each neuron. Thus, the compressors do not change the partial
load recommendation abruptly from one neuron to another and the system remains stable in terms of
suction pressure.
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The first measure, the shifting, is performed as explained below. Under the selected operational
point, the current cooling power expenditure is shifted using the equation that relates the cooling
power and pressure error:

.
Q
∗

cp =
.

Qcp + Epre(%) ∗RC (1)

where
.

Q
∗

cp is the corrected cooling capacity, Epre corresponds to the pressure error,
.

Qcp to the current
cooling capacity required by the process and RC is the correction ratio.

Regarding the transition smoothing, among the different PLR setpoints, a weighted sum of the
nearest neurons of the operation grid is done according to

PLRN =
K∑

i=1

αi ∗ PLRi (2)

where PLRN is the partial load of the N compressor, K is the number of the closer neurons, PLRi is
the partial load recommended by neuron i and αi is the weight associated with neuron i. This weight
parameter α is calculated using

αi =
βi∑K

j=1 β j
(3)

with βi presented in

βi =
K∑

j=1

(
d j

)
− di (4)

where d is the Euclidean distance from the sample to the neuron.

3.5. Step E: Switching Management

Finally, the last part of the method deals with the compressor switching problem exposed before.
In this regard, Step E is activated when the number of running compressors proposed by the operation
grid vary from the current one. To obtain a robust setpoint recommendation in this conflictive boundary
decision circumstances, a trend forecasting model is trained and evaluated to ensure that the switch
operation will last at least until a predefined time horizon. If the operational grid proposes to increase
the number of running compressors and the forecasting trend is positive, or if the operation grid
proposes to decrease the number of running compressors and the forecast trend is negative, the
suggested switch is executed. Differently, if the decisions do not converge in the setpoint suggestion,
the operation is maintained until the next evaluation.

The decision management in the boundaries displayed in Step E is handled with a consumption
trend forecast, which is detailed in Figure 7. As the forecasting is based in the historical data retrieved
from the database, firstly, in E1, the desired target variable is smoothed to highlight the trend and
avoid the high frequency noise caused by unpredictable events in the refrigeration system. Once the
horizon of the forecast is set, the smoothed target variable is categorized in three classes: increase,
constant or decrease, depending on the slope of the variable, as shown in E2. As the forecast problem
is interpreted as a classification and to help the later model to improve its accuracy, all the inputs
are passed through a feature reduction step, E3, such as linear discriminant analysis (LDA), which
helps the posterior model to improve the inference of the trend patterns. Finally, to perform the trend
forecasting at a defined forecasting horizon, in E4, a multilayer perceptron neural network (MLP) is
used to detect the trend, with the given features from the LDA as inputs.

Therefore, the switching management method consists of comparing the expected evolution of
the

.
Qcp, provided by the MLP at a defined forecasting horizon, with the proposed PLR, resulting in the

current
.

Qcp. Such a comparison provides robustness to the decision of switching compressors with the
following logic: If the PLR recommended by the methodology and the future trend specified by the
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MLP are consistent, the switching action can be executed and the PLR suggested by the method is
used. If the future trend and the current PLR are not consistent, the current PLR is discarded and the
previous one without any switching operation is preserved.Processes 2020, 8, x FOR PEER REVIEW 10 of 16 
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4. Experimental Results

The presented methodology is validated under the real refrigeration system described in Section 2.
The data used to train the models consists of samples acquired every minute over two years of operation,
from August 2017 to 2019. The raw variables acquired from the studied system are discharge pressure,
suction pressure, compressors partial load, compressors cooling power and compressors electrical
power. It should be noticed that the signals that the methodology uses are currently being registered in
most industrial refrigeration processes. In this regard, due to the low data acquisition requirements in
terms of minutes, it does not require any specific instrumentation equipment.

4.1. Training and Configuration of the Models

First, the method starts with the training of the novelty detection model. The objective of the model
is to identify new operational conditions of the refrigeration system to provide robust recommendations
instead of recommendations based on uncertain conditions. To accomplish this objective, the model is
trained with the whole training dataset but is configured to reject a percentage of the samples that lays
outside of the distribution. The multivariate kernel density estimator (MKDE) with a Gaussian kernel
was selected as a novelty model and, after some tests, 10% of the samples were identified as anomalies
by the model during the training step.

