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Abstract: In this paper, the Q-learning method for quadratic optimal control problem of discrete-time
linear systems is reconsidered. The theoretical results prove that the quadratic optimal controller
cannot be solved directly due to the linear correlation of the data sets. The following corollaries have
been made: (1) The correlation of data is the key factor in the success for the calculation of quadratic
optimal control laws by Q-learning method; (2) The control laws for linear systems cannot be derived
directly by the existing Q-learning method; (3) For nonlinear systems, there are some doubts about
the data independence of current method. Therefore, it is necessary to discuss the probability of the
controllers established by the existing Q-learning method. To solve this problem, based on the ridge
regression, an improved model-free Q-learning quadratic optimal control method for discrete-time
linear systems is proposed in this paper. Therefore, the computation process can be implemented
correctly, and the effective controller can be solved. The simulation results show that the proposed
method can not only overcome the problem caused by the data correlation, but also derive proper
control laws for discrete-time linear systems.

Keywords: Q-learning; reinforcement learning; model-free control; optimal control; least squares
regression; ridge regression

1. Introduction

This article reconsiders the Q-learning method for quadratic optimal control problem of
discrete-time linear systems. Therefore, it is necessary to explain the quadratic optimal control
problem of discrete-time linear systems. There is a discrete-time linear system which can be described
as x(l + 1) = Ax(l) + Bu(l), where x(l) is states of system, u(l) is the control value, A is state matrix,
B is control matrix. The quadratic optimal control problem for the system is to minimize the quadratic
performance index function J = ∑∞

i=l(x
T(i)Qx(i) + uT(i)Ru(i)), by designing a proper state feedback

matrix K and choosing control law u(l) = −Kx(l). According to the optimal control theory, the optimal
value of feedback matrix K should satisfy following equation: K = (R + BTPB)−1BTPA, where the
matrix P should be the solution of Riccati equation P = ATPA + Q − ATPB(R + BTPB)−1BTPA.
So, if matrices A and B are known, by setting proper matrices Q and R, and resolving matrix from
Riccati equation, the optimal feedback matrix K can be solved. It can be seen from the above process
that the precondition of the calculation process is the precise acquaintance of controlled systems’
mathematical models.

There are great amount of papers which discussed the design of model-free controllers via
Q-learning method for linear discrete-time systems, while the independence of data during the
computation process is not get enough attention. In this paper, the effect of the data correlation
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is discussed, specifically aiming to the computation processes of optimal controllers for linear
discrete-time systems adopting Q-learning method. Based on the theoretical analysis, the data
independence condition should be satisfied to implement the existing Q-learning method. The data
sets sampled from the linear discrete-time systems is destined relevant, which means that the
controllers cannot be solved by the existing Q-learning method. To design proper controllers for
linear discrete-time systems, an improved Q-learning method is proposed in this paper. The improved
method adopts the ridge regression instead of the least squares regression. The ridge regression can
deal with the multiple collinearity of the sample sets. Therefore, the proper controllers can be solved
by the proposed method.

In this paper, following results have been achieved. First, limited to linear discrete-time
systems, the computation process cannot be executed correctly by the existing Q-learning method.
Second, relative corollaries have been made for several types of systems, to indicate in detail the
necessary for data independence condition for different situations. Third, an improved Q-learning
method has been proposed to solve the problem of multiple collinearity. At last, results of simulations
show the effectiveness of the proposed method.

2. Q-Learning Method for Model-Free Control Schemes

Generally, there is an obvious difference between optimal control [1] and adaptive control [2,3].
Adaptive controller often needs online dynamic data of systems. On the contrary, optimal controllers
are designed off-line by solving Hamilton-Jacobi-Bellman (HJB) equations. In optimal theory,
the solution of HJB equations is the real valued function with minimum cost for specific dynamic system
and corresponding cost function. Therefore, the solution of HJB equations is also the optimal controller
of the controlled system. In the HJB equations, all information of the controlled system should be
known, which means the precise mathematical model of the system should be established. To solve
HJB equations, many methods have been researched, and the earlier mentioned Riccati equation
is derived from HJB equations. According former expoundation, the optimal controller cannot be
designed under model-free condition. However, the development of theory made the combination
of the two different control schemes. The reinforcement learning theory plays an important part in
the process.

As one of the most important reinforcement learning methods, Q-learning has been proved
by Watkins [4] that under certain conditions the algorithm converges to the optimum cation-values.
Therefore, the calculation of optimal controllers became realizable for complete or partial model-free
systems by adopting online calculation method. With data sets sampled from systems, optimal
controllers can be designed by Q-learning method. Many researchers took the view and many
achievements have been made. Compared with other popular techniques such as SVM and KNN [5],
reinforcement learning methods represented by Q-learning are unsupervised algorithms. They do
not need the target information of the train data, on the contrary, they evaluate their actions by
the value functions aiming to the current status. Their directions of calculation are decided by the
value functions, in this sense, the reinforcement learning methods are also gradient-free optimization
methods [6] when they are used to solve optimization problems. Some optimal estimation algorithms
such as Kalman filter and its extended forms [7] have been adopted by many researchers as observers
in adaptive control schemes. Their observation results still rely on the structure and parameters of
systems, so these algorithms are beyond the boundary of model-free methods.

Bradtke used the Q-learning method to solve quadratic control problem for discrete-time linear
systems [8]. He set up the model-free quadratic optimal control solution based on data, and studied the
convergence of Q-learning method for certain type of systems. From then on, the important position
of Q-learning in model-free quadratic optimal control is established. And the Q-learning schemes for
the continuous-time systems also had been proposed [9,10], without the convergence condition.

As a kind of typical data-based iterative algorithm, Q-learning method has been used to solve
problems in many fields, including but not limited to following examples. An adaptive Q-learning
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algorithm is adopted to obtain the optimal solution between exploration and exploitation of electricity
market [11]. An effective Q-learning algorithm is proposed to solve the traffic signal control
problem [12], and satisfying results have been obtained. A distributed Q-learning (QD-learning) [13]
algorithm is investigated to get the solution of the sensor networks collaboration problem. A time-based
Q-learning algorithm is adopted to get the optimal control of the energy systems [14,15].

Compared with other fields, the quadratic optimal control problems attract main attention in
this paper. To design feedback controllers for discrete and continuous-time systems, the principles of
using reinforcement learning method are fully described [16]. According to the paper, reinforcement
learning method of policy iteration and value iteration can be used to design adaptive controllers
which converge to the optimal control theory. Adopting Q-learning schemes for adaptive linear
quadratic controllers [17], the difference between linear and nonlinear discrete-time systems has been
compared. Simulations show that controllers for both kind of the systems can be solved with almost
same convergence speed. Some researchers focused on output feedback control schemes [18–21].
The method to design optimal or nearly optimal controllers has been studied for linear discrete-time
systems subject to actuator saturation condition [21–24]. Other researchers considered stochastic linear
quadratic optimal control as an effective method [25–28].

3. Problem Description and Improved Method

Theoretically, the existing Q-learning algorithm can calculate optimal or approximate optimal
controllers as a model-free method. For discrete-time linear systems, there is an obvious limitation
caused by multi-collinearity of data sets sampled from systems, which is shown by analysis. To solve
the problem, the existing Q-learning algorithm need to be modified, as the same situation as the
existing stability analysis method for uncertain retarded systems [29]. By adopting ridge regression,
an improved algorithm has been proposed in this paper, which can overcome the multi-collinearity
problem and obtain the proper controller. To explain the limitation of the existing Q-learning method,
the design principle of the existing Q-learning model-free quadratic optimal controllers is shown in
following section.

3.1. Design Process of Quadratic Optimal Controller by Existing Q-Learning Method

To design a quadratic optimal controller, a linear discrete-time system is considered to be:

x(l + 1) = Ax(l) + Bu(l) (1)

where x ∈ Rn is a vector of state variables, u ∈ Rp is control input vector, A is n× n state matrix, B is
input n× p matrix. And (A, B) is a complete controllability pair. There is the single step performance
index is expressed as:

ν(l) = xT(l)Qx(l) + uT(l)Ru(l) (2)

where Q = QT ≥ 0 is n × n weight matrix, R > 0 is p × p weight matrix, (Q
1
2 , A) is complete

observability pair, 0 ≤ γ ≤ 1 is discount factor. Please note that:

V(x(l)) =
∞

∑
i=1

γi−1ν(i) (3)