Regarding the process operation modelling, the suction pressure and the discharge pressure
were used to discretize the compressor operation under different pressure conditions using the SOM
network. The SOM configuration consists of a rectangular grid type with a planar map type, a Gaussian
neighborhood function and a 15 × 15 grid of neurons. The size of the grid has been selected together
with the experts of the system to obtain the optimal discretization and variability of the main variables
within its BMU. The objective was that each neuron should represents a real operation condition instead
of insignificant changes of the variables. Furthermore, this result is assured to employ a trade-off

between the number of operating points for each neuron and the obtained ranges of the variables in the
BMUs. The configuration selected presents a good characterization resolution with a low quantization
error of 0.013, which is good despite the different conditions of the process, such as seasonality.

With the trained SOM, the near-optimal PLR curves for each BMU were calculated. Initially, the
full range of cooling capacities for each compressor was discretized into 25 different parts and the PLR
of each discretized part that produces the best COP was selected. Thus, the computational cost of
the subsequent proliferation is diminished by dismissing this large volume of historical samples and
just keeping 25 samples for each compressor in each BMU. These 50 samples, 25 for each compressor,
were proliferated to obtain a near-optimal COP configuration. The proliferation supposes a total of
625 artificially created samples in each BMU, which means a total of 140,625 samples in the whole
SOM grid. Finally, the near-optimal COP curve regarding the cooling capacity is also discretized into
45 parts, and the best COP sample of each range is selected to acquire the PLRs of each compressor.

On the other hand, for the trend forecast training, the first preprocessing step was done in the
same way as in the operation grid. To reduce the noise in the target variable, an exponential moving
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average was performed with a 200-sample span. Later, with a prediction horizon of 20 min, selected
by the system experts, the target was divided into three different categories. As the initial inputs to
do the forecasting, different lags of the smoothed target variable and the suction pressure were used.
These mentioned inputs were scaled and passed through an LDA to reduce its dimensionality to two
components in order to be finally used as the MLP inputs. Furthermore, the train and test sets were
randomly divided into 60% and 40%, respectively, and the train classes were balanced. The MLP was
configured with two hidden layers of 16 neurons, each one with a rectified linear unit (ReLU) and as
many outputs as the classification classes with a softmax activation function. The optimizer used was
the stochastic gradient descent (SGD) and the loss function was the categorical cross-entropy. All the
parameters selected for the MLP configuration were chosen using a grid search with multiple options,
and cross validation with accuracy as the performance metric. The accuracy of the model in the test set
is about 70% and the confusion matrix is shown in Table 2.

Table 2. Normalized trend forecasting test data confusion matrix.

Decrease (Predicted) Increase (Predicted) Neutral (Predicted)

Decrease (True) 64.77 6.70 28.53
Increase (True) 2.47 72.38 25.15
Neutral (True) 14.26 19.77 65.97

The obtained accuracy, despite not being really high, is robust in terms that the vast majority of the
errors are not between the decrease and increase states, which would lead to a machinery inefficiency.
Furthermore, such low performance is attributed to the lack of load data. The different processes in the
industry related with the refrigeration system can vary its thermal load substantially depending on the
operators’ behavior and process requirements.

To highlight the advantages of the methodology in terms of savings, two particular cases are
presented: the first one, in which the new optimal partial load ratios are suggested in the scenario
where high cooling capacities are demanded and two compressors are needed undoubtedly; and the
second one, in which the PLRs are recommended during cooling capacities that led to the switching of
one of the compressors.