The problem of quadratic optimal control can be described as follows. For system formed as
Equation (1), a control law u = Kx should be designed to minimize V(x(0)) = ∑∞

i=1 γi−1ν(i). Based on
Formula (3), V(x(0)) means the total performance index for infinite time quadratic control systems.
To minimize the total performance index, the Q function is defined as:

Q(x(l), u(l)) = ν(l) + γV(x(l + 1)) (4)
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Formula (4) shows that the Q function is not a new function but just another expression of total
performance index V(x(l)). Then the Q function can be calculated as following formula:

Q(x(l), u(l)) =
[

x(l) u(l)
]T

H
[

x(l) u(l)
]
=
[

x(l) u(l)
]T [

Hxx Hxu Hux Huu

] [
x(l) u(l)

]
=
[

x(l) u(l)
]T [

Q + γATPA γATPB γBTPA R + γBTPB
] [

x(l) u(l)
] (5)

The feedback law can be calculated by following formula according to the extremum condition of
Q(x(l), u(l)),which is ∂Q/∂u = 0.

K = −H−1
uu Hux = −γ(R + BTPB)−1BTPA (6)

where P is the solution of Riccati equation:

P = γATPA + Q− γATPB(R + γBTPB)BTPA (7)

And V(x(l)) should satisfy following equation: V(x(l)) = xT(l)Px(l).
The design method of model-based controller is that the control law will be established by solving

Equation (7). According to the optimal control theory, the values of the matrices and will decide
the different weights between the quantity of states and control values [26]. The values of matrices
of Q and R often depend on performance index, experience of designers and constraint conditions.
The quadratic optimal controller based on Q-learning is model-free, and shown as follows. Equation (5)
is represented as:

Q(x(l), u(l)) =
[

x(l) u(l)
]T

H
[

x(l) u(l)
]
= xTHx

=
n+p

∑
i=1

hijx2
i +

n+p

∑
i=1

n+p

∑
j=i+1

2hijxixj = ϕT(l)Θ(H)
(8)

where ϕT =
[

x2
1 x1x2 · · · x1xn+p x2

2 x2x3 · · · x2xn+p · · · x2
n+p

]
, and the parameters

vector Θ(H) =
[

h11 2h12 · · · 2h1(n+p) h22 2h23 · · · 2h2(n+p) · · · h(n+p)(n+p)

]
. The Q

function possesses the recurrence relation shown by following formula:

Q(x(l), u(l)) = v(l) + γQ(x(l + 1), u(l + 1)) (9)

Therefore, the following formula can be deduced:

(ϕ(l)− γϕ(l + 1))TΘ(H) = v(l) (10)

There are N equations formed by Formula (10) can be built if N sets of data on state and control

have been collected. Please note that: Φ =
[
(ϕ1(l)− γϕ1(l + 1))T ... (ϕN(l)− γϕN(l + 1))T

]
With the least squares method, the solution of the parameters vector Θ(H) can be calculated as

following formula when the sufficient excitation condition of system has been satisfied.

Θ(H) = (ΦTΦ)−1ΦTv (11)

According to the value of Θ(H), the feedback matrix K can be obtained by Formula (6), and the
corresponding control law can be solved.

The complete Q-learning method is an iterative procedure, and it can be fulfilled by the
following steps:

• Step 1: An initial feedback matrix K0 is set to control the system;
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• Step 2: A set of sufficient excited data are obtained;
• Step 3: The least squares method is used to solve Θ(H);
• Step 4: The new control law is calculated by Formula (6);
• Step 5: The process from step 1 to step 4 will be repeated until K converges to a stable value.

According to Formula (11), the least squares regression solution has been adopted by the existing
Q-learning method to solve H. The Q-learning method for quadratic optimal problem should be a kind
of completely or at least partially model-free control. Theoretically, the data sampled from systems
are the only needed conditions during the learning procedure instead of the structure or parameters
of systems. For linear discrete-time systems, the matrix ΦTΦ is singular. Therefore, the least squares
regression calculation cannot be implemented.

3.2. Analysis for the Multi-Collinearity of Data Sampled from Linear Discrete-Time Systems

An assumed system defined by Formula (1) has n states and p inputs. Then Φ of Formula (11) is a
matrix composed by n rows and (n + p)(n + p + 1)/2 columns from n sets of data. When a system
with 2 states and 1 input is assumed, the size of matrix Φ is l × 6 for l sets of data. The ith row of Φ is
expressed as following form:

ΦT(i) =



(xi
1(l

i))2 − γ(xi
1(l

i + 1))2

xi
1(l

i)xi
2(l

i)− γxi
1(l

i + 1)xi
2(l

i + 1)
xi

1(l
i)ui(li)− γxi

1(l
i + 1)ui(li + 1)

(xi
2(l

i))2 − γ(xi
2(l

i + 1))2

xi
2(l

i)ui(li)− γxi
2(l

i + 1)ui(li + 1)
(ui(li))2 − γ(ui(li + 1))2


(12)

For the quadratic optimal state control problems, there is u = Kx. Therefore, Formula (12) can be
represented as:

ΦT(i) =



(xi
1(l

i))2 − γ(xi
1(l

i + 1))2

xi
1(l

i)xi
2(l

i)− γxi
1(l

i + 1)xi
2(l

i + 1)

k1[(xi
1(l

i))2 − γ(xi
1(l

i + 1))2] + k2[xi
1(l

i)xi
2(l

i)− γxi
1(l

i + 1)xi
2(l

i + 1)]

(xi
2(l

i))2 − γ(xi
2(l

i + 1))2

k1[xi
1(l

i)xi
2(l

i)− γxi
1(l

i + 1)xi
2(l

i + 1)] + k2[(xi
1(l

i))2 − γ(xi
1(l

i + 1))2]

k2
1[(xi

1(l
i))2 − γ(xi

1(l
i + 1))2] + 2k1k2[xi

1(l
i)xi

2(l
i)− γxi

1(l
i + 1)xi

2(l
i + 1)] + · · · k2

2[(xi
2(l

i))2 − γ(xi
2(l

i + 1))2]


(13)

Shown by Formula (13), the third element of row vector Φ(i) is a linear combination of the first
and the second element; the fifth element is a linear combination of the second and the fourth element;
the sixth element is a linear combination of first, the second and the forth element. Therefore, the matrix
Φ is column-related. Generally, for n order linear discrete-time systems, in the (n + p)(n + p + 1)/2
columns of matrix Φ, the number of linearly independent columns is no more than n(n + 1)/2.
Thus, it is unable to solve the (n + p)(n + p + 1)/2 parameters directly by the least squares method.

Following corollaries can be deduced by the analysis.

Corollary 1 (Linear discrete-time systems). For the linear discrete-time systems, the quadratic optimal
controllers cannot be solved by the Q-learning algorithm adopting the least squares method shown as
Formula (11).

Corollary 2 (Linear continuous-time systems). For the linear continuous-time systems described as ẋ =

Ax + Bu, the quadratic optimal controllers cannot be solved by the Q-learning algorithm adopting the least
squares method which has the similar form to Formula (11).
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For the mentioned continuous systems, the quadratic performance index is: V(x(t)) =∫ ∞
t e−γ(τ−t)(xTQx + uT Ru)dt. If Q function is defined as:

Q(x(t), u(t)) =
∫ t+T

t
e−γ(τ−t)(xTQx + uT Ru)dτ + e−γTQ(x(t + T), u(t + T))

= R(x(t), u(t)) + e−γTQ(x(t + T), u(t + T))
(14)

Therefore, the Q function can be represented as:

Q(x(t), u(t)) =

[
x(t)
u(t)

]T

H

[
x(t)
u(t)

]
= ϕT(t)Θ(H) (15)

where ϕT(t) and Θ(H) are similar to the definitions in Formula (8). With the state feedback control
law u = Kx, following equation is insoluble by the existing Q-learning method based on data.

(ϕ(t)− e−γT ϕ(t + T))Θ(H) = R(x(t), u(t)) (16)

3.3. Improved Q-Learning Method Adopting Ridge Regression

To solve the multi-collinearity problem caused by matrix ΦTΦ, an improved Q-learning method
adopting ridge regression has been proposed in this paper. Both ridge regression and generalized
inverse are common methods for inversion of singular or ill-conditioned matrices [30–32]. According to
former studies [32,33], the principles of the two methods are different. With generalized inverse
method, the order of model built by matrix ΦTΦ will be reduced. In another word, the generalized
inverse method is fitter for overparameterization [34] than general irreversible situation. While the
ridge regression method maintains the original model order and directly interferes the main diagonal
elements of the matrix ΦTΦ, the regression error will be reduced. Therefore, for the multi-collinearity
of matrix ΦTΦ, the ridge regression is the better solution method.