4.2. Results—Scenario 1: Two Compressors

During this first scenario of the refrigeration system’s operation, the original control scheme
maintains the PLR of both compressors under a similar and constant regime, instead of customizing it
to maximize the COP; such behavior can be seen in Figure 8a. In comparison, in the same scenario, the
methodology proposed analyzes the operational condition of the refrigeration system and recommend
a different PLR for both compressors, obtaining the desired cooling capacity but minimizing the
electrical consumption; such a difference can be seen in Figure 8b. If the accumulative electrical power
consumed by both approaches are compared over a period of time, it can be seen in Figure 8c that the
proposed method achieves a slightly lower consumption (80 kW) over the two-hour comparison; such
a difference is highlighted in Figure 8d in terms of savings, which corresponds to 7% of the average
electrical consumption per hour in this scenario.
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two compressors are needed. (a) Actual PLRs control strategy. (b) Proposed methodology PLRs.
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4.3. Results—Scenario 2: Compressors Switching

When transition of the operating compressors occurs due to the cooling capacity demand, the
optimal switching time management depends on the trend of the demand, and the COP can be
maximized if the PLR control of the compressors considers such a trend. A specific scenario that
can reduce the electrical power consumption is when the cooling demand decrease and, therefore,
a transition from two compressors to one occurs. The optimal time management of such a compressor
switching is estimated by the proposed methodology and thus a reduction in electrical consumption is
achieved; such an example can be seen in Figure 9a, where the actual control strategy proposes to turn
off the compressor T2 at 8:50 am, but the proposed methodology forecasts the decrease in demand and
turns off the same compressor 10 min earlier. The difference in both strategies can be seen in Figure 9b,
in which a significant difference in electrical consumption can be appreciated at the switching period of
time. To highlight the importance of the forecast and the difference of both methods, the accumulated
savings can be seen in Figure 9c, in which the aforementioned Scenario 1’s saving per hour of 7% can
be appreciated at the beginning but an increase in the slope of the curve is seen when the transition of
the compressors occurs, leading to a 15% saving per hour in electrical consumption. The combination
led to an accumulative saving of 12% during the hour and a half test.
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4.4. Results—Overall

To analyze the performance per day, the compressor’s control of the refrigeration system was
changed to the proposed methodology during four hours for eight days in the scenarios where two
compressors were needed. To obtain the savings, the electrical power consumed by the methodology
was compared with the estimated consumption that the previous control PLR recommendation
would cause.

The results, shown in Figure 10, follow the expected savings of the two previous tests in which
Scenario 1 and Scenario 2 were evaluated. The range of total savings during the testing days vary
between 1% and 8%. This diversity in the range of savings is obtained due to the different operational
modes that the system works on. Some of them provide a higher percentage of possible savings, like
switching anticipation, whereas others provide a less impactful decrease in consumption, like having
two compressors in operation. In terms of the proposed methodology, this can be interpreted as the
possible savings that each BMU of the SOM can provide.
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5. Discussion

The proposed methodology addresses two common challenges that would improve the operation
of a refrigeration system, using data-driven techniques: (1) the modelling of the system under uncertain
operational modes; and (2) the optimal PLR setpoint generation, considering the stability of the
compressors with an appropriate switching management.

The first one is solved by the modelling of the different operational conditions with an SOM,
a proliferation method for the creation of theoretical new operational modes and a novelty detection
model to detect uncertain situations. The second one is solved employing a forecasting model that
anticipates the cooling capacity demand and it is used to create a switching management methodology
that decides the optimal PLR in terms of the forecasted demand.

The methodology was validated during four hours of testing for eight days in a real refrigeration
system with two compressors running in parallel, obtaining promising performance results.

The savings obtained by the methodology can be summarized in two scenarios: the first one is
when two compressors are operating in parallel and the methodology proposes optimal PLRs for the
actual system operation conditions, and the second one is when there is a switching situation and the
methodology forecasts the real necessity to switch a compressor.

Summarizing both scenarios, the savings achieved by the proposed methodology in comparison
to the actual system control strategy varied from 2% to 8% in terms of electrical power consumption,
depending on the operation of the system during the day of the test. Such results represent a significant
amount for the refrigeration system, not only in terms of energy efficiency but in monetary savings.

With the proposed methodology, the generation part of the refrigeration system is covered, since
we are generating near-optimal PLR setpoints for a given cooling demand with regard to the current
process operation. Therefore, future work will be focused on modelling and optimizing the demand
side. The different spaces to refrigerate of the refrigeration system should be modelled and optimized
in order to manage the distribution of the thermal loads among the different spaces to refrigerate in an
optimal way.
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