As an improved least squares method, ridge regression was proposed by Hoerl in 1970. It is
an effective supplement for the least squares regression. Ridge regression obtains higher estimate
accuracy than the least squares regression, in the meantime, it is a kind of biased estimation method.

The principle of ridge regression is described as follows. There will be
∣∣ΦTΦ

∣∣ = 0 or
∣∣ΦTΦ

∣∣ ≈ 0
when Φ is a rank-deficient matrix. Therefore, the result of Formula (11) will be unsolved or very
unstable. A positive matrix λI is added with ΦTΦ to make a new matrix

(
ΦTΦ + λI

)
, where I is

an unit matrix with the same dimensions as Φ, and λ > 0. As a full rank matrix,
(
ΦTΦ + λI

)
is

invertible. According to Formula (11), Θ (H) can be solved by following formula when ridge regression
is adopted, where λ is a minimal positive value.

Θ (H) = (ΦTΦ + λI)−1ΦTν (17)

The principle of ridge regression is simple and understandable. There are many kinds of selection
method for parameter λ, because the most optimal value of λ is dependent on the estimated model.
In simulations, the optimized λ can be selected by calculating the ridge trace.

The state feedback control law u = Kx can be obtained based on the Θ(H). The improved
Q-learning method is still an iterative procedure, which can be realized as following steps.

• Step 1: An initial feedback matrix K0 is given to control the system;
• Step 2: A set of sufficient excited data are obtained;
• Step 3: The Θ(H) is solved based on the ridge regression method Formula (14);
• Step 4: The new control law is calculated by Formula (6);
• Step 5: The process from step 1 to step 4 will be repeated until K converges to a stable value.



Processes 2020, 8, 368 7 of 13

4. Simulations

To make numerical exposition, two simulation examples are shown in following part.
Both examples are linear discrete-time system. The simulations show the effectiveness of the
improved algorithm.

4.1. Example 1

Example 1: In many optimal control papers the objects are one-order or two-order systems.
To show the effectiveness of the proposed method on high order systems, a three-order linear
discrete-time system is chosen as following form:

ẋ =

1 0.0997 0.0045
0 0.9909 0.0861
0 −0.1722 0.7326

 x +

 0.7502
−0.4955
0.0861

 u

The weight matrices of performance criteria are: Q = I, R = 1. The discount factor is γ = 1.
The initial feedback matrix is set as K =

[
0.5 0 0

]
, and then data can be acquired by solving state

equation. The data acquisition process is shown as follows.
To guarantee the sufficiency of excitation, three random numbers will be produced by program

as state x(l) at the lth sample time; u(l) will be calculated according to values of x(l); x(l + 1) can be
derived by state equation, and also the corresponding u(l + 1) will be obtained.

For the linear discrete-time system, matrices A and B are just used to generate data which is
provided for calculation. The feedback matrix K can be solved without the knowledge of system.

The existing Q-learning calculation process has been calculated based on 200 sets of data sampled
from the system. While the step 2 cannot be executed, because of the matrix ΦTΦ is irreversible.
To avoid the data deficiencies factor, the process is recalculated based on 1500 sets of data, and the
same situation appears.

An effective feedback matrix K =
[
1.0 0.27 0.21

]
can be obtained from the same 200 sets of

data based on the improved Q-learning method. Figure 1 shows the closed-loop response and the

control effort with the initial state of system x0 =
[
1 0 0

]T
. In this figure, ordinates are values of

states or control variables, and the horizontal ordinates are the computation times of the discrete-time
system. The system is stable under the calculated feedback matrix, which means that the effective
controller can be solved by the proposed method. There is a distinct different between the solved
feedback matrix and the optimal theoretical value, the reason of that is the limitation of the information
provided by the sampled data. With more data sets, the calculated feedback matrix will converge to
the optimal theoretical value, as shown in example 2.
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(a) (b)

Figure 1. Closed-loop response and the control effort of system 2. (a) Trajectories of state values.
(b) Trajectory of control value.

4.2. Example 2

Example 2: A DC motor discrete-time model described as two-order state equation is:

ẋ =

[
1 0.0952
0 0.8187

]
x +

[
0.0955
0.1813

]
u

The weight matrices of performance criteria are: Q = I,R = 1. The discount factor is γ = 1.
To compare the optimal theoretical feedback matrix with the calculated one, a controller is

designed by the traditional optimal control theory based on the mathematical model. So the matrices

P and K∗ are solved by Equation (7): P =

[
8.8808 1.4297
1.4297 2.9104

]
, K∗ =

[
0.9031 0.5294

]
. In addition, the

solution of Equation (5) is: H =

9.8809 2.0159 1.1073
2.0159 3.2541 0.6492
1.1073 0.6492 1.2262

. The Θ(H) can be calculated according to

Equation (8): Θ(H) =
[
9.8809 4.0319 2.2146 3.2541 1.2984 1.2262

]
.

To get the feedback matrix by the existing Q-learning method, the initial feedback matrix is set as
K0 =

[
0.9031 0.5294

]
. To avoid the data deficiencies factor, the system has been sufficiently excited,

and 1500 sets of date is sampled. According to Formula (11), the equation (ΦTΦ)Θ(H) = ΦTν is
obtained as following form:

3.8771 9.9710 −8.7804 8.3758 −13.4391 15.0447
9.9710 39.8898 −30.1240 55.0816 −65.1862 61.7167
−8.7804 −30.1240 23.8783 −36.7265 46.6489 −46.2619
8.3758 55.0816 −36.7265 117.7324 −112.0756 92.5045
−13.4391 −65.1862 46.6489 −112.0756 118.2058 −104.7108
15.0447 61.7167 −46.2619 92.5045 −104.7108 97.2166


Θ(H) =



87.3195
362.9179
−271.0004
574.5259
−631.9216
579.3007


To verify the above equation, the H calculated by Riccati equation and the Θ(H) are substituted

into it, and the two sides of the equation are equal. Therefore, the procedure of the calculation is
proved correct. However, the Θ(H) cannot be solved by Equation (15), the analysis is as following.
The eigenvalues of ΦTΦ is calculated as: λ(ΦTΦ) =

{
0 0 0 0.7968 26.4209 373.5823

}
.

The rank of square matrix ΦTΦ is 3, which means that the matrix is singular and noninvertible.
Therefore the Θ(H) cannot be calculated via the least squares regression adopted by the existing
Q-learning method.
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While with the improved Q-learning method, the feedback matrix can be calculated as K =[
0.5406 0.0115

]
. According to the ridge trace of H and ν, the parameter λ in Formula (14) is set as

0.01. Figure 1 shows the closed-loop response and the control effects with the initial state of the system

as x0 =
[
1 0

]T
. Similar to example 1, the Figure 1 shows that the system is closed-loop stable. Like in

Figure 2, ordinates of Figure 1 are values of states or control variables, and the horizontal ordinates
are the computation times of the discrete-time system. In Figure 3 the ordinates and the horizontal
ordinates are the same.

The initial feedback matrix is set as K0 =
[
0.5 0

]
, and the data acquisition process is the same

as shown in example 1. The calculation process can be iterated repeatedly until K converges to a stable
value or the system achieves satisfying performance. When the system obtains best performance,
the calculated feedback matrix is K =

[
0.9171 0.4143

]
, and it is very close to the optimal theoretical

value K∗ =
[
0.9031 0.5294

]
. The simulation results are shown in Figure 3. According to the

simulation, for the linear discrete-time systems, the quadratic optimal controllers can be designed by
online iterative calculation.

(a) (b)

Figure 2. Closed-loop response and the control effort of system 1. (a) Trajectories of state values.
(b) Trajectory of control value.

(a) (b)

Figure 3. Closed-loop response and the control effort of system 2 with K = [0.91710.4143].
(a) Trajectories of state values. (b) Trajectory of control value.

5. Further Analysis for Nonlinear Systems

The analysis and the simulation results both present that the quadratic optimal controllers for the
linear discrete-time systems cannot be solved by Equation (11). The corresponding analysis should
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be done to guide the design of Q-learning quadratic optimal controllers for nonlinear discrete-time
systems and nonlinear continuous-time systems.

For nonlinear discrete-time systems described as x(l + 1) = f(x(l), u(l)), the index of the
optimized performance is defined as: V(x(l)) = ∑∞

k=l γk−lν(x(k), u(k)). And the Q function is defined
as: Q(x(l), u(l)) = ν(x(l), u(l)) + γQ(x(l + 1), u(l + 1)). Therefore, the Q function can be noted as:

Q(x(l), u(l)) = ϕT(x(l), u(l))ΘQ (18)

where ΘQ is the vector of unknown parameters, ϕT(x(l), u(l)) is sampled data set composed by state
variables x and control variables u. The extreme condition derived from Formula (18) is shown as

following form: ∂Q(x(l),u(l))
∂u(l) =

∂ϕT
Q(x(l),u(l))

∂u(l) ΘQ = 0 . The optimized solution of the above equation is
noted as:

u(l) = ϕT
u (x(l))Θu (19)

where Θu is the unknown parameters vector, ϕT
u (x(l)) is the sampled data set composed by state

vector x.
Theoretically, the controller can be solved by Formula (18) under the condition derived as

Formula (19). While the elements of vector ϕT
Q(x(l), u(l)) should be linear independent to solve

ΘQ adopting the least squares method. So the linear correlation of the vector ϕT
Q(x(l), u(l)) should be

discussed to ensure the calculation can be implemented correctly.
For nonlinear continuous-time systems described as: ẋ = f(x, u), the index of the optimized

performance is defined as: V(x(l)) =
∫ ∞

t e−γ(τ−t)ν(x, u)dτ. And the Q function is defined as
following form.

lQ(x(l), u(l)) =
∫ t+T

t
e−γ(τ−t)ν(x, u) + e−γTQ(x(t + T), u(t + T)) (20)

= R(x(l), u(l)) + e−γTQ(x(t + T), u(t + T))

Therefore, the Q function can be noted as:

Q(x(t), u(t)) = ϕT
Q(x(t), u(t))ΘQ (21)

where ΘQ is the unknown parameters vector, ϕT(x(t), u(t)) is sampled data set composed by state
variables and control variables . The extreme condition derived from Formula (20) is shown as the

following form: ∂Q(x(t),u(t))
∂u(t) =

∂ϕT
Q(x(t),u(t))

∂u(t) ΘQ = 0 . The optimized solution of the above equation
noted as:

u(t) = ϕT
u (x(t))Θu (22)

where Θu is the unknown parameters vector, ϕT
u (x(t)) is the sampled data set composed by state

vector x.
Similar to nonlinear discrete-time systems, the quadratic optimal controllers for nonlinear

continuous-time systems can be solved by Formula (20) under the extreme condition formed as
Formula (21). And also the elements of vector ϕT

Q(x(t), u(t)) should be linear independent to solve
ΘQ via the least square method. So the linear correlation of the vector ϕT

Q(x(t), u(t)) should also be
discussed to ensure the calculation can be implemented correctly.

In general, the problem about the multi-collinearity of data sets sampled from nonlinear
systems no matter discrete-time or continuous-time needs to be discussed in further research to
determine whether the existing Q-learning algorithm should be modified when it is used to deal with
nonlinear systems. This will make positive significance for nonlinear systems control schemes such
as microbial fuel cell systems [35,36]. The relative analysis and simulations will be developed in our
further researching.
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6. Conclusions

The design of optimal quadratic controllers for linear discrete-time systems based on Q-learning
method is claimed as a kind of model-free method [37,38]. In this paper, both the theoretical analysis
and the simulation results demonstrate that the existing design method of model-free controllers
based on Q-learning algorithm ignores the linear independence of sampled data sets. For the linear
discrete-time or continuous-time systems, the model-free quadratic optimal controllers cannot be
established directly by the Q-learning method until the linear independence of data sets is guaranteed.
The matrix Φ is inevitably column-related considering the quadratic optimal control law u = Kx.
So other solution methods should be investigated besides the least squares method to solve parameters
matrix Θ(H).

An improved Q-learning method based on ridge regression for linear discrete-time systems is
proposed in this paper to deal with the multi-collinearity problem of the sampled data sets. Simulations
show the effectiveness of the proposed method. There are deficiencies of the improved Q-learning
method. First, the proposed method relies on the ridge trace of the linear correlation matrix, so the
computation speed is limited. Second, the proposed method considers with neither disturbance nor
saturation of controller. Further research will focus on solving these problems.
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